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The Ising model is one of the most widely analyzed graphical models in network psychometrics.
However, popular approaches to parameter estimation and structure selection for the Ising model cannot
naturally express uncertainty about the estimated parameters or selected structures. To address this issue,
this paper offers an objective Bayesian approach to parameter estimation and structure selection for the
Ising model. Our methods build on a continuous spike-and-slab approach. We show that our methods
consistently select the correct structure and provide a new objective method to set the spike-and-slab
hyperparameters. To circumvent the exploration of the complete structure space, which is too large in
practical situations, we propose a novel approach that first screens for promising edges and then only
explore the space instantiated by these edges. We apply our proposed methods to estimate the network of
depression and alcohol use disorder symptoms from symptom scores of over 26,000 subjects.
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Undirected graphical models, also known as Markov random fields (MRFs; Kindermann &
Snell, 1980), have become an indispensable tool to describe the complex interplay of variables
in many fields of science. The Ising model (Ising, 1925), or quadratic exponential model (Cox,
1972), is one MRF that attracted the interest of psychologists. It is defined by the following
probability distribution over the configurations of a p-dimensional vector x, with x ∈ {0, 1}p,

p(x | μ, �) = 1

Z(μ, �)
exp

⎛
⎝

p∑
i=1

xiμi +
p−1∑
i=1

p∑
j=i+1

xi x jσi j

⎞
⎠ , (1)
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48 PSYCHOMETRIKA

which covers all main effects μi and pairwise associations σi j of the p binary variables. The
pairwise associations encode the conditional dependence and independence relations between
variables in the model: If an association is equal to zero, the two variables are independent given
the rest of the variables, and there is no direct relation between them. Otherwise, the two variables
are directly related. These relations can be visualized as edges in a network, where the model’s
variables populate the network’s nodes. This view of the Ising model in psychological applica-
tions inspired the field of network psychometrics (Epskamp, Maris, Waldorp, & Borsboom, 2018;
Marsman et al., 2015), which now spans research in, among others, personality (Constantini et al.,
2012; Cramer et al., 2019), psychopathology (Borsboom & Cramer, 2013; Cramer et al.,2016),
attitudes (Dalege et al., 2019; Dalege, Borsboom, van Harreveld, & van der Maas, 2016), edu-
cational measurement (Marsman, Maris, Bechger, & Glas, 2015; Marsman, Tanis, Bechger, &
Waldorp, 2019), and intelligence (Savi, Marsman, van der Maas, & Maris, 2019; van der Maas,
Kan, Marsman, & Stevenson, 2017).

The primary objective in empirical applications of the Ising model is determining the net-
work’s structure or topology. Three practical challenges complicate this objective. The first prac-
tical challenge is the normalizing constant Z(μ, �) in Eq. (1), which is a sum over all 2p possible
configurations of the binary vector x. Even for small graphs, this normalizing constant can be
expensive to compute. For example, for a network of 20 variables, the normalizing constant con-
sists of more than one million terms. Given that the normalizing constant is repeatedly evaluated
in numerical optimization or simulation approaches to estimate the model’s parameters, the direct
computation of the likelihood is computationally intractable. The second practical challenge in
determining the Isingmodel’s structure is the balance betweenmodel complexity and data.With p
main effects and

(p
2

)
pairwise interactions, the number of free parameters can quickly overwhelm

the limited information in available data. The third practical challenge is the efficient selection
of a structure with desirable statistical properties from the vast space of possible structures. For
a network of 20 variables, the structure space comprises 2190 = 1.57× 1057 potential structures,
which is simply too large to enumerate in practice.

In psychology, eLasso (van Borkulo et al., 2014) is the structure selection solution for the
Ising model and overcomes all three challenges. First, it adopts a pseudolikelihood approach
to circumvent the normalizing constant. The pseudolikelihood replaces the joint distribution of
the vector variable x—i.e., the full Ising model in Eq. (1)—with its respective full-conditional
distributions:

p∗(x | μ, �) ∝
p∏

i=1

p(xi | x(i), μi , σ
(i)
i ) =

exp
(∑p

i=1 xiμi +∑p−1
i=1

∑p
j=i+1 xi x jσi j

)

∏p
i=1

(
1 + exp

(
μi +∑ j �=i σi j x j

)) , (2)

where σ
(i)
i = (σi1, . . . , σi(i−1), σi(i+1), . . . σi p)

T. Observe that the pseudolikelihood is equiva-
lent to Eq. (1) except that it replaces the intractable normalizing constant with a tractable one.
Second, eLasso balances structure complexity with the information available from the data at hand
using the Lasso (Tibshirani, 1996): An l1-penalty is stipulated on the pseudolikelihood parame-
ters (i.e., minimize − ln p∗(xi | μi , σ

(i)
i ) subject to the constraint

∑
j �=i |σi j | ≤ ρ) to effectively

shrink negligible effects to precisely zero. Ravikumar, Wainwright, and Lafferty (2010) showed
that the pseudolikelihood in combination with Lasso can consistently uncover the true topology
(see also Meinshausen & Bühlmann, 2006). Third, eLasso selects the structure that optimizes the
parameters subject to the l1 constraint, which is specified up to its tuning parameter ρ. It performs
the optimization for a range of values for the tuning parameter and then selects the value that
minimizes an extended Bayesian information criterion (Barber & Drton, 2015; Chen & Chen,
2008). Thus, structure selection with eLasso is analogous to selecting the tuning parameter. This
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combination of methods allows eLasso to efficiently perform structure selection for the Ising
model, which is why it has become widely popular in psychometric practice.

We, however, have two concerns with frequentist regularization methods for estimating
the Ising model, such as those used by eLasso. Our first concern is that traditional, frequen-
tist approaches cannot express the uncertainty associated with a selected structure, and thus do
not inform us about other structures that might be plausible for the data at hand. A structure’s
plausibility is disclosed in its posterior probability. To compute posterior probabilities, we have
to entertain multiple structures and take their prior plausibility into account. But eLasso searches
for a single optimal structure instead. Our second concern is that eLasso does not articulate
the precision of the parameters it estimates. Standard expressions for parameter uncertainty are
unavailable for Lasso estimation (Tibshirani, 1996), since the limiting distribution of the Lasso
estimator is non-Gaussian with a point mass at zero (e.g., Knight & Fu, 2000; Pötscher & Leeb,
2009). Basic solutions such as the bootstrap, although frequently used (see, for instance, Epskamp,
Borsboom, & Fried,2018; Tibshirani, 1996), can therefore not be used to obtain confidence inter-
vals or standard errors (e.g., Bühlmann, Kalisch, andMeier, 2014, Section 3.1; Pötscher and Leeb,
2009, Williams, 2021). Bayesian formulations of the Lasso offer a more natural framework for
uncertainty quantification (Kyung, Gill, Ghosh, & Casella, 2010; Park & Casella, 2008; van Erp,
Oberski, & Mulder, 2019), but approximate confidence intervals/standard errors could also be
obtained by desparsifying the Lasso (Bühlmann et al., 2014; van de Geer, Bülmann, Ritov, &
Dezeure, 2014).

In light of these concerns, our goals are threefold. Our primary goal is to introduce a new
Bayesian approach for learning the topology of Ising models. Bayesian approaches to model
selection often introduce binary indicators γ for the selection of variables in the model (e.g.,
George & McCulloch, 1993; O‘Hara & Sillanpää, 2009). We will use these indicators here to
model edge selection: If the indicator γi j equals one, the edge between variables i and j is
included. Otherwise, the edge is excluded. A structure s is then a specific configuration of a
vector of

(p
2

)
indicator variables γ s , and the collection of network structures is equal to

S = {0, 1}(p2).

We wish to estimate the posterior structure probabilities p(γ | x), since they convey all the
information that is available on the structures γ ∈ S and can be used to express the plausibility
of a particular structure or the inclusion of a specific edge for the data at hand. To unlock these
Bayesian benefits (see Marsman & Wagenmakers, 2017; Wagenmakers, Marsman, et al., 2018,
for detailed examples), we have to connect the indicator variables to the selection problem at
hand.

Our secondary goal is to formulate a continuous spike-and-slab approach, initially proposed
by George and McCulloch (1993) for covariate selection in regression models, for edge selection
in Ising networks. In this approach, the binary indicators are used to hierarchically model the
prior distributions of focal parameters by assigning zero-centered diffuse priors to effects that
should be included and priors that are sharply peaked about zero to negligible effects. These
continuous spike-and-slab components are usually Gaussian (e.g., George & McCulloch, 1993;
Ročková & George, 2014) or Laplace distributions (e.g., Ročková, 2018; Ročková & George,
2018). Even though the Laplace distribution generates a Bayesian Lasso (Park & Casella, 2008),
its drawback is that its posterior distribution is difficult to approximate using computational
tools other than simulation. We therefore adopt Gaussian spike-and-slab components in our edge
selection approach.

Our tertiary goal is to analyze the full or joint pseudolikelihood in Eq. (2) instead of ana-
lyzing the full-conditionals in isolation. Analyzing the full-conditionals in isolation is common
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practice since it is fast. However, it leads to two potentially divergent parameter estimates for the
associations and does not provide a coherent procedure for quantifying parameter uncertainty. By
analyzing the joint pseudolikelihood, we can formulate a single prior distribution for the focal
parameters to obtain a single posterior distribution that we can analyze in a meaningful way. The
disadvantage of using the joint pseudolikelihood is its increased computational expense for some
numerical procedures and the inability to analyze the full-conditionals in parallel. However, this
increase in computational expense is negligible for the network sizes typically encountered in
psychological applications.

The continuous spike-and-slab approach to select a network’s topology poses three critical
challenges that we address in this paper. The first challenge that we address is the consistency of
the structure selection procedure. In a recent analysis of covariate selection in linear regression,
Narisetty and He (2014) showed that the continuous spike-and-slab approach is inconsistent if
the hyperparameters are not correctly scaled. We extend this observation to the current structure
selection problem1 and prove that a correct scaling of the hyperparameters leads to a consistent
structure selection approach in an embeddingwith p fixed, n increasing. The second challenge that
we address is the specification of tuning parameters. The effectiveness of the continuous spike-and-
slab setup crucially depends on their specification. Unfortunately, objective methods to specify
these parameters are currently unavailable, and tuning them is difficult and context dependent (e.g.,
George & McCulloch, 1997; O’Hara & Sillanpää, 2009). To overcome this issue, we develop a
new procedure to automatically set the tuning parameters in such a way that we achieve a high
specificity. The final challenge that we address is the practical exploration of the structure space
S. Even for relatively small networks, the structure space S can be vast, and exploring it poses a
significant challenge. Moreover, even the most plausible structures have relatively small posterior
probabilities andmany similar structures exist (George, 1999). As a result, valuable computational
effort iswasted on relatively uninteresting structures and it is difficult to estimate their probabilities
with reasonable precision. To overcome this issue, we propose a novel, two-step approach.We first
employ a deterministic estimation approach (Ročková & George, 2014), utilizing an expectation-
maximization (EM; Dempster, Laird, & Rubin, 1977) variant of the continuous spike-and-slab
approach to screen for a subset of promising edges. We then use a stochastic estimation approach
(George & McCulloch, 1993), utilizing a Gibbs sampling (Geman & Geman, 1984) variant to
explore the structure space instantiated by these promising edges. In sum, we propose a coherent
Bayesian methodology for structure selection for the Ising model. The freely available R package
rbinnet implements the proposed methods.2

The remainder of this paper is organized as follows. After this introduction, we first specify
our Bayesian model, i.e., we discuss the pseudolikelihood and prior setup. Then, we analyze the
consistency of our spike-and-slab approach for structure selection and show that it is consistent if
suitably scaled. We wrap up the blueprint of our Bayesian model with the objective specification
of hyperparameters for our spike-and-slab setup. We then present an EM and a Gibbs implemen-
tation of our Bayesian structure selection setup used for edge screening and structure selection,
respectively. In our suite of Bayesian tools, edge screening most closely resembles eLasso, and
we will compare the performance of these two methods in a series of simulations. Finally, we
present a full analysis of data on alcohol abuse and major depressive disorders from the National
Survey on Drug Use and Health. As far as we know, these two disorders have not been analyzed
on a symptom level together in a network approach.

1While our manuscript was under review, Ly and Wagenmakers (2021) elegantly extended this inconsistency result
to any statistical model using techniques similar to ours.

2The package can be downloaded from https://github.com/MaartenMarsman/rbinnet/.
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1. Bayesian Model Specification

The setup of any Bayesian model comprises two parts: The likelihood of the model’s param-
eters and their prior distributions. We start with the likelihood dictated by the Ising model, and
the pseudolikelihood approach that we adopt to circumvent the computational intractability of the
full Ising model. We follow-up with the specification of prior distributions for the Ising model’s
parameters, tying George andMcCulloch’s (1993) continuous spike-and-slab prior setup for edge
selection.

1.1. The Ising Model Pseudolikelihood

In this paper, we will adopt the pseudolikelihood approach of Besag (1975), as presented
in Eq. (2). We will furthermore assume that the observations are independent and identically
distributed, such that the full pseudolikelihood becomes

p∗(X | μ, �) =
n∏

v=1

p∗(xv | μ, �),

whereX = (xT1 , . . . , xTn )T, and we have adopted v to index the n independent and identically dis-
tributed observations. Both maximum pseudolikelihood and Bayesian pseudoposterior estimates
are consistent as n increases (e.g., Arnold & Strauss, 1991; Geys, Molenberghs, & Ryan, 2007;
Miller, 2019) and can consistently uncover the unknown graph structure of the full Ising model
(Barber & Drton, 2015; Csiszár & Talata, 2006; Meinshausen & Bühlmann, 2006; Ravikumar
et al., 2010). As a result, the pseudolikelihood has become an indispensable tool in the structure
selection of Ising models.

1.2. The Continuous Spike-and-Slab Prior Setup and Its Relation to Other Approaches

There are several ways to bring the indicator variables into our Bayesian model (e.g., Della-
portas, Forster, & Ntzoufras, 2002; George & McCulloch, 1993; Kuo & Mallick, 1998). O’Hara
and Sillanpää 2009 and Consonni, Fouskakis, Liseo, and Ntzoufras Consonni et al. (2018) pro-
vide two recent overviews. One interesting approach was recently proposed by Pensar, Nyman,
Niiranen, and Corander Pensar et al. (2017), which essentially uses the indicator variables to draw
a Markov blanket in the full-conditional distributions of the Ising model and then, construct a
marginal pseudolikelihood to select the network’s structure. A key aspect of their approach is that
they formulated a Bayesian model on the individual pseudolikelihoods rather than the model’s
parameters, and, using a few simplifying assumptions, they were able to derive analytic expres-
sions for the marginal pseudolikelihoods. Unfortunately, this also required treating the pairwise
associations as nuisance parameters. As a result, inference on the model’s parameters remains
out of reach, and, in addition, it is unclear how the priors on the pseudolikelihoods translate to
the model’s parameters. We will take a different route, but a numerical comparison between our
approach and that of Pensar et al. Pensar et al. (2017)—implemented in the R package BDgraph
(R. Mohammadi & Wit, 2019)—can be found in the online appendix.

In this paper, we adopt the continuous spike and slab approach, which comprises two parts.
First, a mixture of two zero-centered normal distributions is imposed on the focal parameters.
Here, the focal parameters are the pairwise associations σi j . The indicator variables are then used
to distinguish between the two mixture components, and thus, the prior distribution on the focal
parameters becomes

σi j | γi j ∼ (1 − γi j )N (0, ν0) + γi j N (0, ν1),
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where N (0, ν) denotes the normal distribution with a mean equal to zero and a variance equal
to ν. A small but positive variance ν0 > 0 is assigned to the component that is associated with
γi j = 0 to encourage the exclusion of negligible nonzero values, and a large variance ν1 >> ν0
is assigned to the component associated with γi j = 1 to accommodate all plausible values of the
interaction. The continuous spike-and-slab approach is a computationally convenient alternative
to the discontinuous spike-and-slab approach that is common in model selection.

In the discontinuous spike-and-slab approach, the continuous spike distribution is replaced
with a Dirac delta measure at zero. In other words, the association is set to zero for structures in
which the relation is absent. The discontinuous spike-and-slab setup is popular in structure selec-
tion forGaussian graphicalmodels (GGMs) (GGMs; e.g., Carvalho&Scott, 2009;A.Mohammadi
& Wit, 2015) and generalizations such as the copula GGM for binary and categorical variables
(e.g., Dobra & Lenkoski, 2011) and the multivariate probit model for binary variables (e.g., Tal-
houk, Doucet, & Murphy, 2012)—variants of which are also implemented in the R packages
BDgraph (R. Mohammadi & Wit, 2019) and BGGM (Williams & Mulder, 2020b). For the GGM
and its generalizations, the slab priors are assigned to the inverse-covariance or precision matrix
(i.e., the matrix of partial correlations) and thus, often use Wishart-type priors rather than the
normal distribution that we propose for the Ising model’s associations.

The upside of using discontinuous over continuous spike-and-slab priors is that one only
needs to consider the slab prior specification and that structure selection consistency is more
easily attained. The downside, however, is that for models such as the Ising model, we run into
severe computational challenges. The EM and Gibbs solutions that we advocate in this paper
would not work for the Ising model if we would use the discontinuous spike-and-slab setup.
The primary reason for this is that one cannot analytically integrate out the focal parameters for
updating the edge indicators. Pensar et al. (2017) were able to derive their analytic solutions by
stipulating the Ising model’s pseudolikelihood as the focal parameter and assuming orthogonality
between different full-conditions. The continuous spike-and-slab approach proposed in this paper
does not require an analytic integration of effects from the likelihood and is thus opportune to use
in combination with the Ising model. Wang (2015) also applied it to edge-selection for the GGM,
which is implemented in the R package ssgraph (R. Mohammadi, 2020).

The second part of our spike-and-slab approach is the specification of a prior distribution on
the selection variables. Here, the selection variables are a priori modeled as i.i.d. Bernoulli(θ)

variables, which implies the following prior distribution on the structures γ s ,

p(γ s) = θγs++ (1 − θ)(
p
2)−γs++ , (3)

where γs++ =∑p−1
i=1

∑p
j=i+1 γsi j , with γi j = γ j i . Once the hyperparameters ν0, ν1 and θ are set,

and the nuisance parameters are assigned a prior distribution, the posterior structure probabilities
can then be estimated using, for example, a Gibbs sampler (Geman & Geman, 1984; George &
McCulloch, 1993). We stipulate independent standard-normal prior distributions on the nuisance
parameters μ and make the objective specification of hyperparameters the topic of the ensuing
sections.

2. Structure Selection Consistency

In this section, we analyze posterior selection consistency, the ability of our method to
determine the correct network structure consistently. As alluded to in the introduction, selec-
tion consistency using George and McCulloch’s spike and slab approach crucially depends on
the hyperparameters ν0 and ν1. Unfortunately, fixing these parameters does not guarantee that
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our structure selection procedure is consistent. Narisetty and He (2014) showed that the use of
fixed constants may lead to an inconsistent selection procedure in the context of linear regression.
Below, we will demonstrate that this is also the case in the context of structure selection for Ising
models. However, we will also show that our selection approach is consistent if the spike variance
ν0 shrinks as a function of n.3 Narisetty and He presented a similar result for linear regression.

Wefirstwork out the concepts relevant for selection consistency, such as the posterior structure
probability, and derive an approximate Bayes factor that is useful for the large-sample analysis.
Then, we analyze the case with fixed hyperparameters and show that the selection procedure is
inconsistent for fixed p, increasing n. Finally, we analyze the situation where the spike variance
shrinks with n and show that this shrinking hyperparameter setup leads to a consistent selection
procedure for fixed p, increasing n.

2.1. Selection Consistency

We assume that the true structure t is in the set S.4 We quantify our uncertainty in selecting
a structure s, s ∈ S, using the posterior structure probability

p(γ s | X) = p∗(X | γ s) p(γ s)∑
s∈S p∗(X | γ s) p(γ s)

= BF∗
st ost

1 +∑u∈S\t BF
∗
ut out

,

where p∗(X | γ s) denotes the integrated pseudolikelihood for the structure s, BF∗
st the Bayes

factor pitting structure s against the correct structure t , and ost denotes the prior model odds of the
two structures. Selection consistency requires us to show that the posterior structure probabilities
p(γ s | X) tend to zero for structures s �= t , and that p(γ t | X) tends to one as the sample size
grows. This is equivalent to showing that the Bayes factors BFst tend to zero for structures s �= t .
Unfortunately, analytic expressions for the Bayes factors are currently unavailable. To come to a
workable expression for the Bayes factor, we first redefine it in terms of the expected prior odds
under the correct posterior distribution

BF∗
st = p∗(X | γ s)

p∗(X | γ t )

=
∫ ∫

p∗(X | μ, �) p(μ) p(� | γ s) d� dμ∫ ∫
p∗(X | μ, �) p(μ) p(� | γ t ) d� dμ

=
∫ ∫

p∗(X | μ, �) p(μ) p(� | γ s)

p∗(X | μ, �) p(μ) p(� | γ t )

. × p∗(X | μ, �) p(μ) p(� | γ t )∫ ∫
p∗(X | μ, �) p(μ) p(� | γ t ) d� dμ

d� dμ

= E
∗
(

p(� | γ s)

p(� | γ t )

∣∣∣∣ X, γ t

)

= E
∗
⎛
⎝

p−1∏
i=1

p∏
j=i+1

p(σi j | γsi j )

p(σi j | γti j )

∣∣∣∣∣∣
X, γ t

⎞
⎠ ,

3The analysis of structure selection consistency that we discuss here applies to either the edge screening procedure
or the structure selection procedure that we present in the next sections. It does not, however, pertain to the situation of
structure selection after initial edges have been screened.

4This S-closed view might be unrealistic in practice. If the correct structure is not in S, t is the structure closest in
Kullback–Leibler divergence to the true structure.
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which is the posterior expectation of the ratio of the prior distributions of � for the two models, s
and t , under the correct structure specification γ t . This is a convenient representation, as we only
have to consider the pseudoposterior distribution under the correct network structure. Observe that
this representation also holdswhen the full Ising likelihood is used, except that in the latter case the
Bayes factor BFst is expressed as the expected prior oddsw.r.t the posterior distribution and not the
pseudoposterior distribution. For a fixed network of p variables, the posterior distribution can be
accurately approximated with a normal distribution as n becomes large (see, for instance, Miller,
2019, Theorem 6.2), and the same holds for the pseudoposterior distribution (see, for instance,
Miller, 2019, Theorems 3.2 and 7.3). To come to a workable expression of the Bayes factor we
approximate the pseudoposterior with a normal distribution (i.e., a Laplace approximation), which
leads to the following first-order approximation of the Bayes factor (Tierney, Kass, & Kadane,
1989, Eq. 2.6),

BF∗
st =

p−1∏
i=1

p∏
j=i+1

p(σ̂i j | γsi j )

p(σ̂i j | γti j )

[
1 + O(n−1)

]

≈
p−1∏
i=1

p∏
j=i+1

p(σ̂i j | γsi j )

p(σ̂i j | γti j )

=
p−1∏
i=1

p∏
j=i+1

(√
ν0

ν1
exp

(
σ̂ 2
i j

ν1 − ν0

2ν1ν0

))γsi j−γti j

(4)

where �̂ = [σ̂i j ] is the mode of p∗(�, μ | X, γ t ), or p(�, μ | X, γ t ) if the full Ising likelihood
is used. Tierney et al. (1989) show that the error of the first-order approximation—the rest term
O(n−1)—is of order 1/n. Since the pseudoposterior is consistent (c.f., Miller, 2019, Theorem
7.3), the Bayes factor using the pseudolikelihood and the full likelihood will converge to the same
number.

We will show next that the approximate Bayes factors BF∗
st , for s �= t , do not shrink to zero

with the three hyperparameters fixed, but do shrink to zero if ν0 shrinks to zero at a rate n−1. The
approximate Bayes factor comprises a product of the edge specific functions

fi j =
(√

ν0

ν1
exp

(
σ̂ 2
i j

ν1 − ν0

2ν1ν0

))γs, i j−γt , i j

≥ 0

which consists of two parts: The selection variables γs, i j and γt , i j that inform about the differences
in edge composition of structures s and t , and the function

√
ν0/ν1 exp

(
σ̂i j (ν1 − ν0)/2ν1ν0

)
that

weighs in the contribution of the pseudoposterior. The edge specific function fi j is equal to one if
the edge is present in both structures, or is absent from both structures, since then γt , i j −γs, i j = 0.
We therefore only have to consider what happens to the function fi j for cases where γs, i j �= γt , i j .

2.1.1. The Fixed Hyperparameter Case If γt , i j is equal to zero, and γs, i j is equal to one, the
correct value for the interaction parameter σi j is zero, and we observe that

fi j
n−→
√

ν0

ν1
,

which, even though it is smaller than one and signals a preference for structure t , does not converge
to zero as it should if the structure selection procedure would be consistent. If γt , i j is equal to
one, and γs, i j is equal to zero, on the other hand, such that |σi j | > 0, we observe that
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fi j
n−→
√

ν1

ν0
exp

(
−σ 2

i j
ν1 − ν0

2ν1ν0

)
,

which does not converge to zero either. In fact, itmay even signal a preference for the absence of the
edge in structure s. These two observations indicate that the Bayes factors BF∗

st do not converge to
zero, and thus, the posterior probability p(γ t | X) does not converge to one. In sum, the proposed
structure selection procedure is inconsistent in the case that the three hyperparameters are fixed.

2.1.2. The Shrinking Hyperparameter Case We next consider the case where ν0 shrinks at a
rate n−1 and define ν0 = ν1ξ

n . Here, ξ is a fixed (positive) penalty parameter that allows us some
flexibility to emphasize the distinction between the spike and slab components. If, in this case,
γt , i j is equal to one and γs, i j is equal to zero, the function fi j is equal to

fi j =
√
n

ξ
exp

(
−σ̂ 2

i j
n − ξ

2ν1ξ

)
= exp

(
1

2
log

(
n

ξ

)
− σ̂ 2

i j
n − ξ

2ν1ξ

)
,

where the first factor tends to infinity, and the second factor tends to zero. Because the second
factor tends to zero faster than the first factor tends to infinity, their product, again, tends to zero,
as it should. On the other hand, if γt , i j is equal to zero, the function fi j becomes

√
ξ

n
exp

(
σ̂ 2
i j
n − ξ

2ν1ξ

)
,

where the first factor tends to zero, and the second factor tends to one because
√
nσ̂i j tends to

zero (σ̂ = Op(1/
√
n)). Therefore, fi j tends to zero, as it should. In sum, the structure selection

procedure is consistent if ν0 shrinks at a rate of n−1.

3. Objective Prior Specification

We follow the results in the previous section, and set the spike variance to ν0 = ν1ξ
n , which

leaves the specification of the slab variance ν1, the penalty parameter ξ , and the prior inclusion
probability to complete our Bayesian model blueprint. We first discuss a default setting for the
spike and slab variances, i.e., the specification of ν1 and ξ . We then discuss two options for the
prior inclusion probabilities that we adopt in this paper.

3.1. Specification of the Spike and Slab Variances

One approach to find default values for the slab variance is to set it equal to n times the inverse
of the Fisher information matrix I�(�̂, μ̂)−1, which approximately gives the information about
σi j in a single observation, hence the name unit information (Kass &Wasserman, 1995). Kass and
Wasserman 1995 showed that the logarithm of the Bayes factor—pitting one network structure
against another—is approximately equal to the difference in Bayesian information criteria (BIC;
Schwarz, 1978) of the two structures when we use unit information priors (see also, Raftery, 1999;
Wagenmakers, 2007, for details). This result, combined with the fact that unit information priors
can be automatically selected, makes them a popular approach in Bayesian variable selection. We
follow the approach of Ntzoufras (2009), who achieved good results by setting the off-diagonal
elements of I−1 to zero in the prior specification. This renders the spike-and-slab prior densities
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independent, and sets the slab variance to ν1, i j = nVar(σ̂i j ).5 If we set the slab variance equal
to the unit information, the spike variance is equal to ν0, i j = ξ Var(σ̂i j ). Our structure selection
procedure will still consistently select the correct structure, since ν0, i j shrinks with rate n because
Var(σ̂i j ) does (e.g., Miller, 2019, Section 5.2).

The spike-and-slab parameters are specified up to the constant ξ , which acts as a penalty
parameter on the inclusion and exclusion of effects in the spike-and-slab prior. Larger values for
ξ increase the overlap between the spike-and-slab components and consequently, make it more
likely that an effect is excluded, i.e., ends up in the spike component. It is the opposite case for
smaller values. It is thus absolutely crucial to find a good value for this penalty.Wewish to specify
the tuning parameter ξ such that the performance of our edge selection approach is similar to that
of eLasso. To that aim, we introduce an automated procedure to specify the tuning parameter
such that the corresponding continuous spike-and-slab setup is geared towards achieving a high
specificity, or low type-1 error, similar to eLasso. The idea that we pursue here is to set the
intersection of the spike-and-slab components equal to an approximate credible interval about
zero. The left panel in Fig. 1 illustrates the idea.

George and McCulloch (1993) show that the two densities intersect at

|δ| =

√√√√√ν1

log
(

ν1
ν0

)

ν1
ν0

− 1
.

If we fill in our definitions for the spike and slab variances, the expression for |δ| boils down to

|δ| =

√√√√√nVar(σ̂i j )
log
(
n
ξ

)

n
ξ

− 1
, (5)

Where George and McCulloch (1993) discuss the subjective specification of δ, we explore its
automatic specification by matching it to the approximate credible interval. We first determine the
range of parameter values (−|δ|, |δ|) considered to be insignificant, and then select the value of ξ

such that the spike and slab components intersect at ±|δ|. When n is sufficiently large, the pseu-
doposterior distribution of an association parameter σi j is approximately normal (Miller, 2019),
and Var(σ̂i j ) is its approximate variance. Thus, (σ̂i j ± 3

√
Var(σ̂i j )) offers an approximate 99, 7%

credible interval about the posterior mean σ̂i j . To set the variance of the spike distribution for
negligible effects, it is opportune to use the interval (± 3

√
Var(σ̂i j )), which offers an approximate

credible interval about zero, i.e., the credible interval assuming that the edge i– j should, in fact,
be excluded from the model. Equating the expression for |δ| on the right side of Eq. (5) with
3
√
Var(σ̂i j ) gives:

√√√√√n
log
(
n
ξ

)

n
ξ

− 1
= 3, (6)

5We estimateVar(σ̂i j ) by setting it to the diagonal of the Fisher informationmatrix for the pseudolikelihood, evaluated
at the maximum pseudolikelihood estimate, c.f., “Appendix 7”. Alternatively, one could approximate the variance by
running a Gibbs sampling approach using non-informative priors. This, however, would take considerably more time in
practice.
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Figure 1.
The left panel illustrates the spike-and-slab prior distribution and it’s intersection point δ. The right panel illustrates the
relationship between n and the ξδ value equating the intersection points ±δ to three different credible intervals.

which we can solve numerically to obtain a value for ξ . Observe that, by specifying δ in this
particular way, the penalty parameter ξ depends on the sample size but not the data or network’s
size. We denote the value of the penalty parameter that matches the intersection δ to the credible
interval with ξδ . The relation between ξδ and sample size is illustrated in the right panel of Fig. 1.

3.2. Specification of the Prior Inclusion Probability

Assuming that the correct structure is in S, i.e., the S-closed view of structure selection, a
default choice to express ignorance or indifference between the structures in S is to stipulate a
uniform prior distribution over the topologies in S:

p(γ s) = 1

|S| , for γ s ∈ S,

where |S| denotes the cardinality of the structure space. Here, the uniform prior is equal to

p(γ s) = 2− 1
2 p (p−1)

,

and we can impose this prior on the structure space by fixing the prior inclusion probability θ in
Eq. (3) to 1

2 . However, the uniform prior on the structure space does not take into account structural
features of the models under consideration, such as sparsity. Various priors have been proposed as
an alternative to accommodate these features (see Consonni et al., 2018, Section 3.6, for a detailed
discussion). One particular issue inherent in structure comparisons is multiplicity, and Scott and
Berger (2010) argue that the prior distribution should account for this. Consonni et al. (2018)
show that stipulating a hyperprior on the prior inclusion probability θ accounts for multiplicity.
In particular, they showed that the uniform hyperprior Beta(1, 1) leads to the following prior on
the structure space

p(γ s) = p(γ s | γs,++ = c) × p(γs,++ = c) = 1(p
2

)+ 1
× 1( (p2)

γs,++
) ,

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:51:07, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


58 PSYCHOMETRIKA

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Structure complexity

P
rio

r p
ro

ba
bi

lit
y

Uniform
Hierarchical

0 10 20 30 40

2e−14

0.01
0.2

1

Structure complexity

P
rio

r p
ro

ba
bi

lit
y

Uniform
Hierarchical

Figure 2.
The left panel illustrates how the two prior distributions assign probabilities to structure complexity. The right panel
illustrates how the two prior distributions assign probabilities to different structures with the same complexity. The prior
probabilities in the right panel are shown on a log scale. For both panels, p = 10.

where c denotes the complexity of structures, with c ∈ (0, 1, . . . ,
(p
2

)
), i.e., the number of edges

in the topology. Thus, instead of a uniform prior on the structure space, the hierarchical prior
stipulates a uniform prior on the structure’s complexity. As a result, it favors models that have a
relatively extreme level of complexity, e.g., are densely connected or are sparsely connected.

Figure 2 illustrates the different probabilities that the two distributions assign to structure
complexity, a priori, and the probabilities they assign to structures that have the same complexity
(shown on a log scale). The left panel of Fig. 2 shows that whereas the hierarchical prior is uniform
on the complexity, the uniform prior is not and favors structures that have approximately half of the
available edges. However, the right panel of Fig. 2 illustrates that the hierarchical prior emphasizes
structures at the extremes of complexity. We will adopt both the uniform prior distribution on the
structure space and the uniform prior distribution on the structure’s complexity, and analyze them
further in the section on numerical illustrations. Based on Fig. 2, however, we expect that for
small samples, the hierarchical prior will place much emphasis on extremely sparse structures,
since our penalty selection approach already gears toward sparse solutions.

4. Bayesian Edge Screening and Structure Selection for the Ising model

George and McCulloch (1993) proposed stochastic search variable selection (SSVS) as a
principled approach to Bayesian variable selection. SSVS uses the spike-and-slab prior specifica-
tion to emphasize the posterior probability of promising structures and Gibbs sampling to extract
this information from the data at hand. The Gibbs sampler is a powerful tool for the exploration
of the posterior distribution of potential network structures. However, since the structure space S
can be quite large in practical settings, it might take a while to sufficiently explore the posterior
distribution and produce reliable estimates of the posterior structure probabilities. We, therefore,
wish to prune the structure space by selecting the promising edges before running the Gibbs
sampler. We explore an EM variable selection approach for this initial edge screening and then,
follow-up with an SSVS approach for structure selection on the set of promising edges.

4.1. Edge Screening with EM Variable Selection

Ročková and George (2014) were the first to propose the use of EM for Bayesian variable
selection, in combination with the spike-and-slab prior specification of George and McCulloch
(1993), to covariate selection of linear models. The EM algorithm aims to find the posterior mode

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:51:07, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


M. MARSMAN ET AL. 59

of the pseudoposterior distribution p∗(�, μ, θ | X) and does this by iteratively maximizing the
“complete data” pseudoposterior distribution p∗(�, μ, θ , γ | X), treating the selection variables
γ as missing or latent variables. The algorithm alternates between two steps. In the expectation
or E-step, we compute the expected log-pseudoposterior distribution, or Q-function,

Q
(
�, μ, θ | �k , θk

)
= E

(
ln p∗(�, μ, θ , γ | X)

∣∣ �k , θk
)

,

with respect to posterior distribution of the latent variables p(γ | �k , θk), where �k , and θk

denote the estimates in iteration k. The E-step is followed by a maximization or M-step in which
we find the values�k+1,μk+1 and θk+1 that maximize the Q-function. The two steps are repeated
until convergence.

The E-step of the EM algorithm involves expectations of the latent or missing variables, i.e.,
the vector of selection variables γ . Since the latent selection variables only operate in the spike-
and-slab prior distributions, the derivation of the E-step will follow the derivation of Ročková and
George (2014). For a complete treatment of EMVS, however, we include an analysis of both the
E-step and the M-step in “Appendix A”. “Appendix A” also includes details about estimating the
(asymptotic) posterior standard deviations from the EM output.

4.1.1. Edge Screening The EM algorithm that we outlined in the previous section identifies
a posterior mode (�̂, μ̂, θ̂ ), and we threshold the modal estimates to obtain a tightly matching
network structure γ̂ . The idea of Ročková and George (2014) that we pursue here is that "large"
interaction effect estimates define a set of promising edges, and we can thus prune edges that link
to "small" interaction effect estimates. We define the structure γ̂ that closely matches the modal
estimates (�̂, μ̂, θ̂ ) to be the most probable structure γ given the parameter values (�, μ, θ) =
(�̂, μ̂, θ̂ ), i.e.,

γ̂ = argmax
γ

p(γ | �̂, θ̂ ). (7)

For our Bayesian model, the posterior inclusion probabilities for the different edges are condi-
tionally independent, and the posterior inclusion probability for an edge i– j is given by

p(γi j | σ̂i j , θ̂ ) = p(σ̂i j | γi j ) p(γi j | θ̂ )∑

i j=γi j

p(σ̂i j | γi j ) p(γi j | θ̂ )
.

Thus, we obtain γ̂ from maximizing the inclusion and exclusion probabilities in Eq. (7), for each
of the

(p
2

)
edges, which means that

γ̂i j = 1 ⇐⇒ p(γi j = 1 | σ̂i j , θ̂ ) ≥ 0.5,

and we prune the edges for which p(γi j = 0 | σ̂i j , θ̂ ) ≥ 0.5. This edge selection and pruning
approach leads to a structure γ that is a median probability model, as defined by Barbieri and
Berger (2004) to be the structure comprising edges that have a posterior inclusion probability at
or above a half.6 Ročková and George (2014) show that instead of selecting the structure γ̂ based

6With the caveat that Barbieri and Berger (2004) define the posterior inclusion probability of an edge i– j to be the
aggregate of the posterior probabilities of structures that include the edge

p(γi j = 1 | X) =
∑

γ s :γi j=1

p(γ s | X)

where we define the posterior inclusion probabilities locally.
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on the posterior inclusion probabilities, we may equivalently select it through thresholding the
values of σ̂i j . Specifically,

γ̂i j = 1 ⇐⇒ |σ̂i j | ≥
√√√√2 log

(
1 − θ̂

θ̂

√
ν1

ν0

)
ν1ν0

ν1 − ν0
=
√√√√2 log

(
1 − θ̂

θ̂

√
n

ξ

)
nVar(σ̂i j )ξ

n − ξ
.

(8)
Such a connection between the magnitude of the modal estimates σ̂i j and promising edges i– j ,
we envisioned from the beginning. Observe that, since nVar(σ̂i j ) is the unit information, i.e., it is a
constant, the right-most factor shrinks with n. Moreover, it shrinks much faster than that log(

√
n)

tends to infinity, such that the threshold moves to smaller values as n increase, as it should.

4.2. Structure Selection with SSVS

The EMVS approach enables us to screen for a promising set of edges by locating a local
posterior mode and pruning edges associated with small modal parameters. The structure γ ′ that
comes out of this pruned edge set is a local median probability structure. We now wish to directly
explore p∗(γ | X), the pseudoposterior distribution of network structures, to find out if γ ′ is also
the global median probability model, and if there are other promising structures for the data at
hand. We do this using the stochastic search and variable selection (SSVS) approach of George
and McCulloch (1993), which essentially combines the spike-and-slab prior setup with Gibbs
sampling to produce a sequence

γ (0), γ (1), γ (2), . . . ,

which converges in distribution to samples from γ ∼ p(γ | X). We then shift our focus to
structures γ s that occur frequently in the generated sequence, which are the structures that have
a high posterior probability. We cut down the potentially large number of network structures that
the Gibbs sampler needs to explore by applying SSVS only to the edges screened by EMVS.7

The Gibbs sampler operates by iteratively simulating values from the conditional distribu-
tions of (a subset of) the model parameters given the (other parameters and the) observed data.
Unfortunately for us, the full-conditional distributions of our Bayesian model are not available
in closed form, as the normal prior distributions that we have specified are not conjugate to the
pseudolikelihood. However, since the pseudolikelihood comprises a sequence of logistic regres-
sions, we can use the data-augmentation strategy that was proposed by Polson, Scott, and Windle
(2013a) to facilitate a simple Gibbs sampling approach, with full-conditionals that are easy to

7 If we use S∗ to denote the pruned structure space, then S∗ ⊂ S. This implies that the absolute magnitude of the
posterior structure probability will be higher when calculated over the pruned space:

p(X | γ ) p(γ )∑
γ∈S∗ p(X | γ ) p(γ )

≥ p(X | γ ) p(γ )∑
γ∈S p(X | γ ) p(γ )

,

since there are less terms in the denominator of the ratio on the left. But, for any two structures γ i and γ j in the pruned
space S∗, the posterior odds are

p(γ i | X)

p(γ i | X)
= p(X | γ i )p(γ i )

p(X | γ j )p(γ j )
,

in which the denominator does not play a role. Thus, even though the absolute values of the posterior probabilities for
specific structures differ between the pruned and the full structure space, their relative probabilities do not. The upside is
that after pruning the edge set, the remaining model probabilities are estimated with increased precision. This result does
assume that the prior on the topologies is unaffected by pruning, i.e., it is formulated on the full structure space S.
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sample from. A similar approach to the Isingmodel’s pseudolikelihoodwas considered byDonner
and Opper (2017). Here, we extend this idea to SSVS for the Ising model.

Polson et al. (2013a) proposed an ingenious data augmentation strategy based on the identity

(
eψ
)a

(
1 + eψ

)b = 1

2b
e(a−b/2) ψ

∫
R+

e− 1
2ω ψ2

p(ω) dω,

where p(ω) is a Pólya–Gamma distribution. A key aspect of this augmentation strategy is that
it relates the logistic function of a parameter ψ on the left to something that is proportional to
a normal distribution on the right. Since our prior distributions are all (conditionally) normal,
and the normal distribution is its own conjugate, the data-augmented full-conditionals will all be
normal. To wit, applied to the pseudolikelihood in Eq. (2), we find

p∏
i=1

p∗(xi | x(i), μ, �)

= 1

2p

p∏
i=1

∫
R+

e
[xi−1/2]

[
μi+∑ j �=i σi j x j

]
− 1

2ωi

[
μi+∑ j �=i σi j x j

]2
p(ωi ) dωi ,

and with normal prior distributions for the pseudolikelihoods parameters we readily find normal
full-conditional distributionswhenwe condition on the augmented variablesω. Another important
aspect of the augmentation strategy is that the conditional distribution of the augmented variables
ω given the pseudolikelihood parameters and the observed data X is again a Pólya-Gamma dis-
tribution. Polson et al. (2013a) and Windle, Polson, and Scott (2014) provide efficient rejection
algorithms to simulate from this distribution.

With the Pólya-Gamma augmentation strategy in place, the Gibbs sampler iterates between
five steps, which are detailed in “Appendix C”. The Gibbs output allows us to estimate a number
of important quantities. For example, the posterior structure probabilities can be estimated as

p(γ s | X) ≈ 1

R

R∑
r=1

I (γ (r) = γ s),

where I (·) is an indicator function that is equal to one if its conditions are satisfied and equal to
zero otherwise, and the (global) posterior inclusion probabilities as,

p(γi j = 1 | X) ≈ 1

R

R∑
r=1

γ
(r)
i j ,

were γ (r), for r = 1, , . . . , R, denotes R iterates of the Gibbs sampler. In a similar way, one can
compute quantities related to the model-averaged posterior distribution of the model parameters,
e.g.,

p(μ, � | X) =
∑
γ s∈S

p(μ, � | γ s , X)p(γ s | X),

or any of its marginals. In sum, the Gibbs sampler grants us the full Bayesian experience.
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5. Numerical Illustrations

In this section, we will focus on a comparison of our procedures with eLasso. A comparison
between our edge screening and structure selection approaches and the approach of Pensar et al.
(2017)—as implemented in BDraph (R. Mohammadi &Wit, 2019)—can be found in the online
appendix. We have also included model selection for the multivariate probit model (e.g., Talhouk
et al., 2012)—as implemented in BGGM (Williams &Mulder, 2020b)—in that comparison. There
were some small variations, but overall the three different approaches performed very similar in
terms of edge detection.

5.1. Edge Screening on Simulated Data with Sparse Topologies

The eLasso approach of van Borkulo et al. (2014) is the most popular method for analyzing
Ising network models in psychology. We wish to find out how our EMVS approach stacks up
against eLasso, andwe, therefore, use the simulation setup of (van Borkulo et al. 2014) to compare
both methods. Specifically, we focus on the simulations that lead to their Table 2, where an Erdős
and Rényi (1960)model is used to generate underlying sparse topologies, and normal distributions
are used to simulate the model parameters.8 In these simulations, we vary π , the probability of
generating an edge between two variables, p, the number of variables, and n, the number of
observations and generate 100 datasets for each combination of values for π , p, and n.

We analyze the simulated datasets using eLasso, using the default settings implemented in the
IsingFit program (vanBorkulo, Epskamp,&Robitzsch, 2016), i.e., theAND-rule and anEBIC
penalty equal to 0.25. We also analyze the simulated datasets using EMVS in combination with
the ξδ method and the uniform and hierarchical specifications of the prior structure probabilities.
We follow van Borkulo et al. (2014) and express the quality of the estimated solution using its
sensitivity and specificity. Sensitivity is the proportion of present edges that are recovered by the
method,

SEN = True positive

True positive + False negative
,

i.e., the true positive rate. Specificity is equal to the proportion of absent edges that are correctly
recovered,

SPE = True negative

True negative + False positive
,

i.e., the true negative rate. For eLasso, edge inclusion refers to a nonzero association estimate
using the AND approach. For EMVS, it is taken to mean that the posterior inclusion probability
exceeds 0.5.

Table 1 shows the result of these simulations for the eLasso method in the column labelled
“eLasso” and are similar to the results reported in Table 2 in van Borkulo et al. (2014). The first
thing to note about these results is that eLasso has a high true negative rate across all simulations.
This was to be expected, as l1-regularization gears towards edge exclusions, which is why it
performs best in the sparse network settings considered here. Indeed, it’s specificity goes down as

8We follow the simulation setup of van Borkulo et al. (2014) and set the association parameters σi j equal to |Zi j |,
where the Zi j are independent normal random variables with mean zero and variance 0.25. The main effect parameters

μi are set to −|Zi |, where Zi is an independent normal random variable with mean σi+ = ∑p
j=1 σi j /2, with σi i = 0,

and variance σ 2
i+/36.
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Table 1.
Sensitivity and specificity, as a measure of performance of eLasso and EMVS using either a uniform (U) or hierarchical
prior (H), matching the spike and slab intersections to an approximate 99,7% credible interval.

n p π = 0.1 π = 0.2 π = 0.3
eLasso ξδ(U) ξδ(H) eLasso ξδ(U) ξδ(H) eLasso ξδ(U) ξδ(H)

100 10 SEN .264 .221 .044 .233 .251 .027 .218 .216 .032
SPE .997 .991 1.000 .994 .994 1.000 .993 .990 1.000

20 SEN .165 .240 .009 .171 .180 .004 .182 .114 .003
SPE .998 .991 1.000 .997 .992 1.000 .991 .993 1.000

30 SEN .151 .202 .002 .140 .118 .001 .142 .048 .000
SPE .999 .992 1.000 .995 .993 1.000 .979 .995 1.000

500 10 SEN .557 .608 .484 .593 .575 .504 .595 .529 .462
SPE .997 .996 1.000 .992 .994 1.000 .989 .996 .999

20 SEN .519 .558 .455 .542 .497 .388 .550 .411 .268
SPE .998 .996 1.000 .990 .997 1.000 .972 .996 1.000

30 SEN .520 .526 .380 .489 .388 .265 .368 .196 .091
SPE .998 .996 1.000 .985 .996 1.000 .954 .998 1.000

1,000 10 SEN .697 .730 .633 .675 .685 .639 .699 .681 .608
SPE .997 .997 1.000 .989 .996 1.000 .985 .996 .999

20 SEN .643 .680 .598 .676 .630 .565 .657 .545 .464
SPE .996 .996 1.000 .987 .997 1.000 .964 .997 .999

30 SEN .655 .645 .570 .635 .517 .449 .431 .298 .206
SPE .997 .997 1.000 .980 .997 1.000 .957 .997 1.000

2,000 10 SEN .783 .811 .727 .759 .807 .738 .789 .770 .735
SPE .998 .997 1.000 .995 .995 0.999 .984 .996 1.000

20 SEN .740 .790 .715 .784 .738 .697 .765 .657 .623
SPE .997 .996 1.000 .985 .996 .999 .960 .997 .999

30 SEN .748 .761 .700 .738 .665 .609 .598 .441 .353
SPE .996 .996 1.000 .976 .997 1.000 .940 .997 1.000

the networks become more densely connected (i.e., larger values of π ). The true positive rate of
eLasso is significantly worse than its specificity, especially for the smaller sample sizes. However,
the sensitivity increases with sample size, which underscores earlier results that a larger sample
size helps overcome the prior shrinkage effect of the lasso (e.g., Epskamp, Kruis, & Marsman,
2017).

Next, we consider the performance of EMVS. The results for EMVS when the penalty ξ is
set to ξδ , the penalty value for which the intersection of the spike and the slab components aligns
with the 99, 7% approximate credible interval, c.f. Eq. (6), are shown in the columns labeled
ξδ in Table 1. We analyzed the data using the uniform prior on the model space—ξδ (U)—and
with the hierarchical model—ξδ (H). The first striking result is that the performance of the ξδ

approach combined with a uniform prior on the structure space performs almost identical to
eLasso, making it a valuable Bayesian alternative to the classical eLasso approach. Observe that
the specificity equals the coverage probability of the credible interval for all but the smallest
sample size. Thus, as one might expect, the coverage probability specified dictates the method’s
type-1 error or specificity. The hierarchical prior on the structure space leads to an improvement
to the already high specificity. For the smaller sample sizes, however, the method’s sensitivity is
very low, suggesting that it is, perhaps, too conservative for settings with small sample sizes.
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5.2. Parameter Estimation on Simulated Data with Dense Topology

We continue with an illustration of the estimation of parameters and inclusion probabilities.
For this analysis, we simulate data for n = 20, 000 cases on a p = 15 variable network. The
main effects were simulated from a Uniform(−1, 1) distribution, and the matrix of associations
� was set to uuT, where u is a p-dimensional vector of Uniform(− 1

2 ,
1
2 ) variables, such that the

elements in � lie between − 1
4 and 1

4 and concentrate around zero. Observe that, in principle,
this is a densely connected network as all edges have a nonzero value, although most effects will
be very small and negligible. A second data set of n = 2, 000 cases was used to compare the
performance across different sample sizes.

Figure 3 shows the posterior mode estimates for the two sample sizes using a standard normal
prior distribution in Panels (a) and (b) and using our spike-and-slab setup, i.e., edge screening,
in Panels (c) and (d). Observe that the effects are relatively small, and thus, many observations
are needed to retrieve reasonable estimates (Panels (a) and (b)). We, therefore, cull considerably
more of the effects in the edge screening step for the smaller sample size than for the larger
sample size (white dots indicate culled associations in Panels (c) and (d)). The horizontal gray
lines in Panels (c) and (d) reveal the spike-and-slab intersections for the different associations
(there are 210 different lines, which all lie very close to each other), the thresholds from Eq. (8).
Effects that lie in between the two intersection points end up in the spike (not selected; white
dots); otherwise, they end up in the slab (selected; gray dots). Note that the intersections points lie
closer to each other for the larger sample size, as expected. Panels (e) and (f) show the maximum
pseudolikelihood estimates for eLasso, subject to the l1 constraint, which selects considerably
fewer effects for the larger sample size, and a substantial shrinkage effect on the associations.9

Figure 4 illustrates the various shrinkage effects in edge screening using EM and structure
selection using the Gibbs sampler. Panels (a) and (b), for example, show that the procedures
produce point estimates that are close to each other. Still, there is also variation between the two
methods, especially around the spike and slab intersection lines. Althoughwe did not show it here,
the posterior estimates from EM and the Gibbs sampler were identical when we used a standard
normal prior distribution instead of our spike-and-slab setup. These observations suggest that the
differences gleaned from Panels (a) and (b) come from the fact that the edge screening procedure
optimizes the vector of inclusion variables with EM while the structure selection procedure aver-
ages over them in the Gibbs sampler. These differences become even more apparent when we
compare the inclusion probabilities they estimate. Panels (c) and (d) show the inclusion probabil-
ities against the posterior mode estimates for the edge screening approach, and Panels (e) and (f)
show the inclusion probabilities against the posterior mean estimates for the structure selection
procedure. Whereas the inclusion probabilities lie close to zero or one for the EM approach,
they show a much smoother relation for the Gibbs sampling approach. The ability to estimate
inclusion probabilities that are close to one or zero is called separation, and it is clear that the
EM approach shows a better separation than the Gibbs approach. But the spike-and-slab Gibbs
sampling approach, i.e., SSVS, already shows excellent separation compared to other methods
(e.g., O’Hara & Sillanpää, 2009). Even though the edge screening approach shows better separa-

9In the sparse setting, one expects to detect approximately
√

n
log(p(p−1)/2) edges with Lasso given a penalty of

approximately
√

log(p(p−1)/2)
n . This translates to approximately 20 edges with 2, 000 observations and 60 with 20, 000

observations. In this simulation, we used a dense structure setup, a setup for which eLasso was not designed. The penalty
values selected by eLasso could be used to analyze the performance of eLasso in practical situations, where the lower

bound would be approximately
√

log(p(p−1)/2)
n . Here, the selected penalty values ranged between 0.0153 and 0.0319

with 2, 000 observations. These values range below the lower bound of 0.0482. With 20, 000 observations, we find values
ranging between 0.0057 and 0.0158, which also largely range below the lower bound of 0.0153. This indicates that eLasso
has difficulty with the non-sparse setting simulated here.
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(a) Standard normal prior (n = 2, 000).
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(b) Standard normal prior (n = 20, 000).
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(c) Edge screening (n = 2, 000).
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(d) Edge screening (n = 20, 000).

−0.2 0.0 0.1 0.2

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

True values

M
LE

 −
 e

La
ss

o

(e) ELasso (n = 2, 000).
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(f) ELasso (n = 20, 000).

Figure 3.
The posterior modes of the association parameters using a standard normal prior are shown in the top two panels, and
the posterior modes of the associations using our spike-and-slab prior setup, i.e., edge screening, are shown in the middle
two panels. The horizontal gray lines in (c) and (d) reveal the thresholds from Eq. (8). The bottom two panels show the
maximum pseudolikelihood estimates produced by eLasso. The dashed lines are the bisection lines.

tion, it is also more liberal, as it includes more effects into the model than the structure selection
procedure does. Panels (a) and (b) indicate these points in gray in Panels (a) and (b).

6. Network Analysis of Alcohol Use Disorder and Depression Data

For an empirical illustration of our Bayesian methods, we assess the relationship between
symptoms of alcohol use disorder (AUD) and major depressive disorder (MDD) using data from
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(a) Edge screening and structure selection estimates
(n = 2, 000).
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(b) Edge screening and structure selection estimates
(n = 20, 000).
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(c) Inclusion probabilities edge screening (n =
2, 000).
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(d) Inclusion probabilities edge screening (n =
20, 000).
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(e) Inclusion probabilities structure selection (n =
2, 000).
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(f) Inclusion probabilities structure selection (n =
20, 000).

Figure 4.
The top two panels show scatterplots of the posterior means and posterior modes of the association parameters that
were obtained from our structure selection and edge screening procedures, respectively. The gray points are points of
disagreement. The middle two panels show the edge screening inclusion probabilities and the bottom two panels the
structure selection inclusion probabilities. The dashed lines are the bisection lines.

the National Survey on Drug Use and Health (NSDUH; United States Department of Health and
Human Services, 2016). The NSDUH is an American population study on tobacco, alcohol, and
drug use, and mental health issues in the USA. The goal of the NSDUH is to provide accurate
estimates on current patterns of substance abuse and its consequences for mental health. The
survey is conducted in all 50 states, aiming at a sample of 70,000 individuals; participants have
to be above the age of 12 and are randomly selected based on household addresses. We focus on
the data on alcohol use and depression obtained in 2014.

The 2014 data comprises 55,271 participants. We exclude participants below the age of 18,
that never drank alcohol, or that did not drink alcohol on more than six occasions in the past year.
The final data analyzed here comprises 26,571 participants.

We included the seven items related to the DSM-V (American Psychiatric Association, 2013)
criteria for AUD, and the nine symptoms in the NSDUH survey data comprising the DSM-V
criteria for MDD in our analysis. The NSDUH derives the MDD symptoms from survey items
formulated in a skip-structure. In this setup, participants are allowed to skip certain items based on
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the answers they provide. Therefore, some specifics of symptoms are not assessed for participants,
which may cause more absence scores for symptoms or problems than is the case.

In our analyses below, we first screen the network for promising edges, and then select
plausible structures from the structure space instantiated by the set of promising edges. We will
also perform structure selection without this initial pruning to illustrate the necessity of the edge
screening step.

6.1. Edge Screening

In total, there were p = 16 variables, and
(16
2

) = 120 associations or possible edges to
consider. We ran the edge screening procedure using EMVS on the selected NSDUH data. The
EMVS setup with a uniform prior on the structure space selected the same edges as the EMVS
setup with a uniform prior on structure complexity. We continue here using the results from the
former. The edge screening procedure identified 62 promising edges, pruning almost half of the
available connections. Edge screening using a uniform prior distribution on structure complexity
gave the same results. The eLassomethod identified 61 edges, three ofwhichwere not identified by
our edge screening procedure. There were four edges identified by our edge screening procedure,
that were not identified by eLasso. Figure 5a shows the network generated by the screened edges,
where blue edges constitute positive associations, and red edges constitute negative associations.

We glean several important observations from Fig. 5a. First, with 33 out of
(9
2

) = 36 possible
connections between its nine symptoms, MDD appears to be densely connected. This result may
be due, in part, to the skip structure that underlies the NSDUH assessment of MDD symptoms.
However, it is in linewith other results aboutMDDsymptoms in the general population (e.g., Caspi
et al., 2014). Second, with 20 out

(7
2

) = 21 possible connections between its seven symptoms,
AUD also appears to be densely connected. The estimated associations are less strong than with
MDD, which may be due to the skip structure that underlies the assessment of MDD symptoms.
Third, there are relatively few estimated connections between the two disorders. Fourth, our edge
screening procedure identified a negative association between depressed mood and withdrawal
symptoms. Negative associations are scarce in cross-sectional analyses, such as the one reported
here.

6.2. Structure Selection

We identified 62 promising edges with our screening procedure, which generates a local
median probability structure (LMS, c.f. Fig. 5a). We now wish to find out what the plausible
structures are for the data at hand and how the LMS in Fig. 5a relates to the global median
probability structure (GMS), i.e., the structure with edges that have marginal posterior inclusion
probabilities

p(γi j = 1 | X) =
∑

γ s :γi j=1

p(γ s | X) ≥ 1

2
.

Barbieri and Berger (2004) showed that this GMS has, in general, excellent predictive properties.
We again use the uniform prior on the structure space, which is consistent with the edge screening
results shown above.

We ran the Gibbs sampler for 100, 000 iterations, which visited 62 out of 266 ≈ 7e19 possible
structures. Pitting the visited structures against the most frequently visited structure using the
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Bayes factor,10

BF1s = p(γ 1 | X)

p(γ s | X)
= p∗(X | γ 1)

p∗(X | γ s)
,

where γ 1 denotes the most frequently visited model, we identified three structures for which the
most visited structure was less than ten times as plausible. A Bayes factor BF1s of ten or greater is
often interpreted to provide strong evidence in favor of γ 1 (see, for instance Jeffreys, 1961; Lee &
Wagenmakers, 2013; Wagenmakers, Love, et al., 2018). The structures for which BF1s was less
than ten, and their estimated posterior structure probabilities, are shown in panels (b), (c) and (d)
in Fig. 5. The three structures only differed in the relations between the two disorders.

In Fig. 6a, we plot the posterior inclusion probabilities obtained from the edge screening
analysis against those obtained from the structure selection analysis on the pruned structure
space. We glean two things from this figure. First, the local inclusion probabilities are at the
extremes, i.e., the values zero and one, whereas the global inclusion probabilities show a broader
range of values. This difference in separation was also observed in the analysis of simulated data
in Fig. 4. The bottom left corner comprises culled edges that have a zero probability of inclusion.
Second, there is a great agreement about which edges are or are not in the median probability
structure. The LMS and GMS differed in only one edge (indicated in white; points of agreement
are in gray). In Fig. 8, we plot the GMS and a difference plot, which reveals the differences
between the LMS and GMS (red edges indicating edges that are in the LMS, but not the GMS).
Figure 5e shows that the negative association between nodes four and eight is not in the GMS
(p(γ4,8 = 1 | X) = .101). Thus, the LMS produced by our edge screening approach (c.f., Fig. 5a)
is an excellent approximation to the GMS identified on the pruned space (c.f., Figs. 5e and 5f).
Similar to our simulated example, the edge screening procedure proved to be more liberal than
the structure selection approach, i.e., more edges were included in the LMS than in the GMS.

6.2.1. ParameterUncertainty Oneof themain benefits of using aBayesian approach to estimate
the network is that it provides a natural framework for quantifying parameter uncertainty.We have
two ways to express this uncertainty. The first is the asymptotic posterior distribution based on
EM output, which is the posterior distribution associated with the modal structure γ̂ = E(γ | �̂).
This is thus a conditional posterior distribution. The second is the model-averaged posterior
distribution

p(� | X) =
∑
γ

p(� | X, γ )p(γ | X)

that can be estimated from the Gibbs sampler’s output.
The model-averaged posterior distribution of the network parameters incorporates both the

uncertainty that is associated with selecting a structure from the collection of possible structures,

10For the hierarchical setup, we have to include the prior structure probabilities in this equation:

BF1s = p(γ 1 | X)

p(γ s | X)
× p(γ s )

p(γ 1)
= p∗(X | γ 1)

p∗(X | γ s )

where p(γ s ) is the beta-binomial distribution

( (p
2

)
γs, ++

)
B
(
γs, ++ + α, ,

(p
2

)− γs, ++ + β
)

B (α, , β)
,

with α = β = 1.
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Figure 5.
Edge screening and structure selection for NSDUH data. a indicates the network generated by the promising edges
identified by edge screening; the local median probability structure. b–d indicate the three (most) plausible structures
identified by structure selection on the pruned space. e indicates the global median probability structure, and f indicates the
difference between the two median probability structures. The network plots are produced using the R package qgraph
(Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012).
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Figure 6.
Plots of the local posterior inclusion probabilities of edges against the global posterior inclusion probabilities for the
pruned space in (a) and the full structure space in (b). The dashed lines are the bisection lines.

and the uncertainty that is associated with the parameters of the individual structures. In this
way, the model-averaged posterior distributions offer robust estimates of the network parameters
and their uncertainty. Since the model-averaged posterior embraces both sources of uncertainty,
the posterior variance of a model-averaged quantity tends to be larger than that of a conditional
posterior (i.e., conditioning on a specific structure selected), on average.11 For some parameters,
this does not lead to striking differences, as Fig. 7a illustrates for one of the associations in the
NSDUH data example. In some occasions, however, single-model inference leads us to put faith
in a model that assumes parameter values that are not supported by other plausible models. Figure
7b is an illustration of this.

The illustrations above underscore the fact that model-averaging leads to more robust infer-
ence on the model parameters than single-model inference (e.g., the output of rbinnet’s Edge
Screening procedure or the output from IsingFit). A benefit of using the Gibbs sampler to
estimate the model-averaged posterior distributions is that we can use it’s output to construct
model-averaged posterior distributions of other measures of interest. For example, Huth, Luigjes,
Marsman, Goudriaan, and van Holst (in press) recently used the Gibbs output to estimate the
model-averaged posterior distributions of node centrality measures.

6.3. Structure Selection Without Pruning

To analyze the benefit of our two-step procedure, with edge selection preceding structure
selection to prune the structure space, we performed a structure selection analysis without pruning
the structure space.We ran theGibbs sampler for 100, 000 iterations, starting at the posteriormode,
which visited 39, 885 out of 2120 ≈ 1e36 possible structures. This result immediately underscores
the importance of pruning the structure space before structure selection. The posterior structure
probabilities of such a large collection of models cannot be estimated with great precision in
a reasonable amount of time. Pitting the visited structures against the most frequently visited
structure using the Bayes factor identified 52 plausible models. Two questions arise. The first
question is about identifying the GMS and how it fares against the LMS identified with edge

11From the law of total variance: Var(� | X) ≥ E(Var(� | X, �)).
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Figure 7.
Estimated posterior distributions for two association parameters in the NSDUH example.We plot the asymptotic posterior
distributions (i.e., the normal approximations) based on the EM edge screening output in gray, and the model-averaged
posterior distribution based on Gibbs sampling in black. The density was estimated using the logspline R package
(Kooperberg, 2019). The gray dot reflects the estimated posterior medians. The 95% highest posterior density intervals
on top were estimated using the HDInterval R package (Meredith & Kruschke, 2020).

screening. Second, we wish to determine how the three previously identified structures stack up
against the 39, 885 visited structures in the structure selection on the full structure space.

In Fig. 6b, we plot the posterior inclusion probabilities obtained from the edge screening
analysis against those obtained from the structure selection analysis on the full structure space.
As before, the local inclusion probabilities are mostly located at the extreme ends of zero and one,
whereas the global inclusion probabilities are more variable. This difference is emphasized in the
bottom left corner of Fig. 6b, since the previously culled edges now received nonzero probabilities.
However, Fig. 6b also reveals that there is great agreement about which edges are or are not in
the median probability structure. The LMS and GMS on the full structure space differed in three
edges.

In Fig. 8, we plot the GMS from the full space and a difference plot. Figure 8b shows that,
as before with the pruned space, the negative association between nodes four and eight is not in
the GMS (p(γ4,8 = 1 | X) = .487). The edge between nodes four and twelve was also not in
the second plausible structure observed before (c.f. Fig. 5c; p(γ4,12 = 1 | X) = .394). The edge
between nodes five and sixteen, however, was not screened before (p(γ5,16 = 1 | X) = .491).
In sum, the LMS produced by our edge screening approach (c.f., Fig. 5a) served as a good
approximation to the GMS identified on the pruned space (c.f., Figs. 5e and 5f) and on the full
space (c.f., Figs. 8a and 8b).

TheGibbs sampler on the full structure spacevisited 39, 885 structures.Of these 39, 885 struc-
tures, 75 were visited between 100 and 1, 450 times, indicating posterior probabilities between
.0008 and .015. The remaining 39, 785 structures were visited less than 100 times, indicating
a posterior probability of less than .0008. However, in total, the probabilities of these 39, 785
structures added up to .762. Thus, structure selection on the full structure space wastes valuable
computational efforts on estimating insignificant structures. This is a prime example of dilution
(George, 1999), and once more underscores the importance of pruning the structure space before
performing structure selection. The posterior probabilities of the three structures identified ear-
lier were .008, .015 and .008, and with that they were the 7th, 1st and 6th most visited models,
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Figure 8.
Application of Structure Selection to NSDUH data on the full structure space. a indicates the global median probability
structure on the full structure space, and b indicates the difference between the local and global median probability
structures. See text for details. The network plots are produced using the R package qgraph (Epskamp et al., 2012).

respectively. Nevertheless, given the vast amount of visited structures and the tiny probabilities
associated with it, their estimates are highly uncertain.

7. Discussion

In this paper, we have introduced a novel objective spike-and-slab approach for structure
selection for the Ising model, and we have illustrated the full suite of Bayesian tools using
simulated and empirical data. The empirical analysis allowed us to underscore the importance
of trimming the structure space before its exploration, and that edge screening is capable of
identifying relevant edges. The default specification of the spike-and-slab variances resulted in
a selection method with consistently high specificity in our simulations, i.e., a low type-1 error
rate in edge detection. Posterior estimates of the parameters are easy to obtain for both edge
screening and structure selection procedures. Our structure selection procedure opened up the
full spectrum of Bayesian tools, and, when paired with edge screening, it quickly zoomed in
on plausible structures and promising effects. In sum, we have presented a complete Bayesian
methodology for structure determination for the Ising model.

A caveat in our suite of Bayesian tools is the Bayes factor comparing two specific topologies.
In principle, we can compute the Bayes factor from the posterior structure probabilities obtained
from our structure selection procedure, but only if the Gibbs sampler visited the two structures
under scrutiny. However, there is no guarantee that the Gibbs sampler visits the two structures, and
even if the Gibbs sampler visits them, their estimated posterior probabilities can be uncertain. We
need a more dedicated approach to estimate the Bayes factor if we wish to compare two particular
structures of interest. Dedicated procedures have been developed for GGMs (e.g., Williams &
Mulder, 2020a; Williams, Rast, Pericchi, & Mulder, 2020) and implemented in the R-package
BGGM (Williams & Mulder, 2020b). However, these procedures have not yet been developed for
the Ising model. We believe that the Laplace approximation that we have used in the paper will
be a good starting point for computing the marginal likelihoods. Another option would be the
Bridge sampler (Gronau et al., 2017; Meng &Wong, 1996), which fits seamlessly with our Gibbs
sampling approach.
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In practice, however, we often do not have specific structures that we wish to compare,
while we do have hypotheses about entire collections of structures. As an example, consider the
hypothesisH1 that a particular edge should be included in the network. This hypothesis spans the
collection of all structures that include the edge. The posterior plausibility forH1 is therefore the
collective plausibility of all structures in the hypothesised collection:

p(H1 | X) =
∑

γ s :γi j=1

p(γ s | X),

i.e., the edge-inclusion probability. The posterior plausibility for the complementary hypothesis
H0 of edge exclusion is p(H0 | X) = 1 − p(H1 | X). The ratios of the prior and posterior
plausibility of these two competing hypotheses then determine the edge-inclusion Bayes factor.12

Crucially, the edge-inclusion Bayes factor can quantify the evidence for H1—edge inclusion—
and H0—edge-exclusion (Jeffreys, 1961; Wagenmakers, Marsman, et al., 2018). Moreover, the
Bayes factor can tease apart the evidence of absence (i.e., edge-exclusion) from the absence of
evidence.We therefore believe that the edge-inclusion Bayes factor is a valuable tool for analyzing
psychological networks. The methods advocated in this paper—implemented in the R package
rbinnet—can be used to estimate the edge-inclusion Bayes factors. Huth et al. (in press)
recently used it to estimate the evidence for in- and exclusion of edges in networks of alcohol
abuse disorder symptoms.

In a recent preprint, Bhattacharyya and Atchade (henceforth BA; 2019) also proposed a con-
tinuous spike-and-slab edge selection approach for the Ising model using the pseudolikelihood.
The two methods were designed with a different focus, however. Whereas BA focused on net-
works with many variables, we focused on psychological networks that are relatively small in
comparison. As a result, the two approaches differ in several key aspects that make our approach
more appealing to analyze psychological networks. For example, BA did not trim the structure
space before exploring it with a Gibbs sampler. Our empirical example illustrated why we believe
that this is a bad idea. At the same time, we addressed some outstanding issues in this paper that
BA left open. For example, BA analyzed the p full-conditionals in Eq. (2) in isolation, which pro-
vided them an opportunity for fast parallel processing. However, this also forced them to stipulate
two independent prior distributions on each focal parameter, which means that they ended up with
two posterior distributions for each association. Unfortunately, BA provided no principled solu-
tion for combining these estimates for either structure selection or parameter estimation. Another
issue is that their spike-and-slab approach required the specification of tuning parameters, but
they offered no guidance or automated procedure for their specification. In sum, our method (i)
offers an objective specification of the prior distributions that lead to sensible answers, (ii) trims
the structure space to circumvent issues related to dilution, and (iii) allows for a meaningful inter-
pretation of the estimated posteriors. Despite these crucial differences, however, the approach
of BA is broader than ours, as they also analyzed networks of polytomous variables, while we
exclusively focus on the binary case in this paper.

Our specification of the hyperparameters stipulates a mixture of two unit information priors,
one fixed and one shrinking, that a priori match an approximate credible interval. We chose this
setup to mimic the eLasso approach of van Borkulo et al. (2014) and aimed for high specificity.
However, researchers might have a different aim and wish to have methods available that have
a higher sensitivity (e.g., see the considerations in Epskamp et al., 2017) or that aim for a low

12The structure selection approach advocated in this paper offers unbiased estimates of these posterior probabilities
and can be used to compute the edge-inclusion Bayes factor. However, as mentioned in Footnote 7, the edge screening
step might inflate some of the involved probabilities, so we advocate not to use edge screening when the aim is to compute
the posterior plausibility of H1 and H0. More research is needed to investigate the impact of edge screening on the
edge-inclusion Bayes factor.
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false discovery rate instead (e.g., Storey, 2003). In principle, penalty tuning procedures and prior
structure probabilities could be tailored to achieve different goals. For example, we could adopt the
eLasso approach and select the penalty ξ that minimizes the Bayesian information criterion (BIC;
Schwarz, 1978) or the extended BIC (EBICλ, where λ is a penalty on complexity; Chen & Chen,
2008) instead of matching the spike-and-slab intersections to credible intervals. These two criteria
usually achieve higher sensitivity than Lasso and naturally tie in with the two prior distributions
on the structure space that we have used here: A uniform prior distribution on the structure space
is consistent with BIC, and a uniform prior distribution on structure complexity is compatible
with EBIC1. Furthermore, several alternative prior distributions that account for multiple testing
have been discussed in the variable selection literature (e.g., Castillo, Schmidt-Hieber, & van der
Vaart, 2015; Womack, Fuentes, & Taylor-Rodriguez, 2015). In sum, there are plenty of options
to tailor the spike-and-slab approach to the specific needs of empirical researchers.

The prior specification options that we discussed above are geared towards situations inwhich
researchers have limited or only general ideas about the network they are analyzing. In principle,
researchers could have substantive ideas or knowledge about the network under scrutiny, and it is
opportune to use this information in its analysis. Prior information could be used to define δ (e.g.,
George &McCulloch, 1997) or it could guide the specification of the prior inclusion probabilities
of the network’s edges. A parameter’s sign is another common source of information since most
relations are usually positive in psychological applications (see Williams & Mulder, 2020a, for
an implementation of this idea for GGMs). Investigating how substantive knowledge can be best
included in the Bayesian model—and what that implies for the spike-and-slab setup—is another
fruitful area of future research.

Implementing our procedures in a compiled language is one of several improvements that we
envision for therbinnet package. At thismoment, ourmethods are wholly implemented in R (R
Core Team, 2019). Our current implementation of the edge screening procedure implementation
is a bit slower than the eLasso implementation in IsingFit—the analysis of NSDUH data took
approximately 40 seconds for edge screening and 15 seconds forIsingFit—structure selection
is considerably slower since the Gibbs sampler needs more time to explore the network space.
The online appendix contains a simulation to illustrate the running time differences between the
different methods and their implementations. There are currently two computational bottlenecks:
The specification of the Hessian matrix, and running the Gibbs sampler. Both involve iterating
loops that can be computed much faster in a compiled language. Another aspect that we plan
to implement shortly is the treatment of missing data. Two options present itself. The first uses
selection functions for pairwise removal of missing data points; the second is data-augmentation
or imputation. Both methods assume that data are missing at random, or are at least ignorable.
The analysis of structurally missing data, e.g., missing data introduced by a skip structure as
in our example, requires a different model setup, in principle, and remains an open problem.
As for different models, we are currently working on extending the method to Ising models for
polytomous (c.f., Bhattacharyya & Atchade, 2019) and ordinal data, and different setups for
the spike-and-slab priors. We also plan to implement our software in the open-source statistical
software JASP (Love et al., 2019; Wagenmakers, Love, et al., 2018), which would build a user-
friendly interface for the functions in rbinnet.
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Appendix A EM Variable Selection for the Pseudolikelihood Ising Model

The E-Step

The Q-function factors into three distinct terms13:

Q
(
�, μ, θ | �k , θk

)

= Q1(�, μ | �k , θk) + Q2(θ | �k , θk) + C, (9)

where C = − ln(p(X)) is a constant term.
The first term in Eq. (9) concerns the pseudoposterior of the Ising model’s parameters

Q1(�, μ | �k , θk) = ln
(
p∗(X | μ, �)

)+ ln (p(μ))

+ E

(
ln (p(� | γ )) | �k , θk

)
,

and involves the expectation of the log-transformed spike-and-slab prior

E

(
ln (p(� | γ )) | �k , θk

)

= C1 − 1

2

p−1∑
i=1

p∑
j=i+1

σ 2
i j E

(
1

γi jν1 + (1 − γi j )ν0

∣∣∣∣ σ k
i j , θ

k
)

,

where C1 is a constant term, and the last term can be reformulated as (c.f., Ročková & George,
2014, Eq. 3.6)

−1

2

p−1∑
i=1

p∑
j=i+1

σ 2
i j

⎧⎨
⎩
E

(
γi j
∣∣ σ k

i j , θ
k
)

ν1
+

1 − E

(
γi j
∣∣ σ k

i j , θ
k
)

ν0

⎫⎬
⎭ ,

where the posterior expectation of the selection variable is equal to

E

(
γi j
∣∣ σ k

i j , θ
k
)

= p(σ k
i j | γi j = 1) p(γi j = 1 | θk)

∑

i j=γi j

p(σ k
i j | γi j ) p(γi j | θk)

. (10)

The second term in Eq. (9) concerns the posterior distribution of the prior inclusion probability

Q2(θ | �k , θk) = E

(
ln (p(γ | θ)) | �k , θk

)
+ ln (p(θ)) ,

13Assuming that θ is assigned a prior distribution. Otherwise, the second term is omitted.
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and involves the expectation of the log-transformed prior distribution on the selector variables

E

(
ln (p(γ | θ)) | �k , θk

)

= ln(θ)

(
p

2

)
+ ln

(
θ

1 − θ

) p−1∑
i=1

p∑
j=i+1

E

(
γi j
∣∣ σ k

i j , θ
k
)

,

and is also readily computed using the expression in Eq. (10).

The M-Step We separately optimize the two components of the Q-function in the M-step. Unfor-
tunately, there is no closed-form solution for the maximization of Q1, and we approximate the
M-Step using a single iteration of a Newton-Raphson algorithm (Lange, 1995; Tanner, 1996).
The details are in “Appendix B”. The maximization of Q2 is in closed-form,

θk+1 =
∑p−1

i=1

∑p
j=i+1 E

(
γi j | σ k

i j , θ
(k)
)

+ α − 1

α + β + (p2
)− 2

.

Posterior StandardDeviations The EMalgorithm provides uswith an estimate of a local posterior
mode, and we seek a way to quantify the uncertainty in this modal estimate.We express this uncer-
tainty using the variance-covariance matrix of the normal approximation to the posterior (Tanner,
1996, e.g.,), i.e., the inverse of the Hessian matrix. The Hessian matrix is computed in the M-step
of our EMVS approach, see “Appendix B”, and serves as an estimate of the variance-covariance
matrix of the complete posterior p(�, μ, θ , γ | X). To estimate the variance-covariance matrix
of the marginal posterior p(�, μ, θ | X), we have to use the inverse of the Hessian subject to the
marginal spike-and-slab prior distributions on the interaction effects,

p(σi j | θ) = θ
1√
2πν1

e

(
− 1

2ν1
σ 2
i j

)
+ (1 − θ)

1√
2πν0

e

(
− 1

2ν0
σ 2
i j

)
.

For prior specification—setting the values of ν1—we use the inverse Hessian excluding prior
distributions on the parameters.

Appendix B The M-Step approximation for Q1

We approximate the M-step of Q1 using a single iteration of the Newton–Raphson algorithm.
Let η = {μ1, . . . , μp, σ12, . . . , σ(p−1)p} denote the

((p
2

)+ p
) × 1 vector of pseudolikelihood

parameters. Then, the Newton–Raphson iteration is equal to

ηk+1 = ηk + H−1D,

where D is the
((p

2

)+ p
) × 1 vector of first-order partial derivatives and H the

((p
2

)+ p
) ×((p

2

)+ p
)
matrix of second-order partial derivatives, i.e., the Hessian matrix.

The first-order partial derivatives are equal to

∂

∂μi
Q1 =

n∑
v=1

xvi −
n∑

v=1

exp
(
μi +∑ j �=i σi j xv j

)

1 + exp
(
μi +∑ j �=i σi j xv j

) − μi
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for the main effects, and

∂

∂σi j
Q1 = 2

n∑
v=1

xvi xv j

−
n∑

v=1

xv j

exp
(
μi +∑q �=i σiq xvq

)

1 + exp
(
μi +∑q �=i σiq xvq

)

−
n∑

v=1

xvi

exp
(
μ j +∑q �= j σ jq xvq

)

1 + exp
(
μ j +∑q �= j σ jq xvq

)

− σi j

{
E(γi j | σ k

i j , θ
k)

ν1
+ 1 − E(γi j | σ k

i j , θ
k)

ν0

}

= 2
n∑

v=1

xvi xv j −
n∑

v=1

xv j p
∗
vi −

n∑
v=1

xvi p
∗
v j − σi j ei j

for the interaction effects. Here, we have used p∗
vi to denote the conditional probability p(Xi =

1 | x(i)
v ) and ei j to denote the expected precision.

The Hessian matrix is slightly more complicated, as it requires some tedious bookkeeping. To
emphasize its structure and ease its derivation, we split the Hessian matrix in four components,

H =
(
Hμ Hμ�

HT
μ� H�

)
,

where Hμ, and H� are the second-order partial derivatives of the main effects μ and �, respec-
tively, and Hμ� their cross-derivatives. The submatrix Hμ is diagonal and has elements

∂2

∂μi∂μ j
Q1 =

{
−∑n

v=1 p
∗
vi (1 − p∗

vi ) − 1 if i = j

0 if i �= j

The submatrix Hμ� has elements

∂2

∂μi∂σr j
Q1 =

{
−∑n

v=1 xv j p∗
vi (1 − p∗

vi ) if r = i

0 if i �= r

Finally, the submatrix H� has diagonal elements

∂2

∂σ 2
i j

Q1 = −
n∑

v=1

xv j p
∗
vi q

∗
vi −

n∑
v=1

xvi p
∗
v j q

∗
v j − ei j ,
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and off-diagonal elements

∂2

∂σi j∂σru
Q1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∑n
v=1 xv j xvu p∗

vi q
∗
vi if i = r and j �= u

−∑n
v=1 xv j xvr p∗

vi q
∗
vi if i = u and j �= r

−∑n
v=1 xvi xvr p∗

v j q
∗
v j if i �= r and j = u

−∑n
v=1 xvi xvu p∗

v j q
∗
v j if i �= u and j = r

0 if i �= u and j �= r

where q∗
v j = 1 − p∗

v j .

Appendix C A Gibbs Sampling Routine for Structure Selection

The Gibbs sampler iterates between the following five steps. If a uniform prior is stipulated on
the structure space, then step four is skipped.
Step 1. Sampling the main effects μi . With the assumption of prior independence, the main effects
are also found to be independent a posteriori and do not depend on the selection variables γ . Given
the standard normal prior distribution, the full-conditional posterior distribution p(μi | σ i , ωi , X)

of the main effect μi is a normal distribution, with mean

xi+ − n
2 −∑n

v=1
∑

j �=i σi j x jvωiv

1 + ωi+

and variance (1 + ωi+)−1, where we have used σ to denote the p − 1 × 1 vector

σ = (σi1, . . . , σi(i−1)), σi(i+1), . . . , σi p)
T,

and xi+ and ω+i to denote the margins
∑n

v=1 xiv and
∑n

v=1 ωvi , respectively.
Step 2. Sampling the interaction effects σi j . Given γi j , the prior distribution for σi j is normal with
a zero mean, and variance φ = γi jν1 + (1 − γi j )ν0. The full-conditional posterior distribution is
then a normal distribution with mean

(
ωT
i x j + ωT

j xi + φ−1
)−1 ×

(
2xTi x j − 1

2
x+i − 1

2
x+ j

−
n∑

v=1

ωvi xv j

⎡
⎣μi +

∑
q �=i �= j

σiq xvq

⎤
⎦−

n∑
v=1

ωv j xvi

⎡
⎣μ j +

∑
q �=i �= j

σ jq xvq

⎤
⎦
⎞
⎠

and variance
(
ωT
i x j + ωT

j xi + φ−1
)−1

, where we have used xi to denote the n × 1 vector with

elements [xiv].
Step 3. Sampling the inclusion variables γi j . The full-conditional posterior distribution of γi j is
a Bernoulli distribution with probability of inclusion:

p(γi j = 1 | σi j , θ) = 1

1 + 1−θ
θ

exp
(

1
2(ν1−ν0)

σ 2
i j

) .
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Step 4. Sampling the prior inclusion probability θ . The full-conditional posterior distribution of
θ is a Beta distribution, with parameters

α = 1 + γ++/2,

β = 1 +
(
p

2

)
− γ++/2,

where γ++ =∑p
i=1

∑p
j=1 γi j .

Step 5. Sampling the augmented variables ωvi . The full-conditional posterior distribution of ωvi

is proportional to

p
(
ωvi | σ i , x(i)

v

)
∝ exp

⎛
⎜⎝−1

2
ωvi

⎛
⎝μi +

∑
j �=i

σi j xv j

⎞
⎠

2
⎞
⎟⎠ p(ωvi ),

where p(ωvi ) = p(ωvi | 1, 0) is a Pólya-Gamma distribution with parameters b = 1 and c = 0.
Polson et al. (2013a) show that the Pólya-Gamma distribution with parameters b = 1 and c �= 1
is equal to an exponential tilting of the Pólya-Gamma distribution with parameters b = 1 and
c = 0,

p(ω | 1, c) = exp
(− 1

2c
2ω
)
p(ω | 1, 0)

cosh
( 1
2c
) ,

which consequently shows that p
(
ωvi | σ i , x

( j)
v

)
is a Pólya-Gamma distribution with parameters

b = 1 and c = μi +∑ j �=i σi j xv j . These values can be simulated using the R (R Core Team,
2019) programs BayesLogit (Polson, Scott, & Windle, 2013b) and BayesReg (Makalic &
Schmidt, 2016).
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Statistics, Series B, 53(2), 233–243.

Barber, R. F., & Drton, M. (2015). High dimensional Ising model selection with Bayesian information criteria. Electronic
Journal of Statistics, 9(1), 567–607. https://doi.org/10.1214/15-EJS1012

Barbieri, M. M., & Berger, J. O. (2004). Optimal predictive model selection. Annals of Statistics, 32(3), 870–897. https://
doi.org/10.1214/009053604000000238

Besag, J. (1975). Statistical analysis of non-lattice data. Journal of the Royal Statistical Society. Series D (The Statistician),
24(3), 179–195. https://doi.org/10.2307/2987782

Bhattacharyya, A., & Atchade, Y. (2019). Bayesian analysis of high-dimensional discrete graphical models. arXiv.
https://arxiv.org/abs/1907.01170

Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology.
Annual Review of Clinical Psychology, 9, 91–121. https://doi.org/10.1146/annurev-clinpsy-050212-185608

Bühlmann, P., Kalisch, M., & Meier, L. (2014). High-dimensional statistics with a view toward applications in biology.
Annual Reviews of Statistics and Its Applications, 1, 255–278. https://doi.org/10.1146/annurev-statistics-022513-
115545

Carvalho, C. M., & Scott, J. G. (2009). Objective Bayesian model selection in Gaussian graphical models. Biometrika,
96(3), 497–512. https://doi.org/10.1093/biomet/asp017

Caspi, A., Houts, R., Belsky, D., Goldman-Mellor, S., Harrington, H., Israel, S., Israel, S., ... Moffit, T. (2014). The p
factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science,
2(2), 119–137. https://doi.org/10.1177/2167702613497473

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:51:07, subject to the Cambridge Core terms of use.

https://doi.org/10.1214/15-EJS1012
https://doi.org/10.1214/009053604000000238
https://doi.org/10.1214/009053604000000238
https://doi.org/10.2307/2987782
http://arxiv.org/1907.01170
https://doi.org/10.1146/annurev-clinpsy-050212-185608
https://doi.org/10.1146/annurev-statistics-022513-115545
https://doi.org/10.1146/annurev-statistics-022513-115545
https://doi.org/10.1093/biomet/asp017
https://doi.org/10.1177/2167702613497473
https://www.cambridge.org/core


80 PSYCHOMETRIKA

Castillo, I., Schmidt-Hieber, J., & van der Vaart, A. (2015). Bayesian linear regression with sparse priors. The Annals of
Statistics, 43(5), 1986–2018. https://doi.org/10.1214/15-AOS1334

Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces.
Biometrika, 95(3), 759–771. https://doi.org/10.1093/biomet/asn034

Consonni, G., Fouskakis, D., Liseo, B.,&Ntzoufras, I. (2018). Prior distributions for objectiveBayesian analysis.Bayesian
Analysis, 13(2), 627–679. https://doi.org/10.1214/18-BA1103

Constantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugi, M. (2019). Stability and variability of personality
networks: A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 136,
68–78. https://doi.org/10.1016/j.paid.2017.06.011

Cox, D. (1972). The analysis of multivariate binary data. Journal of the Royal Statistical Society. Series B (Applied
Statistics), 21(2), 113–120. https://doi.org/10.2307/2346482

Cramer, A. O. J., van Borkulo, C. D., Giltay, E. J., van der Maas, H. L. J., Kendler, K. S., Scheffer, M., & Borsboom, D.
(2016). Major depression as a complex dynamic system. PLoS One, 11(12), 1–20. https://doi.org/10.1371/journal.
pone.0167490

Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., ... Borsboom, D. (2012).
Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people.
European Journal of Personality, 26, 414–431. https://doi.org/10.1002/per.1866

Csiszár, I., & Talata, Z. (2006). Consistent estimation of the basic neighborhood of Markov random fields. The Annals of
Statistics, 34(1), 123–145. https://doi.org/10.1214/009053605000000912

Dalege, J., Borsboom, D., van Harreveld, F., van den Berg, H., Conner, M., & van der Maas, H. L. J. (2016). Towards
a formalized acount of attitudes: The causal attitude network (CAN) model. Psychological Review, 123(1), 2–22.
https://doi.org/10.1037/a0039802

Dalege, J., Borsboom, D., van Harreveld, F., & van der Maas, H. L. J. (2019). A network perspective on political attitudes:
Testing the connectivity hypothesis. Social Psychological and Personality Science, 10(6), 746–756. https://doi.org/
10.1177/1948550618781062

Dellaportas, P., Forster, J. J., & Ntzoufras, I. (2002). On Bayesian model and variable selection using MCMC. Statistics
and Computing, 12, 27–36. https://doi.org/10.1023/A:1013164120801199

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.

Dobra, A., & Lenkoski, A. (2011). Copula Gaussian graphical models and their application to modeling functional
disability data. The Annals of Applied Statistics, 5(2A), 969–993. https://doi.org/10.1214/10-AOAS397

Donner, C., & Opper, M. (2017). Inverse Ising problem in continuous time: A latent variable approach. Physical Review
E, 96(062104), 1–9. https://doi.org/10.1103/PhysRevE.96.062104

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper.
Behavior Research Methods, 50, 195–212. https://doi.org/10.3758/s13428-017-0862-1

Epskamp, S., Cramer,A.O. J.,Waldorp, L. J., Schmittmann,V.D.,&Borsboom,D. (2012). qgraph:Network visualizations
of relationships in psychometric data. Journal of Statistical Software, 48(4), 1–18.

Epskamp, S., Kruis, J., & Marsman, M. (2017). Estimating psychopathological networks: Be careful what you wish for.
PLoS One, 12, e0179891. https://doi.org/10.1371/journal.pone.0179891

Epskamp, S., Maris, G., Waldorp, L., & Borsboom, D. (2018). Network psychometrics. In P. Irwing, D. Hughes, & T.
Booth (Eds.), Handbook of psychometrics (pp. 953–986). Wiley.
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