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The scaling relations mapping the turbulence statistics in compressible turbulent boundary
layers (TBLs) onto their incompressible counterparts are of fundamental significance for
turbulence modelling, such as the Morkovin scaling for velocity fields, while for pressure
fluctuation fields, a corresponding scaling relation is currently absent. In this work, the
underlying scaling relations of pressure fluctuations about Mach number (M) contained
in their generation mechanisms are explored by analysing a series of direct numerical
simulation data of compressible TBLs over a wide Mach number range (0.5 ≤ M ≤ 8.0).
Based on the governing equation of pressure fluctuations, they are decomposed into
components according to the properties of source terms. It is notable that the intensity of
the compressible component, predominantly originating from the acoustic mode, obeys a
monotonic distribution about the Mach number and wall distance; further, the intensity
of the rest of the pressure components, which are mainly generated by the vorticity
mode, demonstrates a uniform distribution consistent with its incompressible counterpart.
Moreover, the coupling between the two components is negligibly weak. Based on the
scaling relations, semiempirical models for the fluctuation intensity of both pressure
and its components are constructed. Hence, a mapping relation is obtained that the
profiles of pressure fluctuation intensities in compressible TBLs can be mapped onto their
incompressible counterparts by removing the contribution from the acoustic mode, which
can be provided by the model. The intrinsic scaling relation can provide some basic insight
for pressure fluctuation modelling.
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1. Introduction

Pressure fluctuations in a compressible turbulent boundary layer (TBL) are a fundamental
topic in both turbulence modelling and engineering applications. On the one hand,
fluctuating pressure plays an essential role in redistributing the turbulent kinetic energy
(Pope 2000) and exchanging between internal and kinetic energy (Zhao, Liu & Lu 2020).
On the other hand, pressure fluctuations within subsonic TBLs are the major excitation
sources of cabin noise during the cruise stage for aeroplanes, while within supersonic and
hypersonic TBLs, they are associated with the cause of acoustic fatigue that structural
elements of an aircraft are exposed to (Bull 1996). Accordingly, pressure fluctuations in
TBLs have been the subject of extensive investigations in recent decades (Willmarth 1975;
Bull 1996; Beresh et al. 2011; Bernardini & Pirozzoli 2011; Gloerfelt & Berland 2013;
Ritos, Drikakis & Kokkinakis 2019a; Gerolymos & Vallet 2023), where one of the most
important control parameters is the free stream Mach number M. With M increasing, the
acoustic mode and entropy mode can be further excited (Zhang, Duan & Choudhari 2017)
and coupled with various flow modes to induce complex flow structures, which are closely
related to the generation and evolution of pressure fluctuations. Additionally, increasing M
enhances the Mach wave radiation and the Doppler effect to modulate the characteristics of
the intensity and sound-radiation directivity. The quantitative assessment of the influence
of Mach number on pressure fluctuations is highly advantageous for turbulence modelling
and structural design.

The Mach number level can reflect the strength of compressibility effects, which give
rise to mean density gradients in addition to mean velocity gradients, and to the turbulent
field consisting of pressure, density and velocity fluctuations (Smits 1991). The role of
pressure fluctuations in compressible flows becomes more significant due to the additional
energy transport mechanisms, such as pressure–dilatation and pressure–strain correlations
(Lele 1994). In addition, wall-cooling effects can also strengthen compressibility effects
(Yu, Xu & Pirozzoli 2020). Zhang et al. (2017) found that the intensity of near-wall
pressure fluctuations is dramatically enhanced by wall-cooling effects in hypersonic
TBLs. Zhang et al. (2022) reported that this enhancement originates from the generation
of near-wall travelling-wave-like dilatational structures. To explore the features of wall
pressure fluctuations beneath supersonic TBLs, Kistler & Chen (1963) performed the first
measurement in the range of 1.33 ≤ M ≤ 5. They reported that increasing M has the main
effect of decreasing the characteristic length scale of the pressure-carrying eddies. Beresh
et al. (2011) obtained fluctuating wall pressure signals up to M = 3 and compared the
root-mean-square (r.m.s.) levels with a cluster of data from high-speed measurements.
However, a large scatter was found in the data, primarily due to limitations in the
frequency response of pressure sensors. Due to the advantage of being able to provide
accurate three-dimensional global flow data, high-fidelity numerical simulations have
been employed to study the characteristics of pressure fluctuations more recently. Duan,
Beekman & Martín (2011) performed systematic direct numerical simulations (DNS)
of TBLs with M ranging from 0.3 to 12, and reported that the compressibility effects
are reflected by the increase in fluctuations of thermodynamic quantities and turbulent
Mach numbers. Bernardini & Pirozzoli (2011) analysed the intensity, frequency spectrum,
space–time correlation and convection velocity of pressure fluctuations by means of DNS
at M = 2, 3, 4. The results showed that the increased intensities are mainly present near the
wall and in the free stream, which are associated with enhanced genuine compressibility
effects (reflected by dilatation fluctuations) and acoustic radiation, respectively. Focusing
on comparing the characteristics of the free stream and wall pressure fluctuations, Duan,
Choudhari & Wu (2014) observed important differences in aspects of amplitude, frequency
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content and convection speeds. Subsequently, they continuously carried out a series
of DNS on the corresponding situations in hypersonic TBLs. Based on the implicit
large-eddy simulation (iLES), Ritos et al. (2019a); Ritos, Drikakis & Kokkinakis (2019b)
investigated the wall pressure fluctuations beneath supersonic and hypersonic TBLs
and proposed a modified spectrum model by introducing compressibility corrections.
Gerolymos & Vallet (2023) constructed a (Re,M)-matrix database of compressible
turbulent channel flow and summarized Mach number effects on pressure fluctuations
based on turbulent statistics. Nonetheless, the underlying scaling relation between pressure
fluctuations and Mach number from the perspective of flow physics, such as the generation
mechanism of pressure fluctuations, necessitates further exploration.

The well-known classic spectrum model of wall pressure fluctuations, the Chase–Howe
model (Chase 1980, 1987; Howe 1998), was developed to characterize the pressure
fluctuations in weakly compressible flow, based on their generation mechanisms: mean
flow–turbulence and turbulence–turbulence interactions. According to the terms specified
in the governing Poisson equation for pressure fluctuations, as outlined in Pope (2000),
these fluctuations can be theoretically decomposed into two primary components:
rapid pressure (pr) and slow pressure (ps). These components are associated with the
generation mechanisms of mean flow–turbulence and turbulence–turbulence interactions,
respectively. In the context of arbitrary compressible flows, Sarkar (1992) derived the
equation for pressure fluctuations and introduced a compressible pressure component
(pc) to account for compressibility effects. This component is utilized to estimate
pressure–dilatation correlations by isolating a single contributing factor. Following
this approach, Foysi, Sarkar & Friedrich (2004) extended the Poisson-equation-based
pressure decomposition method to compressible channel flow, enabling the study of
pressure–strain correlations in different components. Tang et al. (2020) and Yu et al.
(2020) split the pressure fluctuations in compressible channel flow with relatively high
Mach numbers and highlighted the significance of the genuine compressibility effects and
compressible pressure component. Recently, Zhang et al. (2022) extended the pressure
decomposition method and applied it to compressible TBLs to illustrate wall-cooling
effects on pressure fluctuations from the perspective of generation mechanisms. Generally,
the pressure decomposition method has been widely used to investigate the mechanism of
pressure fluctuations, including the characteristics of pressure fluctuation sources (Chang,
Piomelli & Blake 1999; Anantharamu & Mahesh 2020), pressure–strain correlation (Foysi
et al. 2004), wall echo effects (Gerolymos, Sénéchal & Vallet 2013) and wall pressure
spectrum (Hu, Reiche & Ewert 2017; Grasso et al. 2019; Yang & Yang 2022), and
it becomes a viable approach to provide fruitful physical insight originating from the
generation mechanisms of pressure fluctuations.

To correlate the distribution profiles of turbulent statistics properties scaled by wall
units in incompressible and compressible wall-bounded turbulence, Morkovin (1962)
hypothesized that when the turbulent Mach number is sufficiently small, compressible
wall-bounded flows can be mapped onto the incompressible counterparts by taking
the variation of mean properties (density, viscosity, etc.) into account. The Van Driest
transform (Van Driest 1951) for mean velocity ū and the resulting Morkovin scaling for
velocity fluctuation u′

rms are widely used and even serve as a ‘standard’ when analysing
compressible adiabatic wall-bounded turbulence. Concerning the diabatic one, especially
with wall cooling, the Van Driest transform becomes less accurate. Recently, several
improved transformations have been developed, such as the transformation of Trettel &
Larsson (2016) in the semilocal scaling, the data-driven-based transformation of Volpiani
et al. (2020) and the total-stress-based transformation of Griffin, Fu & Moin (2021).
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These relations are not only of theoretical interest but also play an essential role in
reduced-order turbulence modelling (Griffin, Fu & Moin 2023). However, the mapping
onto incompressible flow becomes significantly distinct when considering pressure fields.
Unlike the velocity field, which is primarily associated with the vorticity mode, the
pressure field is intrinsically influenced by multiple modes, especially the vorticity and
acoustic modes. As a result, establishing a mapping relation for pressure fluctuations
inevitably poses greater challenges.

The scope of this study is to analyse DNS data of compressible TBLs in a relatively wide
range of free stream Mach numbers from 0.5 to 8.0 and to investigate the relationship
between pressure fluctuations and Mach numbers. In particular, the intrinsic scaling
relation of pressure fluctuations is explored by analysing the components of pressure
fluctuations from the perspective of generation mechanisms. Additionally, inspired by this
intrinsic scaling relation, a semiempirical model predicting the dependence of pressure
fluctuations on Mach number is proposed. The remainder of the paper is organized as
follows. The numerical methods and simulation details are illustrated in § 2. The analysis
of the components of pressure fluctuations and the scaling relation are discussed in § 3.
The semiempirical model of pressure fluctuations is presented in § 3.4. The main findings
and discussions are summarized in § 4.

2. The DNS of compressible TBL

Building on the insights gained from our prior studies (Zhang et al. 2022, 2023), DNS
of five TBLs with a free stream Mach number range of 0.5 ≤ M ≤ 8.0 are performed
by solving the fully compressible Navier–Stokes equations for the compressible, viscous
and ideal gas. The simulations are conducted based on the open-source code STREAmS
(Bernardini et al. 2021), which can be efficiently accelerated by graphics processing units.
The coefficient of viscosity μ is set as a function of temperature according to Sutherland’s
law. The equations are solved in a stretched Cartesian coordinate system and discretized
by high-order finite-difference methods. The spatial discretization of the convective term
adopts a hybrid energy-preserving–shock-capturing scheme in a locally conservative form.
The convective flux is calculated by the eighth-order energy-preserving scheme (Pirozzoli
2010) in smooth (shock-free) regions of the flow. Otherwise, in discontinuous regions, the
Lax–Friedrichs flux vector splitting ensures robust shock-capturing capabilities with the
characteristic fluxes at interfaces reconstructed by the seventh-order weighted essentially
non-oscillatory scheme (Jiang & Shu 1996). To avoid odd–even decoupling phenomena,
the viscous terms are expanded to Laplacian form and approximated by the sixth-order
central finite-difference formula. The assembled semidiscrete system is advanced in time
by a three-stage, third-order Runge–Kutta scheme (Spalart, Moser & Rogers 1991). More
details of the numerical methods can be found in the original paper introducing this solver
(Bernardini et al. 2021).

The schematic of the computational model used for a plate TBL is illustrated in
figure 1. The inflow condition is established through the recycling–rescaling scheme
(Pirozzoli, Bernardini & Grasso 2010) to attain a fully developed turbulent state. This
approach introduces less numerical noise into the flow field than a synthetic inflow like
the conventional digital filtering method (Ceci et al. 2022). At the upper and outflow
boundaries, non-reflecting boundary conditions (Poinsot & Lele 1992) are imposed
according to the characteristic decomposition in the direction normal to the boundary.
At the no-slip isothermal wall boundary, the wall temperature is set equal to the recovery
temperature Tr = T∞(1 + r(γ − 1)M2/2) based on a recovery factor of r = 0.89, and a
similar characteristic wave treatment is also applied. Hyperbolic sine stretching is applied
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Figure 1. Schematic of the computational model (not in scale). The computational physical domain is
surrounded by the sponge zones at the top and tail.

in the wall-normal direction to ensure sufficient resolution near the wall, and uniform
grid spacing is adopted in the wall-parallel directions except in the sponge zone (Adams
1998), which is added surrounding the computational physical domain at the top and tail to
further eliminate non-physical reflections. For the spanwise direction, a periodic boundary
condition is applied. Table 1 shows the DNS parameters of the present computational
cases. Five compressible TBLs with free stream Mach numbers M ranging from 0.5 to 8
are solved. Compared with other reliable DNS of compressible TBLs (Zhang et al. 2017;
Bernardini et al. 2021; Huang, Duan & Choudhari 2022; Xu, Wang & Chen 2022), the
grid resolutions used have met the requirements of DNS, with the current grid size of
each case exceeding 460 × 106. Moreover, higher grid resolutions are achieved in the two
hypersonic TBLs to capture finer turbulent structures. The typical first- and second-order
flow statistics have been validated by matching reference data in our previous work (Zhang
et al. 2022), verifying the reliability of current data.

Table 2 illustrates the statistical properties of TBLs at the station selected for analysis.
All cases are analysed under approximately the same friction Reynolds numbers of
Reτ ≈ 630, while the Reynolds numbers based on boundary layer thickness Reδ and
based on momentum thickness Reθ and Reδ2 increase monotonically with increasing
M. In the case of adiabatic-wall TBLs, previous studies (Bernardini & Pirozzoli 2011;
Zhang et al. 2017; Gerolymos & Vallet 2023) have demonstrated that standard wall
units perform quite well in scaling pressure fluctuations, and thus we here attempt to
find the potential scaling relationship between pressure fluctuations and M by fixing
Reτ . Similarly, friction factor Cf and wall pressure fluctuation intensity in wall-unit
p′

rms,w/τw are also of monotonic behaviour with increasing M, where the monotonic
increase of p′

rms,w/τw is attributed to the enhancement of compressibility. In this study,
thermodynamics variables are decomposed using the standard Reynolds decomposition
f = f̄ + f ′ and the velocity variables are decomposed using density-weighted (Favre)
representation f = f̃ + f ′′, where f̃ = ρ̄f /ρ̄. The superscript (•)+ denotes the variable
normalized by the wall unit. The subscripts (•)w and (•)∞ denote the variables at the
wall and in free stream, respectively.

3. Scaling relations of pressure fluctuations with Mach number

In this section, some inspiring insights into vorticity and acoustic modes are obtained from
the statistical characteristics of representative quantities. Then, the direct scaling relations
of original pressure fluctuations with M are examined. Lastly, we investigate the intrinsic

993 A2-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.566


P.-J.-Y. Zhang, Z.-H. Wan, D.-J. Sun and X.-Y. Lu

C
as

es
M

N
x
×

N
y
×

N
z

L x
×

L y
×

L z
�

x+
�

y+ w
�

y+ e
�

y� e
�

z+
N

f
t s

u ∞
/
δ i

M
0

0.
5

24
00

×
32

0
×

60
0

67
.1
δ i

×
8.

0δ
i
×

10
.5
δ i

9.
4

0.
76

9.
6

10
.0

5.
7

20
1

26
0.

0
M

2
2.

0
24

00
×

32
0

×
60

0
67
.8
δ i

×
8.

2δ
i
×

10
.6
δ i

12
.1

0.
77

10
.5

24
.4

7.
2

21
0

58
4.

6
M

4
4.

0
24

00
×

32
0

×
60

0
46
.6
δ i

×
8.

6δ
i
×

8.
5δ

i
9.

2
0.

77
10
.8

81
.0

6.
4

36
0

15
50
.0

M
6

6.
0

24
00

×
32

0
×

60
0

48
.0
δ i

×
7.

9δ
i
×

6.
3δ

i
9.

0
0.

57
11
.0

35
2.

4
4.

5
24

3
70

2.
6

M
8

8.
0

36
00

×
32

0
×

40
0

50
.2
δ i

×
7.

0δ
i
×

5.
1δ

i
6.

2
0.

46
11
.0

76
3.

2
5.

5
23

5
23

1.
1

Ta
bl

e
1.

T
he

si
m

ul
at

io
n

pa
ra

m
et

er
s

fo
r

di
ff

er
en

t
ca

se
s:

M
is

th
e

fr
ee

st
re

am
M

ac
h

nu
m

be
r;

N
an

d
L

ar
e

th
e

nu
m

be
r

of
gr

id
po

in
ts

an
d

th
e

le
ng

th
of

th
e

ph
ys

ic
al

co
m

pu
ta

tio
na

l
do

m
ai

n,
re

sp
ec

tiv
el

y;
�

x+
an

d
�

z+
re

pr
es

en
t

th
e

no
n-

di
m

en
si

on
al

gr
id

sp
ac

in
gs

in
th

e
w

al
l

un
it

of
st

re
am

w
is

e
an

d
sp

an
w

is
e

di
re

ct
io

ns
;
�

y+ w
an

d
�

y+ e
re

pr
es

en
t

th
e

w
al

l-
no

rm
al

gr
id

sp
ac

in
gs

at
th

e
w

al
l

an
d

at
th

e
bo

un
da

ry
ed

ge
,

re
sp

ec
tiv

el
y;
�

y� e
re

pr
es

en
ts

th
e

w
al

l-
no

rm
al

gr
id

sp
ac

in
gs

at
th

e
bo

un
da

ry
ed

ge
in

th
e

se
m

ilo
ca

ls
ca

le
;N

f
is

th
e

nu
m

be
ro

ffl
ow

fie
ld

s
fo

rs
ta

tis
tic

s;
t s

u ∞
/
δ i

is
th

e
tim

e
pe

ri
od

fo
rs

ta
tis

tic
s.

993 A2-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.566


Intrinsic scaling relation between pressure and Mach number

Cases xa/δi Reτ Re�τ Reδ Reθ Reδ2 T∞(K) Cf × 103 p′
rms,w/τw

M0 49.6 628 664 15 394 1626 1572 298 3.71 2.58
M2 35.4 650 1301 35 933 2898 1907 220 2.59 2.88
M4 30.4 649 3322 127 095 6324 2426 220 1.37 2.92
M6 37.6 632 11 098 560 476 18 860 2930 55 0.78 2.95
M8 40.9 623 20 111 1 342 856 33 603 3578 51.8 0.48 3.00

Table 2. Parameters of the TBL: xa denotes the streamwise location for analysis. The friction Reynolds number
and semilocal friction Reynolds number are Reτ = ρwuτ δ/μw and Re�τ = (ρ∞τw)

1/2δ/μ∞, where δ is the
boundary layer thickness. The Reynolds number based on boundary layer thickness is Reδ = ρ∞u∞δ/μ∞. The
Reynolds numbers based on momentum thickness are Reθ = ρ∞u∞θ/μ∞ and Reδ2 = ρ∞u∞θ/μw. Here T∞
is the free stream temperature; Cf = 2τw/ρ∞u2∞ is the friction factor; p′

rms,w/τw means the non-dimensional
wall pressure fluctuation intensity in the wall unit.

scaling relations embedded within the generation mechanisms of pressure fluctuations,
employing the pressure decomposition method.

3.1. The turbulent statistics for vorticity and acoustic modes
For velocity fields dominated by the vorticity mode, figure 2 presents the first- and
second-moment statistics of the streamwise velocity. As shown in figure 2(a), the profiles
of mean velocity ū+ for all cases reasonably agree with the wall law in the range of y+ < 5,
but only the distribution for case M0 exhibits a good agreement with the log law where
compressibility is negligibly weak. With increasing M, the profiles gradually deviate from
the log law. After considering variations in mean density in figure 2(b), it is observed
that the profiles of Van Driest transformed (Van Driest 1951) mean velocity ūvd for all
cases agree well with each other in both near-wall and log-law regions. Similarly, for
velocity fluctuations intensities u′+

rms in figure 2(c), only the profile of case M0 collapses
with the incompressible profile (Jiménez et al. 2010), while the profiles of other cases
with higher M gradually deviate from the incompressible profile. Following the relations
of strong Reynolds analogy (Morkovin 1962), when the variation of mean density is taken
into account, it can be seen in figure 2(d) that the profiles of density-scaled fluctuation
intensities exhibit superior clustering and collapse compared with those of u′+

rms. The
obtained results not only validate the accuracy of the present data but also demonstrate the
efficacy of utilizing Morkovin’s hypothesis to map the statistics of compressible velocity
fields onto their incompressible counterparts.

Considering that pressure fluctuations in compressible TBLs are mainly influenced by
both the vorticity mode and acoustic mode (Phillips 1960; Lilley 1963), figure 3 presents
the profiles of vorticity fluctuation intensities ω′+

rms and dilatation fluctuation intensities
θ ′+

rms, which can characterize the vorticity mode and acoustic mode to a certain extent,
respectively. As shown in figure 3(a), the profiles of ω′+

rms for all cases collapse well with
each other at the fixed Reτ , indicating that the profiles of ω′+

rms are almost not affected by
increasing M. The magnitude of the vorticity mode seems to be controlled only by the
parameter of Reτ . For dilatation fluctuations, the increase in M monotonically enhances
θ ′+

rms especially near the wall, as shown in figure 3(b). The magnitude of θ ′+
rms gradually

weakens as the wall-normal position moves away from the wall. The distribution trends
of ω′+

rms and θ ′+
rms are consistent with the DNS data reported by Bernardini & Pirozzoli

(2011). These findings imply the presence of intrinsic scaling relations, particularly when
the vorticity and acoustic modes are properly isolated. Specifically, the contribution of the
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Figure 2. Statistical properties of streamwise velocity: (a) mean velocity ū+; (b) Van Driest transformed mean
velocity ū+

vd; (c) fluctuation intensity; (d) density scaled fluctuation intensity. The dot–dashed and dashed lines
denote the wall law u+ = y+ and the log law u+ = log ( y+)/0.41 + 5.2, respectively. The circles indicate the
reference data of an incompressible TBL with Reτ = 580 from Jiménez et al. (2010). The diamonds denote a
M = 8 TBL with Reτ = 398 from Duan et al. (2011).

vorticity mode to pressure fluctuations is independent of M, while the contribution of the
acoustic mode exhibits a monotonic increase with M.

3.2. The direct scaling relations of pressure fluctuations
To illustrate the scaling relations between pressure fluctuations and M directly, figure 4
shows the profiles of pressure fluctuation intensities p′+

rms in both the outer and inner
scales, respectively. The profiles of all cases exhibit a similar trend that p′+

rms increases
from its value at the wall and reaches the global maximum at y+ ≈ 12 and then gradually
decays to a plateau value out of the boundary layer where acoustic radiations dominate.
As indicated by the black arrow in figure 4(a), the increase in M overall enhances p′+

rms
monotonically, corresponding to stronger acoustic modes in cases of higher M. The profile
of the M0 case closely aligns with the reference data of an incompressible TBL (Jiménez
et al. 2010). Within the boundary layer, the near-wall enhancement clearly shown in
figure 4(b) is a consequence of the stronger genuine compressibility in higher-M cases,
as demonstrated by θ ′+

rms in figure 3(b). In the far field, the enhancement in supersonic and
hypersonic cases should be attributed to the Mach-wave radiation, which is induced by the
supersonic convection eddies within TBLs. Because of the comprehensive contributions
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Figure 3. (a) Vorticity fluctuation intensities ω′+
rms and (b) dilatation fluctuation intensities θ ′+

rms.
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Figure 4. Intensities of pressure fluctuations p′+
rms shown in (a) the outer scale and (b) the inner scale. The

circles indicate the reference data of an incompressible TBL with Reτ = 690 from Jiménez et al. (2010). The
squares and diamonds denote M = 2 and 4 TBLs with Reτ = 508 and 506, respectively, from Bernardini &
Pirozzoli (2011).

from the vorticity and acoustic modes, considering the variations in mean quantities may
not be a viable solution when mapping the compressible profile of pressure fluctuations to
the incompressible counterpart. Instead, removing the contribution of acoustic modes to
pressure fluctuations is expected to work.

For evaluating the scaling relations of wall and far-field pressure fluctuations, the
variations of pressure fluctuation intensities versus M are shown in figure 5. For wall
pressure fluctuation intensities normalized by the free stream dynamic pressure p′

rms/q∞,
the data from measurements (grey square), simulations (red symbols) and prediction
models (dashed lines) are collected in figure 5(a). Due to the limitations of pressure
sensors in experiments, from light to dark colours, the grey squares indicate the
uncorrected raw data, the corrected data by Corcos corrections (Corcos 1963) and the
extended data further corrected based on an estimation of high-frequency spectra. It is
shown that the corrected experimental data agree much better with simulation data than the
original data. For compressible flows, Laganelli, Martellucci & Shaw (1983) proposed an
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Figure 5. Pressure fluctuation intensities with scaling models (a) at the wall and (b) in the far-field.

empirical model by extending an incompressible theory to compressible states, written as

p′
rms,w/q∞ = σ[

0.5 + (Tw/Tr)
(
0.5 + 0.09M2

) + 0.04M2
]φ , (3.1)

where the two parameters σ and φ are determined by fitting experimental data. Their
original values are σ = 0.006 and φ = 0.64. Considering the potential bias in historical
experimental data, the predictions of the original Laganelli model exhibit an overall
underestimation compared with the numerical data. Therefore, Ritos et al. (2019a)
improved the model by introducing a modified σ = 0.008 based on fitting their iLES data
in a range of 2.25 ≤ M ≤ 8, but significant deviations still occur at the relatively lower
Mach number range of M < 2. By optimizing both two parameters, the modified model
with σ = 0.01 and φ = 0.75 proposed by Zhang et al. (2022) shows good performances
in a wide Mach number range of 0 ≤ M ≤ 8. Pressure fluctuation intensities normalized
by the wall unit (p′+

rms,∞) in the far-field are also presented in figure 5(b), where grey
diamonds indicate experimental data, red and blue symbols indicate numerical data
with quasiadiabatic and cooled walls, respectively. The distributions of p′+

rms,∞ show
approximately monotonic linear growths with increasing M. Consequently, a simple linear
relation expressed as p′+

rms,∞ = 0.12M + 0.08, can be obtained by fitting these data.

3.3. The intrinsic scaling relations of decomposed pressure components
In an effort to discern the respective contributions of vorticity and acoustic modes
from the perspective of the generation mechanism of pressure fluctuations, we employ
a decomposition method based on the governing equation of pressure fluctuations. This
approach enables us to investigate the intrinsic scaling relations. Starting from the
governing equations for mass and momentum in a Cartesian coordinate system written as

∂ρ

∂t
+ ∂ρuj

∂xj
= 0, (3.2)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
, (3.3)
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where τij is the viscous stress tensor, take the divergence of the momentum equations (3.3)
yielding

∂2p
∂xi∂xi

= − ∂2

∂xi∂xj

(
ρuiuj − τij

) − ∂

∂xi

∂ρui

∂t
. (3.4)

By subtracting the average of (3.4) from itself and combining the continuity equation
(equation (3.2)), the governing equation of pressure fluctuations can be written as
(Gerolymos, Sénéchal & Vallet 2007)

∂2p′

∂xi∂xi
= ∂2

∂xi∂xj
τ ′

ij − ∂2

∂xi∂xj

(
2ρũiu′′

j + ρ′ũiũj

)
− ∂2

∂xi∂xj

(
ρu′′

i u′′
j − ρu′′

i u′′
j

)
+ ∂2ρ′

∂t2
.

(3.5)

According to characteristics of the source terms on the right-hand side of (3.5), the
pressure fluctuation can be decomposed into several components (Yu et al. 2020; Zhang
et al. 2022), p′ = pr + ps + pτ + pc + ph. These components individually satisfy

∂2pr

∂xi∂xi
= −2

∂ ũi

∂xj

∂ρu′′
j

∂xi
, (3.6a)

∂2ps

∂xi∂xi
= − ∂2

∂xi∂xj

(
ρu′′

i u′′
j − ρu′′

i u′′
j

)
, (3.6b)

∂2pτ
∂xi∂xi

=
∂2τ ′

ij

∂xi∂xj
, (3.6c)

∂2pc

∂xi∂xi
= ∂2ρ′

∂t2
− ∂2

∂xi∂xj

(
2ρũiu′′

j + ρ′ũiũj

)
+ 2

∂ ũi

∂xj

∂ρu′′
j

∂xi
, (3.6d)

∂2ph

∂xi∂xi
= 0, (3.6e)

where the first two components pr and ps are so-called rapid and slow pressures similar
to those in incompressible flow, caused by linear mean flow–turbulence interactions
and nonlinear turbulence–turbulence interactions, respectively; the viscous pressure pτ
corresponds to the contribution of the viscous stress; the compressible pressure pc
accounts for contributions of compressibility which is the principal representation of the
essential nature of compressibility effects on the pressure statistics (Sarkar 1992; Foysi
et al. 2004; Tang et al. 2020); and the harmonic pressure ph is introduced to denote
the contribution of streamwise boundary conditions (Pope 2000). All the right-hand side
source terms are obtained by discretization based on the DNS data. The Poisson equations
of pressure components are solved by the Fourier–Galerkin scheme in a subdomain of
the computational domain as shown in figure 6 with the specific boundary conditions
given in table 3. The grid of the subdomain is the same as that of the DNS computation
but truncated in the streamwise and wall-normal directions. In the streamwise direction,
the subdomain spans over 800 points for all cases except case M8, which increases to
1200 points due to its smaller grid spacing. The location for analysis is at the streamwise
midpoint of the subdomain. In the wall-normal direction, the subdomain spans over 280
points starting from the wall, and the wall-normal location of the upper boundary exceeds
3δ ensuring acoustic radiation dominants here. Note that due to the evanescent nature of
vortex waves and entropy waves out of boundary layers, other pressure components except
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Figure 6. Schematic for the pressure decomposition. The subdomain of the numerical schlieren of the M8
case is drawn.

Boundary conditions pr ps pτ pc ph

Streamwise ∂pr/∂x = 0 ∂ps/∂x = 0 ∂pτ /∂x = 0 ∂pc/∂x = 0 ∂ph/∂x = ∂p′/∂x
Wall ∂pr/∂y = 0 ∂ps/∂y = 0 ∂pτ /∂y = 0 ∂pc/∂y = 0 ∂ph/∂y = ∂p′/∂y
Far-field pr = 0 ps = 0 pτ = 0 pc = p′ ph = 0

Table 3. Boundary conditions of the pressure fluctuation equations for each pressure component.

pc are set to 0 at the far-field boundary, while the propagation nature of acoustic waves is
mainly reflected in the compressible pressure pc, so that pc = p′ is imposed at the far-field.

According to generation mechanisms of pressure fluctuations from the characteristics
of the source terms, the compressible pressure pc is used to represent the contributions
from the acoustic mode. Meanwhile, the sum of the remaining components, pi = pr +
ps + pτ + ph, is nominally defined as the hydrodynamic pressure (quasi-incompressible
component) denoting the contributions from the vorticity mode, resulting in p′ = pi +
pc. The instantaneous fields of the original pressure fluctuations p′+ as well as the
compressible pressure p+

c and hydrodynamic pressure p+
i in wall scaling are depicted

in figure 7, taking the M0, M2 and M8 cases as examples for brevity. For p′+ fields in
figure 7(a,b), pressure fluctuations are mainly associated with vortex structures within the
boundary layer. In the far field, pressure fluctuations radiate as acoustic waves, which are
relatively weak in case M0. As the Mach number increases, the amplitudes of radiating
pressure fluctuations in the far field become higher. In case M8 depicted in figure 7(c),
radiating pressure fluctuations are comparable to those within the boundary layer. For p+

i
shown in figure 7(d–f ), the same feature of all cases is that all fluctuations seem to be
bounded within the boundary layer and rapidly decay to zero out of the boundary layer.
The amplitudes of p+

i are comparable to those of p′+ fields for each case. The distributions
of p+

i within boundary layers are very similar to those of p′+, except for case M8, in which
the acoustic mode becomes much stronger. It can be noted that there are no discernible
distinctions in the p+

i field among these three cases. The patterns observed in the spanwise
planes are reminiscent of the inclined convective vortex structures depicted in figure 6.
For p+

c fields in figure 7(g,h), the characteristics are quite different in that the fluctuations
occupy the whole domain, and the acoustic radiations out of the boundary layers are well
captured. As M increases, the amplitude and characteristic length scales of p+

c gradually
become higher and finer, respectively. For case M0, the fluctuation of p+

c is quite weak,
and its amplitude is an order lower than that of p+

i . The acoustic waves in the streamwise
and spanwise planes are shown to be of large wavelengths, aligning with the large-scale
patchy patterns at the wall. For case M2, the patchy patterns at the wall become finer, and
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Figure 7. The instantaneous fields of (a–c) the pressure fluctuation p′+ (d–f ) the hydrodynamic pressure p+
i

and (g–i) the compressible pressure p+
c . The spanwise, streamwise and wall planes are shown.

the acoustic waves out of the boundary layer are inclined due to the Doppler effect. In
case M8, the amplitudes of p+

c are much higher and comparable to those of p′+, and the
distributions are very similar to those of p′+, suggesting the critical role of p+

c in both the
near and far fields for high Mach number cases.

Given the distinct convection velocities of vorticity and acoustic modes, space–time
correlation functions are computed to assess and quantify this characteristic feature,
written as

Rp(�x,�t) = 〈 p(x, t)p(x +�x, t +�t)〉 . (3.7)

For the boundary layer growing slowly in the limited analysis domain, the field can be
treated as a homogeneous field. Thus, the function Rp is independent of x and t at the
wall. Here, only the streamwise separation �x is considered. As shown in figure 8(a), the
normalized correlation functions of original wall pressure Rp′ gradually decay to zero with
�x and �t increasing, forming contours with elongated shapes. The convection velocity
uc can be approximated by the slope of the line along which Rp′ decay most slowly.
Across all cases, uc ≈ 0.6u∞ at small time delay �t, and uc slightly increases when �t
becomes larger, aligning with the findings of Bernardini & Pirozzoli (2011) and Gloerfelt
& Berland (2013). This behaviour is attributed to the slower movement of small-scale
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Figure 8. The normalized space–time correlation functions of wall pressure fluctuations for the (a) original
pressure p′

w, (b) hydrodynamic pressure pi,w and (c) compressible pressure pc,w. Slopes of the reference lines:
− − −, 0.6u∞; −· − ·−, 0.6u∞ + aw with aw denoting the acoustic velocity at the wall.

turbulent structures near the wall and vice versa for larger-scale structures. In figure 8(b),
the distributions of Rpi closely resemble those of Rp′ with almost identical uc, indicating
the dominant role of the vorticity mode. For correlation functions of compressible pressure
Rpc , the convection velocity differs significantly, with an increase in the acoustic velocity at
the wall, denoted as aw, resulting in uc = 0.6u∞ + aw. Moreover, the contour shape also
becomes parallel strips with two negative strips flanking both sides. These features are
reminiscent of wavefronts and are quite consistent with the propagation nature of acoustic
waves. The narrow streak with a small value around �t = 0 results from the harmonic
pressure ph for M = 8 case. Although the flow is highly nonlinear and the modes are
strongly coupled with each other, the contributions from the acoustic mode and vorticity
mode can be reasonably distinguished by utilizing the pressure decomposition method,
based on the distinct characteristics of the p+

i and p+
c fields.

Drawing inspiration from the observed scaled relationships of vorticity and dilatation
fluctuations in figure 3, it is anticipated that similar scaling laws may exist for pressure
fluctuations concerning the vorticity and acoustic modes, which are nominally denoted
by hydrodynamic pressure p+

i and compressible pressure p+
c , respectively. As shown
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Figure 9. Pressure component fluctuation intensities in (a,c) the outer scale and (b,d) the inner scale:
(a,b) hydrodynamic pressure p+

i,rms, (c,d) compressible pressure p+
c,rms. The circles indicate the reference data

of an incompressible TBL with Reτ = 690 from Jiménez et al. (2010).

in figure 9(a,b), the profiles of fluctuation intensities of hydrodynamic pressure p+
i,rms

exhibit uniform behaviour and collapse well with each other, including the profile of the
incompressible TBL with a similar Reynolds number Reτ = 690 (Jiménez et al. 2010).
These profiles share the same evolution trend along the wall-normal direction as the
original pressure fluctuations depicted in figure 4, but they gradually diminish towards
zero beyond the boundary layer, rather than reaching a plateau. This suggests that there
exists a uniform intrinsic scaling wherein the distributions of p+

i,rms are in agreement with
those of incompressible TBLs and are independent of Mach numbers without taking into
account the possible effects of Reynolds number.

For compressible pressure p+
c,rms shown in figure 9(c,d), it is also found that the profiles

exhibit a clear trend. With increasing M, p+
c,rms is monotonically enhanced and then

decays to plateau values as the distance to the wall increases. The plateau values are also
proportional to M. This relationship is in qualitative agreement with that of dilatation
fluctuation intensities θ ′+

rms in figure 3(b), implying that the enhancement of p′+
rms near the

wall is mainly attributed to the increased genuine compressibility denoted by θ ′+
rms. In short,

the profiles of pressure fluctuation intensities in compressible TBLs can be mapped onto
their counterparts in incompressible TBLs if we physically remove the contribution from
the acoustic mode.
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Figure 10. Premultiplied streamwise wavenumber spectra kxE+
p of the (a) original pressure p′,

(b) hydrodynamic pressure pi and (c) compressible pressure pc.

To examine the characteristics of pressure components in the wavenumber space, the
premultiplied streamwise wavenumber spectra are calculated. As M increases, the spectra
of original pressure kxE+

p′ shown in figure 10(a) are overall enhanced. Notably, this
enhancement is more pronounced in both the lower left-hand region (near the wall and
short wavelength) and the upper right-hand region (outside the boundary layer and long
wavelength). These enhancements are attributed to the presence of stronger near-wall
small-scale structures and increased acoustic radiation, respectively. For the spectra of
hydrodynamic pressure kxE+

pi
in figure 10(b), the distributions are very similar for all

cases including the contour shape and peak position. Due to the feature of the vorticity
mode, there is no amplitude out of the boundary layer. The variations in kxE+

p′ can be
clearly reflected by the contours of kxE+

pc
in figure 10(c). For the three subsonic and

supersonic cases, kxE+
pc

manifests a dominant wavelength of λx ∼ δ, which persists up
to the log layer. For the two hypersonic cases, the dominant wavelength shifts to be
shorter λ+x ∼ 100, confined primarily within the buffer layer. This is because the near-wall
small-scale dilatational structures are induced by strong compressibility (Zhang et al.
2022). Hence, the intrinsic behaviour of pi and monotonic enhancing feature of pc also
exist in the wavenumber space.

3.4. A potential modelling strategy for pressure fluctuations
Modelling pressure fluctuations in compressible turbulent flows is a challenging task due
to the strong coupling of different modes and inherent nonlinearity (Danish, Suman &
Srinivasan 2014). However, with the scaling relations for pressure components found in
§ 3.3, there is a potential modelling strategy for pressure fluctuation intensity p′+

rms by,
respectively, modelling pressure components as a function of M. Initially, due to the square
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relation p′2 = p2
i + 2pipc + p2

c , the role of the interactions between hydrodynamic and
compressible pressure pipc is assessed, as shown in figure 11. When compared with the
mean square of pressure fluctuations p′2, the interactions pipc are very weak and can be
reasonably disregarded for all cases. This conclusion is also supported by our previous
study (Zhang et al. 2022) that the interactions between each component are also very
weak. As a result, only the two independent components pi and pc need to be considered
for modelling, and then

p′+
rms(M) 	

√
( p+

i,rms)
2 + ( p+

c,rms(M))2. (3.8)

The current data for p+
i,rms and p+

c,rms presented in figure 9 are used to construct the model
describing the relation between pressure fluctuation intensity and Mach number, denoted
as p′+

rms(M). Due to the specific and approximately the same Reτ of the DNS data, the Re
effects are not considered currently. To account for the multi-inflexion points present in
the distribution of p+

i,rms, a fifth-order rational polynomial is employed to approximate its
uniform behaviour. This can be expressed mathematically as follows:

p+
i,rms =

∑5
n=0 an (y/δ)n∑5
n=0 bn (y/δ)n

, (3.9)

where the specific values of the two coefficients an and bn are listed in table 4. The
distribution of p+

c,rms is dependent on M, and it gradually decays to a plateau value
C(M) outside of the boundary layer, which can be summarized by the linear relation
C(M) = 0.12M + 0.08, as shown in figure 5(b). After subtracting the plateau value C(M),
the remaining part is modelled as a power function, resulting in

p+
c,rms(M) = φ(M)

(y/δ)ψ(M) + θ(M)
+ C(M). (3.10)

Based on linear fittings, the assumed relations of these parameters can be determined as

φ(M) = 7.88 × 10−3M + 3.13 × 10−2, (3.11a)

ψ(M) = −1.97 × 10−1M + 2.10, (3.11b)

θ(M) = 7.56 × 10−2M−0.596 + 7.03 × 10−2. (3.11c)

By utilizing this modelling strategy, a reasonable, simple and semiempirical model has
been obtained to predict the dependence of pressure fluctuation intensity on the Mach
number p′+

rms(M). The performance of this model is illustrated in figure 12. The fifth-order
rational polynomial accurately replicates the distribution of hydrodynamic pressure.
Furthermore, the model effectively captures the increasing features of compressible
pressure both near the wall and out of the boundary layer. As a result, the model can
successfully predict the distribution trend of pressure fluctuation intensity in a wide range
Mach number, as demonstrated in figure 12(c). It can be seen that modelling pressure
with the help of reasonable means of pressure decomposition is a very feasible way.
When mapping the compressible profile of pressure fluctuations to the incompressible
counterpart, the contribution of the acoustic mode, which needed to be removed, can also
be conveniently given by the model (3.10). To quantitatively assess the performance of the
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Figure 11. Comparisons of intensities of pressure fluctuations p′2 and interactions between pressure
components pipc in (a) the outer scale and (b) the inner scale.

n 0 1 2 3 4 5

an 1.38 × 10−3 −2.34 × 10−2 1.52 −9.08 × 10−2 −1.50 0.68
bn 5.70 × 10−4 −1.07 × 10−2 0.49 0.98 −1.84 1.00

Table 4. Coefficients of the rational polynomial for modelling the profile of hydrodynamic pressure.

current model, following Griffin et al. (2021) the integral relative error is written as

ε = 100

∫ 1.5δ
0 |PM − PD| dy∫ 1.5δ

0 PD dy
, (3.12)

where PM and PD denote the profiles obtained from the current model and DNS data,
respectively. The integral range is chosen from the wall to slightly beyond the boundary
( y/δ = 1.5) to encompass the entire stages of both rapid change and reaching a steady
level of pressure fluctuations. The reference data are obtained from Bernardini & Pirozzoli
(2011) and Duan et al. (2016) with a similar moderate Reynolds number Reτ ≈ 500.
Figure 12(d) demonstrates that our model performs well, whether based on our own data or
the reference DNS data, with a maximum error of approximately ε ≈ 7 %. The relatively
larger errors at M = 4 and 6 are primarily attributed to the inaccuracies in the linear
relationship of p′+

rms,∞ depicted in figure 5(b).

4. Summary and discussion

The study investigates the scaling relations between pressure fluctuations and Mach
number M in compressible TBLs by examining their generation mechanisms.
A comprehensive dataset of DNS with a broad range of 0.5 ≤ M ≤ 8.0 and comparable
friction Reynolds numbers is analysed. By employing the Van Driest transform and
Morkovin scaling, the turbulent statistics of velocity fields for different Mach numbers
can be effectively mapped onto their incompressible counterparts. Concerning pressure
fluctuation intensity, the profiles exhibit scattering, and the intensities generally increase
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Figure 12. Semiempirical models of fluctuation intensities for (a) hydrodynamic pressure p+
i,rms;

(b) compressible pressure p+
c,rms and (c) pressure p′+

rms. The symbols denote DNS data, the lines denote the
results of the model. (d) Integral relative errors with reference data from Bernardini & Pirozzoli (2011) and
Duan, Choudhari & Zhang (2016).

with increasing M due to the amplification of genuine compressibility effects and acoustic
radiations. As indicators of the vorticity mode and acoustic mode, which contribute to the
pressure fluctuations, vorticity fluctuation intensities are minimally affected by increasing
M, while dilatation fluctuation intensities monotonically increase with increasing M.

Based on the governing equation of pressure fluctuations, these fluctuations are
decomposed into distinct components, each corresponding to the characteristics
of different source terms and representing different generation mechanisms. The
compressible component denotes the contributions of compressibility effects capturing the
physics of acoustic waves, and the sum of the rest components is defined as hydrodynamic
pressure relating to the contributions of convective vortex structures. This decomposition
achieves a reasonable distinction between the contributions to pressure fluctuations from
acoustic and vorticity modes. The convection velocity of hydrodynamic pressure agrees
with the typical value of convecting vortices (uc ≈ 0.6u∞), while for compressible
pressure, it increases to the typical value of acoustic waves (uc ≈ 0.6u∞ + aw). It is
observed that the intensities of hydrodynamic pressure exhibit a uniform profile, collapsing
with their incompressible counterpart. In contrast, the intensities of compressible pressure
are monotonically enhanced with increasing M. These scaling relations agree with the
observations on intensities of vorticity and dilatation fluctuations. Hence, the profiles
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of pressure fluctuation intensities in compressible TBLs can be mapped onto their
incompressible counterparts by removing the contribution from the acoustic mode, as
denoted by compressible pressure. In addition, the interactions between the hydrodynamic
and compressible pressure are assessed to be negligibly weak compared with original
pressure fluctuations. With the identified scaling relations of the hydrodynamic and
compressible pressure, a potential modelling strategy for pressure fluctuations that,
respectively, models the pressure components is proposed and applied by fitting the DNS
data.

It is worth noting that although the present study is conducted by analysing compressible
TBLs at the moderate friction Reynolds number Reτ ≈ 630, the explored scaling relations
should be qualitatively general in fully developed compressible TBLs since increasing
Reynolds numbers do not change the physical natures of the acoustic mode and vorticity
mode. Future studies at higher Reτ are necessary to explore the influence of Reynolds
number effects on the characteristics of the two pressure components.
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