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To study two-dimensional dispersive waves propagating through turbulent flows, a new
and less restrictive fast waves approximation is proposed using a multiscale setting. In this
ansatz, large and small scales of the turbulence are treated differently. Correlation lengths
of the random small-scale turbulence components can be considered negligible in the
wave packet propagating frame. Nevertheless, the large-scale flow can be relatively strong,
to significantly impact wavenumbers along the propagating rays. New theoretical results,
numerical tools and proxies are derived to describe ray and wave action distributions. All
model parameters can be calibrated robustly from the large-scale flow component only.
We illustrate our purpose with ocean surface gravity waves propagating in different types
of surface currents. The multiscale solution is demonstrated to efficiently document wave
trapping effects by intense jets.
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1. Introduction

This paper aims to revisit the ray path concept for fast waves propagating over
heterogeneous turbulent flows. Considering ocean surface wave propagation, many
authors have already discussed the random changes of rays subject to a random current
(Voronovich 1991; White & Fornberg 1998; Smit & Janssen 2019), and consequences
on wave action distributions. Closures have been derived in the Eulerian setting (Bal
& Chou 2002; Klyatskin & Koshel 2015; Borcea, Garnier & Solna 2019; Kafiabad,
Savva & Vanneste 2019; Bôas & Young 2020; Garnier, Gay & Savin 2020). Some of

† Email address for correspondence: valentin.resseguier@inrae.fr

© The Author(s), 2024. Published by Cambridge University Press 997 A51-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

76
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:valentin.resseguier@inrae.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.769&domain=pdf
https://doi.org/10.1017/jfm.2024.769


V. Resseguier, E. Hascoët and B. Chapron

these approaches can be traced back to wave–wave interaction models (e.g. McComas
& Bretherton (1977); see also Kafiabad et al. (2019), and references therein). In most
cases, the central assumption is either time-delta-correlated turbulent velocity (Voronovich
1991; Klyatskin 2005; Klyatskin & Koshel 2015) and/or fast waves in comparison to
fluid flow velocities (White & Fornberg 1998; Dysthe 2001; Bal & Chou 2002; Borcea
et al. 2019; Kafiabad et al. 2019; Smit & Janssen 2019; Bôas & Young 2020; Garnier
et al. 2020; Boury, Bühler & Shatah 2023; Wang et al. 2023). Medium variations
may be slow, and delta-correlations are hardly justifiable in a fixed frame. However,
attached to a fast-propagating wave group, the medium may seem to vary rapidly, and the
delta-correlation assumption makes more sense. Another common assumption is frozen
turbulence. In such a case, weak currents also imply conservation along rays of intrinsic
frequency, wavenumber and group velocity magnitude in two dimensions (Boury et al.
2023). Subsequently, most wave dynamics models neglect variations and diffusion of
frequency or wavenumber.

The diffusion of the wave action at large distance with a multiscale decomposition of the
current has already been reported (Bal & Chou 2002). However, an explicit formulation for
the diffusivity has been derived solely for a zero large-scale current. More generally, fast
wave models rely mostly on either zero or constant current components at larger scales.
West (1978), for instance, discussed acoustic waves in two-component random media, but
no velocity was involved.

Hereafter, the proposed two-scale velocity decomposition falls into the family of
stochastic transport models (Kunita 1997; Mikulevicius & Rozovskii 2004; Resseguier
et al. 2020a; Zhen, Resseguier & Chapron 2023), including dynamics under location
uncertainty (LU) (Mémin 2014; Resseguier, Mémin & Chapron 2017a) and stochastic
advection by Lie transport (SALT) (Holm 2015). Under this framework, the small-scale
velocity component is delta-correlated in time (Cotter, Gottwald & Holm 2017). Up
to usual source terms, fluid dynamics quantities (temperature, momentum, etc.) are
transported by both the large-scale revolved component and that random unresolved
turbulence component. The stochastic closures obtained are conservative. Nonlinear wave
Hamiltonian dynamics and wave influence on currents (e.g. Stokes drift) have then been
derived (e.g. Crisan & Holm 2018; Bauer et al. 2020; Holm 2021; Holm & Luesink
2021; Dinvay & Mémin 2022; Holm, Hu & Street 2023). Considering a single-wavevector
current, solutions for a monochromatic shallow-water wave were developed by Mémin
et al. (2022). In the present study, our objective is restricted to the influence of turbulent
flows on linear waves.

After first recalling the principles of the ray tracing method, we present the multiscale
framework for fast wave dynamics, its physical grounds, and a calibration method for the
closure. Simplified stochastic equations are then derived for the ray dynamics and the
wave action spectrum, in both Lagrangian and Eulerian settings. For illustrative examples,
numerical tools, analytic models and proxies are applied to ocean surface gravity waves
propagating through two types of two-dimensional (2-D) turbulent flows: a typical slow
homogeneous turbulence, and a jet case.

2. Characteristics of wave packet rays

Isolating a single progressive group of quasi-regular wave trains, it follows a form
h(x, t) exp(iφ(x, t))+ c.c., for most properties. Typically, h would be the local wave
height, in metres. If a packet is to be followed, then the phase φ(x, t) must vary
smoothly along the propagation, i.e. φ(x, t) is differentiable. The relative frequency is then
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ω = −∂tφ(x, t), and the wavenumber vector is k = ∇φ(x, t), with wavenumber k = ‖k‖,

and direction given by the normalized wavevector, k̃ = k/k =
(

cos θk
sin θk

)
. To first order, such

a train of waves is dispersive, and the intrinsic frequency reads

ω − k · v = ω0 =
⎧⎨⎩constant × 1

α
kα, α /= 0,

constant × log(k), α = 0,
(2.1)

and propagates with its group velocity vg = ∇kω, constantly modified by the local velocity
of the currents v,

dxr

dt
= vg = v0

g + v, (2.2)

where xr is the centroid of a wave group, v0
g = (∂ω0(k)/∂k) k̃ is the group velocity without

currents, i.e. depending solely on the wavevector. For α = 1, the medium is non-dispersive
(e.g. acoustic waves). Parameter α = 1/2 corresponds to gravity waves over deep ocean
(ω0 = √

gk). The dominant wavevector k within the group evolves according to

dk
dt

= −∇vTk. (2.3)

Equations (2.2)–(2.3) are the Hamilton eikonal equations. Along the propagating ray,
velocity gradients induce linear variations. Decelerating currents will, for instance, shorten
waves, and reduce the group velocity. Travelling over fields of random velocities v, the
wavevector k will also become randomly distributed. Scattering of ocean surface wave
packets by random currents can generally be assumed to be weak, with ‖v‖ of order
0.5 m s−1, much smaller than v0

g = ‖v0
g‖ of order 10 m s−1. Yet cumulative effects of these

random surface currents can lead to strong convergence or divergence between initially
nearby ray trajectories.

To complete the wave field description, E(x, t) = 1
2ρgh2(x, t) and A(x, t) = E(x, t)/

ω0(k(x, t)) denote energy and action by unit of surface. Here, E is expressed in J m−2,
and A in J s m−2. To avoid spurious notations, we set the multiplicative constant 1

2ρg to
unity. The wave action is considered to be an adiabatic invariant in the absence of source
terms. Wave action is then crucial to anticipate wave transformations by currents (White
1999). Unlike wave energy, wave action is conserved, in the absence of wave generation
or dissipation. This action is the integral over wavevectors of the action spectrum N, also
related to the wave energy spectrum E:

A(x, t) =
∫

dk N(x,k, t) =
∫

dk
E(x,k, t)
ω0(k, t)

. (2.4)

Action and energy spectrum quantify action and energy by unit of surface (unit of x) and
by unit of wavevector surface (unit of k). Consider the (x,k) variable change between
different times ti and tf integrating the characteristic eikonal equations (2.2)–(2.3):(

xr(ti)
k(ti)

)
�→

(
xr(tf )
k(tf )

)
. (2.5)

According to the Liouville theorem for Hamiltonian mechanics (Landau & Lifshitz 1960,
§ 46), the state space of the ‘packet-by-packet’ approach (the (x,k) space) does not
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contract or dilate along time. Readers not familiar with Hamiltonian dynamics may see
the divergence free of the four-dimensional flow (2.5) – i.e. ∇x · dxr/dt + ∇k · dk/dt = 0
– as the divergence free of incompressible flow velocities, leading naturally to
volume-preserving dynamics. Therefore, if wave dissipation is neglected, then the wave
action spectrum N is conserved (Lavrenov 2013), i.e.

N(xr(ti),k(ti), ti) = N(xr(tf ),k(tf ), tf ). (2.6)

This result is extremely useful because it involves only quantities of the characteristics,
i.e. each Fourier mode can be modified independently of the others. The wave energy
spectrum can be computed from the characteristics

E(xr(tf ),k(tf ), tf ) = ω0(k(tf ))
ω0(k(ti))

E(xr(ti),k(ti), ti). (2.7)

starting with an initial incoming wave spectrum E(xr(ti),k(ti), ti) for every wavevector
k(ti), starting from a small set of spatial points xr(ti).

3. A new fast wave assumption

Eikonal equations (2.2)–(2.3) are driven by currents and their gradients. Commonly, the
Eulerian current v is decomposed into a low-frequency large-scale component v̄ and a
transient small-scale unresolved component v′:

v = v̄ + v′. (3.1)

Current gradients naturally follow the same scale separation. From now on, we will
consider divergence-free 2-D currents only.

3.1. The ray Lagrangian correlation time
To better characterize the wave dynamics in such a random environment, the covariance
of the fluid velocity can be evaluated in the wave group frame. To take into account
the small-scale unresolved component v′, its Eulerian spatio-temporal covariance is
considered, assuming statistical homogeneity and stationarity for the Eulerian velocity
v′

E(t, x) = v′(t, x):

C
v′

E
ij (δt, δx) = E(v′

i(t, x) v′
j(t + δt, x + δx)) = E(v′

i(t, xr(t)) v′
j(t + δt, xr(t)+ δx)),

(3.2)

where xr is a solution of (2.2) with an arbitrary initial position x0
r . Then we define

v′
R(t) = v′(t, xr(t)), the Lagrangian velocity along the ray xr(t). The temporal covariance

of the small-scale component v′ – in the wave group frame – is the covariance of that
Lagrangian velocity:

C
v′

R
ij (δt) = E(v′

i(t, xr(t)) v′
j(t + δt, xr(t + δt))) = C

v′
E

ij (δt, xr(t + δt)− xr(t)). (3.3)

Assuming, for example, a typical isotropic form for the Eulerian covariance,

Cv
′
E(δt, δx) = C

( |δt|
τv′

+ ‖δx‖
lv′

)
, (3.4)
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the covariance can be evaluated in the wave group frame for small time increment δt:

Cv
′
R(δt) = C

( |δt|
τv′

+ ‖xr(t′ + t)− xr(t′)‖
lv′

)
= C

((
1
τv′

+ ‖vg‖
lv′

)
|δt| + O(δt2)

)
,

(3.5)

since xr(t′ + t)− xr(t′) = vg δt + O(δt2). Therefore, (1/τv′ + ‖vg‖/lv′)−1 is the
correlation time of v′(t, xr(t)). For fast waves, the along-ray correlation time of the
small-scale velocity can be approximated by lv′/v0

g . Note that eikonal equations (2.2)–(2.3)
involve both velocity and velocity gradients. The above derivation is also valid for
the small-scale velocity gradients (∇vT)′(t, xr(t)). The ratio ε between that along-ray
correlation time and the characteristic time of the wave group properties evolution will
then control the time decorrelation assumption of v′:

ε = lv′

v0
g

‖∇vT‖ ∼ lv′

lv

‖v‖
v0

g
. (3.6)

This time scale estimation can be obtained from spatio-temporal covariances more general
than (3.4) (not shown) even though the derivation is more technical. Note that the Eulerian
small-scale velocity v′ is not necessarily time-uncorrelated, as assumed in Voronovich
(1991) and Klyatskin & Koshel (2015). Yet for small enough ε, the Lagrangian small-scale
velocity along the ray can be considered time-uncorrelated. From the expression for ε,
such a condition depends upon:

(i) v0
g , the fast wave group velocity;

(ii) ‖v‖, often slow but not always negligible compared to the intrinsic wave group v0
g ;

(iii) lv′/lv , related to the separation between large scales v̄ and small scales v′, e.g. the
spatial filtering cutoff of the large-scale velocity v̄, but also related to its kinetic
energy distribution over spatial scales, typically the spectrum slope.

This along-ray partial time-decorrelation assumption is less restrictive than the usual
fast wave approximation (White & Fornberg 1998; Dysthe 2001; Bal & Chou 2002; Borcea
et al. 2019; Kafiabad et al. 2019; Smit & Janssen 2019; Bôas & Young 2020; Garnier et al.
2020; Boury et al. 2023; Wang et al. 2023) – say ‖v‖/v0

g � 1 – and than the SALT-LU
time-decorrelation used for turbulence dynamics (Mémin 2014; Holm 2015; Cotter et al.
2017; Resseguier et al. 2020a) – say lv′/lv � 1. Similarly, this last validity criterion can
be obtained by replacing xr in (3.2)–(3.6) by the fluid particle Lagrangian path x (solution
of dx/dt = v) and thus v0

g by v. These asymptotic models often rely on averaging or
homogenization techniques (Papanicolaou & Kohler 1974; White & Fornberg 1998) to
derive Markovian dynamics involving various types of diffusivity.

3.2. Ray absolute diffusivity and turbulence statistics: calibration
Diffusivity is a natural tool to specify statistics of uncorrelated random media. For waves
in random media, we will specify multi-point statistics, and the Fourier space is convenient
for this purpose. We will first present scalar diffusivity and then distribute it over spatial
scales to fully calibrate the random velocity v′, i.e. choose some parameter values to set the
statistics of that velocity field. As such, we will obtain a closed model to derive analytic
results and generate samples for simulations.

The absolute diffusivity (or Kubo-type formula) usually corresponds, in the so-called
diffusive regime, to the variance per unit of time of a fluid particle Lagrangian path
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dx(t)/dt = vL(t) = v(t, x(t)). It is approximately equal to the velocity variance times
its correlation time. The Eulerian velocity covariance (3.4) will thus induce an absolute
diffusivity (Piterbarg & Ostrovskii 1997; Klyatskin 2005)

1
2 aL =

∫ +∞

0
dδt Cv

′
L(δt) =

∫ +∞

0
dδt Cv

′
E(δt, x(t + δt)− x(t)) ≈ 1

2 τv′C(0). (3.7)

This diffusivity well describes effects of fast-varying eddies, but is not appropriate in our
case. Indeed, along a propagating wave group dxr(t)/dt = v0

g(t)+ vR(t), a ray absolute
diffusivity occurs and slightly differs from the usual absolute diffusivity to become

1
2

aR =
∫ +∞

0
dδt Cv

′
R(δt) ≈ 1

2

(
1
τv′

+ ‖vg‖
lv′

)−1

C(0) ≈ 1
2

lv′

v0
g

C(0). (3.8)

The absolute diffusivity sets the amplitude of the small-scale velocity v′. Indeed,
since the kinetic energy of a time-continuous white noise is infinite, it has no physical
meaning. It is more relevant to deal with absolute diffusivity rather than kinetic
energy in order to describe the statistics of the time-uncorrelated velocity. To calibrate
its spatial correlations, we may focus on its Fourier transform v̂′(κ, t), denoting by

κ = κ
(

cos θκ
sin θκ

)
, the surface current wavevector. By analogy with the current kinetic energy

spectra Eκ = 1
2

∮ 2π

0 dθκ κ(‖v̂(κ, t)‖2/(2π)2), Resseguier, Mémin & Chapron (2017b) and
Resseguier, Pan & Fox-Kemper (2020b) decompose the absolute diffusivity scale by scale:

aR =
∫ +∞

0
AR
v′(κ) dκ. (3.9)

Referring it to absolute diffusivity spectral density (ADSD), it is defined as the kinetic
energy spectra multiplied by the correlation time at each scale, τ(κ). Unlike Resseguier
et al. (2017b, 2020b), that correlation time is here imposed by the wave dynamics.
Therefore, by analogy with (3.8), we choose a correlation time τR(κ) = 1/κ/v0

g(k), and
then

1
2

AR(κ) = 1
2
τR(κ)Eκ(κ) = 1

2
1/κ
v0

g(k)
Eκ(κ), (3.10)

where k denotes the wave wavenumber and κ the current wavenumber.
To calibrate an equivalent noise, we model v′ by σ dBt/dt, where dBt/dt is a

spatio-temporal white noise, and σ denotes a spatial filtering operator that encodes
spatial correlations through its ADSD, AR

v′ and the horizontal incompressibility condition
(∇ · σ = 0). For incompressibility, we work with the curl of a streamfunction. To generate
a homogeneous and isotropic streamfunction, we can filter a one-dimensional white noise
Ḃ with a filter ψ̆σ (Resseguier et al. 2017b), i.e. ψ̆σ � Ḃ, where � denotes a spatial
convolution. The velocity field is hence

v′ = σ dBt/dt = ∇⊥ψ̆σ � dBt/dt, (3.11)

with ∇⊥ the 2-D curl. That formula is easily written and implementable in
Fourier space (see (A2)). To define the streamfunction filter, we note that
(πκ3/(2π)2)|̂̆ψσ (κ)|2 = 1

2

∮ 2π

0 dθκ κ(‖σ̂ dBt(κ)‖2/(2π)2 dt) = AR
v′(κ), i.e. the filter can
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10–5 10–4 10–3

100

105

κ (rad m–1)

10–5 10–4 10–3

κ (rad m–1)

E(κ) A(κ)

KE spectrum ADSD
(a) (b)

Figure 1. (a) Kinetic energy (KE) spectrum (m2 s−2/ (rad m−1)) and (b) ADSD (m2 s−1/ (rad m−1)) of the
resolved high-resolution velocity AR in red, low-resolution velocity AR

v̄ in blue, and modelled stochastic velocity
AR
v′ (κ) = AR

0κ
−μ − AR

v̄ (κ) in green. For the ADSD power law AR(κ) ≈ AR
0κ

−μ, we impose the theoretical
kinetic energy spectrum slope − 5

3 (black solid line), coherently with homogeneous surface quasi-geostrophic
dynamics (see § 5). The residual ADSD (green line) is set to extrapolate that power law at small scales.

be fully defined by the small-scale ADSD AR
v′ . To close our model, we assume an ADSD

power law:

AR(κ) ≈ AR
0κ

−μ. (3.12)

It enables automatic closure calibration AR
v′(κ) = AR

0κ
−μ − AR

v̄ (κ), from instantaneous
large-scale current statistics AR

v̄ only (Resseguier et al. 2020b), as illustrated in figure 1.

4. Statistical wave dynamics

In a stochastic framework, the Stratonovich or Itō notations can both be used (Kunita
1997; Oksendal 1998). Under Stratonovich calculus rules, expressions become similar
to deterministic ones. Specifically, stochastic versions of linearized dynamical equations
are obtained by replacing v by v̄ + σ ◦ dBt/dt. Then the stochastic transport of phase
(dφ/dt) = ω0(‖∇φ‖), i.e. – up to that velocity replacement – the Stratonovich dispersion
relation, is exactly (2.1). The method of characteristics also applies. Note that one
can switch from Stratonovich to Itō notations, where v′ corresponds to σ dBt/dt.
The characteristics equations (2.2)–(2.3) also remain unchanged for homogeneous and
isotropic v′: {

dxr = (v0
g + v̄) dt + σ dBt,

dk = −∇(v̄ dt + σ dBt)
Tk.

(4.1)

4.1. Single-ray stochastic differential equations
When studying a single ray in a homogeneous and isotropic turbulence (3.11), the
wavevector dynamics simplifies. In the local crest-oriented frame, the influence of
small-scale currents can be represented solely by four one-dimensional white noise
forcings.

Notably, dynamics of wavevectors (2.3) are similar to tracer gradient dynamics (Bühler
2009; Plougonven & Zhang 2014). Only the coupled ray path dynamics (2.2) differs.
Accordingly, we follow the notations and derivations of the mixing analysis from Lapeyre,
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S̄+

S̄–

y

k

vg
0

v̄

θ̄

θk

x

ζ/2 + π/4

–φ
–
 – π/4

Figure 2. Schematic view of vectors and angles involved in single-ray dynamics, where S̄− and S̄+ are
respectively compression and dilatation axes associated with the large-scale velocity gradient ∇v̄T.

Klein & Hua (1999), and references therein. Without loss of generality, the large-scale
velocity can be parametrized as

v̄ = v̄

(
cos θ̄
sin θ̄

)
and ∇v̄T = 1

2

[
σ̄ sin 2φ̄ ω̄ + σ̄ cos 2φ̄

−ω̄ + σ̄ cos 2φ̄ −σ̄ sin 2φ̄

]
. (4.2a,b)

Figure 2 provides a synthetic view of angles involved. The dynamics wave group
centroid xr is driven directly by the large current wave group velocity v0

g + v̄. The
influence of the large-scalecurrent gradients on the wavevector dynamics (4.1), expressed
in the local crest-oriented frame (k̃, k̃⊥), is straightforward (Lapeyre et al. 1999). The
small-scale currents force the ray dynamics through a stochastic noise. For a single ray
(xr,k) = (xr, yr, k cos θk, k sin θk), this noise can be described rigorously by four
independent one-dimensional white noises only (see Appendix A), Ḃ(1)t , Ḃ(2)t , Ḃ(3)t and
Ḃ(4)t , and

d
dt

xr = v0
g cos θk + v̄ cos θ̄ + √

a0 Ḃ(1)t , (4.3)

d
dt

yr = v0
g sin θk + v̄ sin θ̄ + √

a0 Ḃ(2)t , (4.4)

d
dt

log k = −σ̄ sin(ζ )+ γ0 + √
γ0 Ḃ(3)t , (4.5)

d
dt
θk = 1

2
(ω̄ − σ̄ cos(ζ ))+

√
3γ0 Ḃ(4)t , (4.6)

where ζ = 2(θk + φ̄) and

a0 = 1
2 dt

E‖σ dBt‖2 =
∫ +∞

0
AR
v′(κ) dκ, (4.7)

γ0 = 1
8 dt

E‖∇x(σ dBt)
T‖2 = 1

4

∫ +∞

0
k2 AR

v′(κ) dκ. (4.8)

Diffusivity constants depend through (3.10) on both the correlation length and the
spectrum slope of the small-scale velocity. In contrast to the classical fast wave
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approximation, the wavenumber does vary. This is due to (i) the finite large-scale strain rate
σ̄ , and (ii) the small-scale isotropic velocity model (3.11). This isotropy assumption and its
implication are discussed in Appendix C. Note that neither the large-scale component nor
the small-scale component is assumed to be steady, even though that Eulerian velocity
unsteadiness is only a secondary process in the wave dynamics. The fast temporal
variations seen by the wave are driven mainly by the large wave speed and not by the
Eulerian velocity unsteadiness. The current unsteadiness can also lead to wavenumber
variations (Dong, Bühler & Smith 2020; Boury et al. 2023; Cox, Kafiabad & Vanneste
2023). Given a known wavevector angle, it leads to a wavenumber evolution

k(t) = k(0) exp
(

−
∫ t

0
σ̄ sin(2(θk + φ̄)) dt′

)
exp(γ0t + √

γ0 B(3)t ), (4.9)

and hence to the complete wavevector distribution, i.e. the wave spectrum. The second
exponential factor in (4.9) is a geometric Brownian motion. Its mean diverges in time
exponentially rapidly. Physically, shear and strain of v′ tends to shorten the wavelength
(Voronovich 1991; Boury et al. 2023) leading to this exponential divergence. This factor
has a log-normal distribution, suggesting possible extreme transient wavenumber events.
This generalizes previous results (Voronovich 1991; Klyatskin & Koshel 2015), obtained
with neglecting the time-correlated current component v̄.

For completeness, the action distribution over space and wavevector can be derived.
Some approaches consider finite-size wave trains either through additional equations
(Jonsson 1990; White & Fornberg 1998) or re-meshing (Hell, Fox-Kemper & Chapron
submitted). Otherwise, each ray transports its action spectrum (2.6), and we need to
numerically combine many rays (Lavrenov 2013), or rely on analytic approximations.
Typically, we solve (4.3)–(4.5), exhibiting p(x,k | x0

r ,k0
r , t), the distribution of the ray

(x,k) at time t given initial conditions (x0
r ,k0). Then by analogy with tracers in

incompressible turbulence (Piterbarg & Ostrovskii 1997, (1.31); see also Appendix D),
we can evaluate the wave action spectrum mean – or any pointwise statistics – as

EN(x,k, t) =
∫∫

dx0
r dk0 N0(x0

r ,k0
r ) p(x,k | x0

r ,k0, t), (4.10)

where N0 is the initial wave action spectrum. Integrating this expression over wavevectors,
we note that the distribution inside the integrals changes:

EA(x, t) =
∫∫

dx0
r dk0 N0(x0

r ,k0
r ) p(x | x0

r ,k0, t). (4.11)

The wave action mean depends solely on group positions distribution. Multi-point
action statistics – e.g. focusing E‖∇xA‖2 – rely on multi-ray correlations, encoded in
the stochastic characteristic equations (4.1), but not the simplified model (4.3)–(4.6).
Alternatively, Eulerian descriptions of wave action dynamics directly provide action
distribution over space and wavevector.

4.2. Eulerian dynamics and action diffusion
Wave action spectrum is transported along a four-dimensional volume-preserving
stochastic flow (4.1). Again by analogy with incompressible turbulence (Resseguier et al.
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2017a), the stochastic transport of wave action spectrum in Itō notations reads

∂tN +
(

v0
g + v̄ + σ

dBt

dt

)
· ∇xN +

(
−∇x

(
v̄ + σ

dBt

dt

)T

k

)
· ∇kN

=
[∇x
∇k

]
·
(

D

[∇x
∇k

]
N
)

= 1
2

a0�xN + 1
2
γ0

1
k
∂k

(
k3 ∂kN

)
+ 3

2
γ0 ∂

2
θk

N. (4.12)

The right-hand side is reminiscent of (3.16) in Bôas & Young (2020), and (36) in Smit
& Janssen (2019), and more generally of rapid wave models. Nevertheless, (4.12) is not
averaged and explicitly involves large-scale currents and noise terms (terms with factor
dBt/dt). Differences with Smit & Janssen (2019) and Bôas & Young (2020) for the
diffusivity estimates and the detailed computation of the 4 × 4 diffusion matrix D can be
found in Appendix A. Itō notations for (4.12) explicitly separate mean terms (e.g. diffusion
terms) and zero-mean noise terms. Here, the Eulerian Itō notations reveal that coefficients
1
2 a0, 1

2γ0 and 3
2γ0 act to diffuse wave action in space, wavenumber and wavevector angle,

respectively.

5. Numerical experiments

To illustrate these developments, we consider ocean surface gravity waves propagating
over a dynamical flow region. Ray tracing through synthetic surface currents will provide a
benchmark. It will be shown that a broad range of the current scales can be replaced by the
stochastic parametrization (3.11) without affecting ray scattering and action distribution.
Theoretical results (4.3)–(4.12) will suggest approximate analytic solutions.

5.1. Surface current dynamics
Simplified upper ocean dynamics are considered to follow

(∂t + v · ∇)Θ = 0, with v = −∇⊥(−Δ)−ξΘ, (5.1)

where Θ stands for the buoyancy, ∇⊥ for the curl, and Δ for the Laplacian. Two extreme
cases are the surface quasi-geostrophic (SQG) dynamics (ξ = 1

2 ) (Held et al. 1995;
Lapeyre 2017), and the 2-D Euler dynamics (ξ = 1). The SQG dynamics has an extreme
locality (kinetic energy spectrum slope −5/3), whereas 2-D Euler dynamics has an
extreme non-locality (kinetic energy spectrum slope −3). The objective is to test how the
proposed closures apply to both dynamics to be equally useful for any more realistic upper
ocean dynamics. Additionally, test cases are developed to assess the multiscale stochastic
closure in both homogeneous and heterogeneous propagating media. Moreover, we would
like to challenge our closure beyond the validity of rapid wave models. In our first test
case, surface fast waves travel in a homogeneous and isotropic SQG turbulence. Then we
simulate waves propagating in a spatially heterogeneous 2-D Euler turbulence, mimicking
an oceanic jet. For both SQG and 2-D Euler dynamics, a reference simulation is obtained
at resolution 512 × 512 for a 1000 km2 domain, with the help of a pseudo-spectral code
(Resseguier et al. 2017b, 2020b). Once initialized, the current velocity v is approximately
0.1 m s−1 for the homogeneous turbulence, and 1 m s−1 for the jet (see figure 3).
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Figure 3. Current velocity norms of (a) the SQG homogeneous turbulence and (b) the 2-D Euler jet current
at high resolution (512 × 512).
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Figure 4. Swell (wavelength λ = 250 m) interacting with (a) a high-resolution (512 × 512) deterministic
SQG current, (b) a low-resolution (32 × 32) deterministic SQG current, and (c) a low-resolution (32 × 32)
deterministic SQG current plus (one realization of) the time-uncorrelated stochastic model – coloured by
the corresponding wave amplitude, h(t) = √

ω0(k(t))N(t = 0) (right-hand side colour bars) – computed by
forward advection and superimposed on the current vorticity ω = ∇⊥ · v. The red crosses indicate where the
bidirectional wave spectra of figure 5 are computed.

5.2. Rays scattering in homogeneous SQG turbulence
A wave system enters the bottom boundary, propagating to the top. The carrier incident
wave has intrinsic wave group velocity 10 m s−1, i.e. wavelength λ = 250 m. Its envelope is
Gaussian with isotropic spatial extension 30λ. Figures 4(a) and 5(a) illustrate the resulting
dynamics, spreading the wavevectors (figure 5) of the incoming waves. From bottom to top,
spectral diffusion occurs (figure 5) in the direction orthogonal (here kx) to the propagation
(here ky), in line with the additive noise appearing in (4.6). This scattering accelerates –
along the propagation – the wave position spread (figure 4). This acceleration is explained
by the ray equation (4.3) dominated by the intrinsic wave group velocity.

To mimic a badly resolved v̄ field, v is smoothed at resolution 32 × 32. Using this
coarse-scale current in figures 4(b) and 5(b), the scattering – described in the previous
paragraph – is strongly depleting in comparison to ray tracing in fully-resolved turbulence.
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Figure 5. Bidirectional wave spectra, computed by backward advection, at eight locations along a vertical axis
(the mean wave propagation direction) resulting from a swell interacting with (a) a high-resolution (512 × 512)
deterministic SQG current, (b) a low-resolution (32 × 32) deterministic SQG current, and (c) a low-resolution
(32 × 32) deterministic SQG current plus (one realization of) the stochastic model (3.11). The spatial locations
where the spectra are calculated are highlighted in figure 4 by the red crosses.

The spectral diffusion induced by small-scale turbulence is missing. Thus the spatial
spreading also is narrower compared to high-resolution simulations. A stochastic current
v′ is then added for ray tracing (4.1). This stochastic component is divergence-free and has
a self-similar distribution of energy across spatial scales (3.11) (see figure 1). The resulting
spatial and spectral spreads are now comparable to simulations with high-resolution
currents. For this setting, the stochastic closure provides satisfying results for a sufficiently
well-resolved large-scale current. The key decorrelation ratio ε = (lv′/lv)(‖v‖/v0

g) indeed
depends on the resolution through lv′ . The large-scale current v̄ is resolved on a 32 × 32
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grid, i.e. with resolution lv′ = (‖∇vT‖/‖∇v′T‖)lv = 0.33lv . As such, ε = 4.1 × 10−3,
computed with v0

g ≈ 10 m s−1 and ‖v‖ ≈ 0.12 m s−1, so ‖v‖/v0
g ≈ 1.2 × 10−2, which is

sufficiently small to make the proposed model applicable.
From the ADSD estimate (3.10) (illustrated by figure 1) and (4.7)–(4.8), evaluations

of the diffusivity coefficients a0 and γ0 are straightforward. As discussed previously
(Smit & Janssen 2019), the spatial diffusivity is extremely weak: a0 = 6.4 × 10−1 m2 s−1

(spatial variations in ray equations (4.3)–(4.4) of approximately
√

a0t = 230 m during
1 day). In contrast, the spectral angle diffusivity is large: 3γ0 = 3.0 × 10−8 rad2 s−1.
Along our 1-day simulation, neglecting large-scale velocity influence, (4.6) leads
to Brownian wavevector angle variations δθk = θk − θk(0) = √

3γ0 B(4)t with standard
deviation σδθk = √

3γ0t = 5.2 × 10−2 rad ≈ 3.0◦, eventually increasing the wave
group spectral maximal extension from ±2σkx = ±2(2π/30λ) = ±1.7 × 10−3 rad m−1 to
±2σkx ≈ ±2

√
(2π/30λ)2 + (kσδθk)

2 = ±3.1 × 10−3 rad m−1, confirmed by figure 5.
This figure also illustrates the wave action diffusion induced by diffusivity γ0, well
predicted by the Eulerian wave action model (4.12). In this scattering regime, the increased
angle variability leads, by advection, to a spatial spread. The simplified ray equation (4.3)
gives δx ≈ ∫ t

0 v
0
g cos θk dt′ ≈ v0

g
∫ t

0 δθk dt′ ≈ v0
g
√

3γ0
∫ t

0 B(4)t′ dt′ with maximal extension
±2σx ≈ ±2v0

g

√
γ0t3 ≈ ±52 km, in agreement with figure 4. Finally, we estimate a

first-order delay along the propagation

δt = t − ( y − y(0))/v0
g ≈

∫ t

0
(1 − sin θk)dt′ ≈ 1

2

∫ t

0
δθ2

k dt′ ≈ 3
2
γ0

∫ t

0
(B(4)t′ )

2 dt′, (5.2)

with mean value Eδt = 3
4γ0t2.

5.3. Wave groups trapped in a 2-D Euler turbulent jet
Tests are now performed for rays travelling in fast and strongly heterogeneous 2-D Euler
flows. Classical fast wave models – assuming flows of weak amplitude and often uniform
statistics – are expected to fail here. Jets exhibit strong current gradients (e.g. Kudryavtsev
et al. 2017), creating strong ray focusing and possibly rogue events. Passing through
localized spatial structures, caustics can appear, but solely from unrealistically collimated
wave trains (White & Fornberg 1998; Heller, Kaplan & Dahlen 2008; Wang et al. 2023).

Occurrences strongly reduce for finite directional spread (Slunyaev & Shrira 2023).
Here, wave groups are trapped in a jet, but nonlinear wave interactions are neglected. The
high-resolution numerical simulations (see figure 6) reveal that even linear wave trains
are well trapped in adversarial currents. Freund & Fleischman (2002) observed a similar
behaviour for acoustic waves in a three-dimensional turbulent jet. Note that during our
simulation, rays cross the domain several times (because of the doubly periodic boundary
conditions; see Appendix E for technical details). At the top (resp. bottom) of the jet,
the vorticity and thus – at first order – rays curvatures (Dysthe 2001) are negative (resp.
positive). Therefore, rays oscillate around the jet. A toy model can explain this behaviour.
Following the multiscale stochastic approach (4.3)–(4.6), wave scattering is also taken into
account.

For very-coarse-grained (4 × 4) current v̄, oscillation remains, but most of the scattering
vanishes, as illustrated by figure 7. Moreover, the curvature of the jet creates artificial
wave focusing at t = 8 and 10 days. Introducing a time-uncorrelated model (3.11)
corrects the resolution issue in figure 8. Figure 9 plots the current ADSD. The current
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Figure 6. Rays facing a high-resolution (512 × 512) deterministic 2-D Euler jet current – coloured by the
corresponding wave amplitude h(t) = √

ω0(k(t))N(t = 0) (right-hand side colour bars) – computed by forward
advection and superimposed on the current vorticity ω = ∇⊥ · v (top colour bars).
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Figure 7. Rays facing a low-resolution (4 × 4) deterministic 2-D Euler jet current – coloured by the
corresponding wave amplitude h(t) = √

ω0(k(t))N(t = 0) (right-hand side colour bars) – computed by forward
advection and superimposed on the current vorticity ω = ∇⊥ · v (top colour bars).
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Figure 8. Rays facing a low-resolution (4 × 4) deterministic 2-D Euler jet current plus (one realization
of) the time-uncorrelated stochastic model – coloured by the corresponding wave amplitude h(t) =√
ω0(k(t))N(t = 0) (right-hand side colour bars) – computed by forward advection and superimposed on the

low-resolution current vorticity ω̄ = ∇⊥ · v̄ (top colour bars).
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Figure 9. The ADSD (m2 s−1/(rad m−1)) of the resolved high-resolution jet velocity in red, low-resolution jet
velocity in blue, and modelled stochastic velocity in green. The theoretical spectrum slope −3 (black solid
line) is imposed, consistent with homogeneous 2-D Euler dynamics. The residual ADSD (green line) is set to
extrapolate that power law at small scales.

is strong (‖v‖ ≈ 1.4 m s−1), and the usual fast wave approximation cannot be applied
(‖v‖/v0

g ≈ 1.2 × 10−1). However, the proposed modified fast wave model is valid, even
at the very coarse 4 × 4 resolution.

Indeed, 2-D Euler spectra are steeper than for SQG dynamics, and the length scale ratio
is already significant at this resolution, lv′/lv = 0.14, and the derived time-decorrelation
ratio is small: ε = (lv′/lv)(‖v‖/v0

g) = 1.6 × 10−2.
Furthermore, by approximating the under-resolved current v̄, an analytic stochastic

solution can be obtained for a ray travelling against the current. The large-scale pattern
of the jet takes a quadratic form

ū ≈ Ū0 − 1
2
β̄

(
y − Ly

2

)2

and v̄ ≈ 0, with Ū0, β̄ < 0. (5.3a,b)

Note that the toy model (5.3a,b) simply considers a straight jet, neglecting its curvature.
For weak subgrid currents and a ray (xr, y′

r + Ly/2, k, θk), propagating mainly to the right,
θk is small and the simplified ray equation (4.4) determines the group position with respect
to the jet y′

r:

d
dt

y′
r ≈ v0

g sin(θk) = v0
gθk + O(θ2

k ). (5.4)

For frozen turbulence, the wavenumber and hence v0
g will not vary significantly. The other

ray equation (4.3) localizes the group along the jet, xr ≈ xr(0)+ (v0
g − ū)t, dropping the

O(θ2
k ) from now on. Moreover, k̃⊥ · ∇v̄Tk̃ ≈ −∂yū, and the dynamics of wavevector angle

(4.6) simplifies to a stochastic oscillator equation:

d2

dt2
y′

r = v0
g

d
dt
θk = s − ∂y(v

0
gū)+ v0

g

√
3γ0 Ḃ(4)t = −ω̄2

r y′
r + v0

g

√
3γ0 Ḃ(4)t , (5.5)

with ω̄r =
√

|v0
g β̄|. Here, v0

gū plays the role of a potential, trapping the rays in the

jet vicinity, whereas the noise accounts for wave scattering. The solution of this linear
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Figure 10. Vorticity shear ∂2
y u of the deterministic 2-D Euler jet current at (a) high-resolution (512 × 512) and

(b) low-resolution (4 × 4), and (c) the corresponding swell system period 2π/ω̄r. Far from the jet (±200 km
away), the vorticity shear becomes zero or even positive, so periods larger than 10 days are cropped.

equation is known (e.g. Resseguier et al. (2017a), (51)–(55)):

yr(t) = Ly

2
+ y′

r(0) cos(ω̄rt)+ v0
g

ω̄r
θk(0) sin(ω̄rt)︸ ︷︷ ︸

= E( yr(t))

+ Yγ0

√
ω̄r

∫ t

0
sin(ω̄r(t − r)) dB(4)r︸ ︷︷ ︸
= y′′

r (t)

,

(5.6)

with Yγ0 = v0
g

√
3γ0/ω̄3

r . The wavevector angle solution is similar. The solution ensemble
mean Eyr is a simple coherent deterministic oscillator. This mean solution describes well
the interaction between the group and the under-resolved current from figure 7. From the
coarse-scale vorticity shear plotted in figure 10 in the vicinity of the jet, we can estimate
β̄ = −2.7 × 10−11 m−1 s−1. It yields an oscillation frequency ω̄r = 1.3 × 10−5 rad s−1,
i.e. period 2π/ω̄r = 5.7 days, in agreement with the ray tracing simulations. Note that
the high-resolution vorticity shear in figure 10(a) does not suggest any relevant values to
explain the ray oscillations. Only the proposed multiscale current decomposition provides
a quantitative explanation for these oscillations, and by extension for trapping rays inside
the jet. Added to the mean solution, the random parts y′′

r (t) are continuous summations
of zero-mean incoherent wave fluctuations. At each time r, the additive random forcing
introduces an oscillation. But the influence of the past excitations is weighed by a sine
wave due to the phase change. The group position and wavevector angle are Gaussian
random variables (as linear combinations of independent Gaussian variables). Therefore,
their finite-dimensional law (i.e. the multi-time probability density function) is entirely
defined by their mean and covariance functions. Specifically,

E( y′′
r (t) y′′

r (t + τ)) = 1
4 Y2
γ0
(cos(ω̄rτ) (2ω̄rt − sin(2ω̄rt))+ sin(ω̄rτ) (1 − cos(2ω̄rt))).

(5.7)

In particular, the variance of the vertical positions reads σ 2
y (t) = 1

4 Y2
γ0
(2ω̄rt − sin(2ω̄rt)).

At t = 2π/ω̄r, the group has oscillated once around the jet, and the maximal position
extension reaches ±2σy = ±2

√
π Yγ0 = ±42 km, well confirmed by ray simulations. In

contrast, usual fast wave models (e.g. Smit & Janssen 2019) do not consider the interplay
between smooth and rough currents, and hence solely predict a classical scattering with a
much faster vertical location spreading: ±2σy = ±2

√
(2π)3/3 Yγ0 = ±217 km. For large

time, our multiscale approach predicts a scaling in t, much slower than the usual scattering
t3 scaling.
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From the group vertical location and wavevector angle, we can also solve (4.5)
analytically to estimate the group wavenumber variations. For small wavevector angles,
− ∫ t

0 σ̄ sin(ζ ) dt′ ≈ 2
∫ t

0 ω̄θk dt′ = 2β̄
∫ t

0 y′
rθk dt′, and (4.9) together with the analytic

solutions for y′
r and θk give a closed stochastic expression for the group wavenumber. Thus

the wavenumber factor exp(2β̄
∫ t

0 y′
rθk dt′) oscillates at frequency 2ω̄r, and the oscillations

modulate the wave amplitude: h = √
E = √

ω0N = constant × k1/4. The modulations are
associated with wave–current energy exchanges (Boury et al. 2023), visible in the coloured
rays of figures 6, 7 and 8 when the groups enter and exit the jet.

Finally, the conditional ray distribution p(x,k | x0
r ,k0, t), the action spectrum mean

from (4.10) and the action mean from (4.11) can all be derived. For a system initially
localized in (0, Ly/2) with action A0, wavenumber k0 and a σ 0

δθk
-width Gaussian angular

spreading, propagating to the right, the action mean reads

EA(x, y, t) = A0δ(x − (v0
g(k

0)− ū( y))t)N
(

y − Ly

2

∣∣∣∣ σ̃ 2
y (t)

)
, (5.8)

with N (· | σ̃ 2
y (t)) a Gaussian function with variance σ̃ 2

y (t) = σ 2
y (t)+ ((v0

g/ω̄r) sin(ω̄rt)
σ 0
δθk
)2. The action is advected in the horizontal direction, and slowly diffuses along the

vertical direction.

6. Conclusion

Developed to generalize the ray path concept for waves propagating over a heterogeneous
turbulence, a practical stochastic framework is derived. For fast waves, the smallest scales
of a turbulent flow decorrelate along the wave propagation. Flows with steeper spectra
decorrelate faster, leading to a broader validity range of fast wave approximations. The
proposed framework encodes both large-scale refraction and random scattering effects on
wave statistical properties. The mean wave action statistics are directly linked to resolved
strain rate and vorticity, but also to unresolved kinetic energy spectral properties. Both
Eulerian and Lagrangian views are presented. A convenient calibration method is also
proposed for the subgrid parametrization.

As anticipated, random horizontal currents delay wave arrival and augment the
initial radiative transport equation with a directional diffusive term. These phenomena
are illustrated with numerical simulations, analytical solutions and quantitative proxies
describing weak homogeneous turbulence. Using these proxies, measured delays in
ray arrivals, estimated wave energy spectral characteristics and decays, and/or varying
directional spread, will then be more quantitatively interpreted. It will lead to valuable
information about underlying flow properties.

The generalized fast wave approximation does takes into account wavenumber variation
and handles strong heterogeneous flows, like localized jets with strong current gradients.
As compared to numerical simulations, numerical and theoretical results explain and
quantify ray trapping effects by jets, unlike usual fast wave approaches.

Among the fast wave literature, isotropic diffusion and hence wavenumber diffusion
may (e.g. Voronovich 1991) or may not (e.g. Bôas & Young 2020) come into play (see
Appendix C for details). Future works could adapt our convenient stochastic calculus
framework to the second models family. Besides, further analytical developments could
consider finite-size wave groups, their dynamics (Jonsson 1990; White & Fornberg 1998)
and statistical distributions, or alternatively the Eulerian action dynamics (4.12) with all
its multi-point stochastic structure. When achieved, this next theoretical development
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could provide new means to analyse wave dynamics with subsequent fast simulations
of ensembles. Beside comprehension and analysis, our stochastic simulation tools aim to
eventually facilitate future ensemble-based data assimilation algorithms (Smit et al. 2021).

Funding. This work is supported by the R&T CNES R-S19/OT-0003-084, the ERC project 856408-STUOD,
the European Space Agency World Ocean Current project (ESA contract no. 4000130730/20/I-NB), and
SCALIAN DS.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. SCALIAN DS owns a portion of the developed code intellectual property. For
commercial reasons, that code will remain private.

Author ORCID.
Valentin Resseguier https://orcid.org/0000-0002-9301-9493.

Author contributions. V.R. developed the theory. V.R. and E.H. wrote the code and performed numerical
experiments. V.R. and B.C. wrote the paper.

Appendix A. Stochastic forcing covariance

In this Appendix, we will compute the conditional covariance of the stochastic forcing of
our eikonal characteristic equations (4.1), i.e.

2D
= 1

dt
Et

{(
σ dBt
dηt

)(
σ dBt
dηt

)T
}

=
[

a Ση,σ

ΣT
η,σ Ση

]
, (A1)

where dηt = −∇(σ dBt)
Tk denotes the wavevector stochastic forcing, Ση dt is its

covariance, and Et{·} = E{· | xr(t),k(t)} stands for the conditional expectation evaluated
with given characteristics (xr(t),k(t)) at the current time t. Note that in this Appendix we
use Itō notations only.

The subgrid velocity v′ = σ dBt/dt is constructed in Fourier space with a
divergence-free isotropic spatial filter ∇⊥ψ̆σ (see (3.11)):

v̂′(κ, t) =
∫

dx v′(x, t) exp(−iκ · x) = σ̂ dBt/dt(κ, t) = iκ⊥ ˆ̆
ψσ (κ) d̂Bt(κ)/dt, (A2)

where κ⊥ is the vector directly orthogonal to κ . The computation of the variance tensor a
is classical and straightforward from the definition of the inverse Fourier transform and the
identity E{d̂Bt(κ1) d̂Bt

∗
(κ2)} = (2π)2δ(κ1 − κ2) dt, where ∗ denotes complex conjugate.

We simply need to split the integral of the stochastic forcing spectrum over the current
wavevector κ = κ(cos θκ, sin θκ):

a = 1
(2π)4 dt

∫∫
dκ1 dκ2 Et

{
(σ̂ dBt)(κ1,k) (σ̂ dBt

T
)∗(κ2,k)

}
exp(i(κ1 − κ2) · x)

= 1
(2π)2

∫
dκ κ2 | ˆ̆

ψσ (κ)|2
(− sin θκ

cos θκ

)(− sin θκ
cos θκ

)T

= 1
(2π)2

∫ +∞

0

∮ 2π

0
dκ dθκ κ3 | ˆ̆

ψσ (κ)|2
[

sin2 θκ − sin θκ cos θκ
− sin θκ cos θκ cos2 θκ

]
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= 2
2π

a0

∮ 2π

0
dθκ

[
sin2 θκ − sin θκ cos θκ

− sin θκ cos θκ cos2 θκ

]
= a0Id, (A3)

where a0 is defined by (4.7).
Now, the Fourier transform of the wavevector stochastic forcing is

dη̂t = − ̂∇(σ dBt)Tk = −iκ(iκ⊥ ˆ̆
ψσ d̂Bt) · k = κ(κ⊥ · k) ˆ̆

ψσ d̂Bt = −κ(k⊥ · κ)
ˆ̆
ψσ d̂Bt.

(A4)

Then applying the crest-oriented rotation matrix Mk = [
k̃ k̃⊥]

leads to

dẐ t = MT
k dη̂t = −

(
k̃ · κ

k̃⊥ · κ

)
(k⊥ · κ)

ˆ̆
ψσ d̂Bt = −

(
cos δθ sin δθ

sin2 δθ

)
κ2k ˆ̆

ψσ d̂Bt, (A5)

with δθ = θκ − θk. From there, we can evaluate the conditional covariance matrix
ΣZ = (1/dt)Et{dZ t dZT

t } of dZ t as before:

ΣZ = 1
(2π)4 dt

∫∫
dκ1 dκ2 Et{(dẐ t)(κ1,k) (dẐ T

t )
∗(κ2,k)} exp(i(κ1 − κ2) · x)

= 1
(2π)2

∫ +∞

0

∮ 2π

0
dκ dδθ κ5k2 | ˆ̆

ψσ (κ)|2
[

cos2 δθ sin2 δθ cos δθ sin3 δθ

cos δθ sin3 δθ sin4 δθ

]
= γ0k2

[
1 0
0 3

]
. (A6)

Finally, we come back to the canonical frame to get

Ση = Et{dηt dηT
t } = MkΣZMT

k = γ0k2[k̃k̃T + 3k̃⊥(k̃⊥)T]. (A7)

For noises cross-correlations, by isotropy, it is also straightforward to show that

Ση,σ = 0. (A8)

The stochastic forcings of xr and k are hence (conditionally) independent from one
another.

Appendix B. Single-ray dynamics

The Itō noise
(

σ dBt
dηt

)
is white in time and conditionally Gaussian. Its conditional

single-point distribution is fully determined by its zero mean and its local covariance
matrix (given by (A1), (A3), (A7) and (A8)). In particular, we can replace this noise
by another zero-mean Gaussian vector with the same covariance without changing

the single-ray dynamics – typically replacing σ dBt by
√

a0

(
dB(1)t

dB(2)t

)
, and dZ t by

−√
γ0k

(
dB(3)t√
3 dB(4)t

)
. This yields the simplified ray equations (4.3)–(4.4).
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Then note that from the Itō lemma (Oksendal 1998), dk̃ = d
(

cos θk
sin θk

)
= k̃⊥ dθk −

1
2 k̃ d〈θk, θk〉t, where 〈·, ·〉t denotes the quadratic covariation. Thus

dk = dk k̃ + k dk̃ + d〈k, k̃〉 = (dk − 1
2 k d〈θk, θk〉t) k̃ + (k dθk + d〈k, θk〉t)k̃⊥. (B1)

Projecting this equation and dk = −∇v̄Tk dt + dηt on k̃ and k̃⊥, we have{
dk = −k̃ · ∇v̄Tk dt + (dZt)1 + 1

2 k d〈θk, θk〉t,

k dθk = −k̃⊥ · ∇v̄Tk dt + (dZt)2 − d〈k, θk〉t,
(B2){

dk = −k̃ · ∇v̄Tk dt + (dZt)1 + 1
2 k−1 d〈Z2, Z2〉t,

dθk = −k̃⊥ · ∇v̄Tk̃ dt + k−1(dZt)2 + 1
2 k−2 d〈Z1, Z2〉t.

(B3)

The treatment of the large-scale terms k̃ · ∇v̄Tk̃ and k̃⊥ · ∇v̄Tk̃ is classical. Interested
readers can refer to Lapeyre et al. (1999) for details. From the Itō lemma again,
d log k = dk/k − 1

2 d〈k, k〉t/k2, leading to the simplified wavevector dynamics (4.5)–(4.6).

Appendix C. Subgrid flow anisotropy and comparison with other works

Throughout this paper, we have considered an isotropic model for the stochastic
subgrid velocity (3.11). The isotropic diffusivity matrix a = a0Id is a good illustration
of this. In contrast, many authors (e.g. White & Fornberg 1998; Smit & Janssen
2019; Bôas & Young 2020) assume isotropic and homogeneous turbulence, and
obtain anisotropic stochastic subgrid models for ‖v‖/v0

g → 0. In these approaches, the
integral over δθ in diffusivity matrix computations (A3) and (A6) involve singular
integrations over the direction v0

g = v0
g k̃. This makes a Dirac delta function appear:

2πδ(κ · v0
g) = (2π/κv0

g)(δ(θκ − θk − π/2)+ δ(θκ − θk + π/2)) (see the Appendix in
Bôas & Young 2020). This precision imposes a statistical anisotropy for σ dBt (oriented
along k) and dηt (oriented along k⊥), eventually leading to a covariance ΣZ = γ0k2 [

0 0
0 16

]
((3.17) in Bôas & Young (2020), and (24) in Smit & Janssen (2019)), no noise dZ1, and
no Brownian motion B(3)t . Moreover, because of the scaling assumption, Bôas & Young
(2020) neglect the spatial diffusivity matrix a, while Smit & Janssen (2019, (22)–(23)) find
a = 4a0(Id + 5

4 k̃k̃T). In this anisotropic framework, the Stratonovich wavevector equation
(2.3), dk = −∇(v̄ dt + σ ◦ dBt)

Tk, would involve an additional drift term in Itō notation.
Further developing this anisotropic stochastic closure is an interesting avenue.

A multiscale anisotropic stochastic closure would involve wavenumber variations but no
wavenumber diffusion. Nevertheless, in the present study, we adopt the isotropic model
for σ dBt, which is much more convenient for multi-ray numerical simulations.

Appendix D. Action spectra and ray distribution

Here, we highlight the link between mean action spectral density and the ray distribution.
We denote by N0 the initial wave action spectrum. We first use the definition of the Dirac
measure, then perform a variable change corresponding to the characteristic (2.5) from
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t = ti to t = tf :

EN(x,k, t) = E

∫∫
dxr dkr N(xr,kr, t) δ(xr − x) δ(kr − k)

= E

∫∫
dx0

r dk0
r N(x0

r ,k0
r , 0) δ(xr(x0

r ,k0
r , t)− x) δ(kr(x0

r ,k0
r , t)− k)

=
∫∫

dx0
r dk0

r N0(x0
r ,k0

r ) p(x,k | x0
r ,k0

r , t), (D1)

where the standard relation between the Dirac measure and the probability distribution
function has been used.

Appendix E. Jet simulation

Again, currents are simulated at resolution 512 × 512 on a 1000 km width squared domain
[0, Lx] × [0, Ly] through the same code. A backward velocity vBk forces a leftward jet
structure:

∂tω + v · ∇ω = Sω, with v = ∇⊥Δ−1(ω + ωBk). (E1)

Here, Sω encompasses the linear drag and the hyperviscosity with coefficient
1/τF = 3.22 × 10−8 s−1 and νHV/dx8 = 3.33 × 10−9 s−1, respectively. The background
vorticity ωBk is a smooth step function with a wavy interface at y = YBk(x):

ωBk(x, y) = ΩBk

(
1
2

− erf

(
y − YBk(x)

Lωy

))
, with YBk(x) = Ly

(
1
2

+ 1
30

cos
(

2π

Lx
x
))

.

(E2)

To better highlight the interplay between ray oscillations and scattering, we consider
very collimated swells, with spatial extension 100λ = 25 km.

Besides, the curvature of the simulated jet can force an additional faster oscillation
around the jet for small enough wavevector angle. Indeed, a wave group travelling exactly
rightward would cross an alternation of positive and negative vorticity regions with period
Lx/(v

0
g − Ū0) ≈ 1 day < 2π/ω̄r. Here, we set an initial wavevector angle large enough to

prevent the additional harmonics.
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