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Laboratory-based 3D X-ray microscopy of unirradiated U-10Zr fuel 
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Three dimensional (3D) X-ray microscopy, also referred to as X-ray computed tomography, is a data-rich 

characterization technique that can provide surface and subsurface spatial information in a non-destructive 

manner.1-3 However, 3D X-ray imaging of nuclear fuel is a challenging endeavor.4 X-ray attenuation of 

high-Z materials, such as uranium, can be significant. This limits the practical maximum X-ray path length 

(i.e., sample size) to a few millimeters at most. This physical limitation impedes the nondestructive 

microstructural imaging of real-world samples, such as fuel rods. However, scaling nuclear fuel samples 

to the appropriate size allows for X-ray path lengths that are suitable for high resolution, laboratory-based 

3D X-ray microscopy. 

Another challenge of 3D X-ray imaging highly attenuating samples is the presence of cupping artifacts in 

the resultant 3D tomogram, which is caused by X-ray beam hardening. This occurs from the use of a 

polychromatic X-ray beam in which a significant portion of the emitted low X-ray energy photons are 

attenuated by the sample. High energy X-ray photons pass through the sample to the detector, thus 

providing a radiographic image. The reconstructed tomogram, however, may present this cupping artifact 

and prevent facile image segmentation based on grayscale intensity. Beam hardening can be reduced 

during image acquisition by using a physical X-ray filter to adjust the X-ray energy range or the cupping 

artifact can be corrected during either reconstruction or post-reconstruction using digital image processing. 

The combination of these methods is typically sufficient for a large number of sample types, but can be 

ineffective for samples with very low X-ray transmissions. 

This presentation will give an overview of laboratory-based 3D X-ray microscopy of appropriately sized, 

unirradiated U-10Zr fuel cylinders as part of a Nuclear Science User Facility-funded collaborative project 

to validate Idaho National Laboratory’s MARMOT mesoscale fuel performance code. The challenges of 

imaging these samples, and their solutions, will be addressed. These include the development of a novel, 

GPU-accelerated post-reconstruction cupping artifact correction method and the implementation of 

pattern recognition-based segmentation methods5, 6 using open-source image processing software7, 8. 
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