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We study the existence of reducing subspaces for rank-one perturbations of diagonal
operators and, in general, of normal operators of uniform multiplicity one. As we will
show, the spectral picture will play a significant role in order to prove the existence
of reducing subspaces for rank-one perturbations of diagonal operators whenever
they are not normal. In this regard, the most extreme case is provided when the
spectrum of the rank-one perturbation of a diagonal operator T = D + u ⊗ v
(uniquely determined by such expression) is contained in a line, since in such a case
T has a reducing subspace if and only if T is normal. Nevertheless, we will show that
it is possible to exhibit non-normal operators T = D + u ⊗ v with spectrum
contained in a circle either having or lacking non-trivial reducing subspaces.
Moreover, as far as the spectrum of T is contained in any compact subset of the
complex plane, we provide a characterization of the reducing subspaces M of T such
that the restriction T |M is normal. In particular, such characterization allows us to
exhibit rank-one perturbations of completely normal diagonal operators (in the sense
of Wermer) lacking reducing subspaces. Furthermore, it determines completely the
decomposition of the underlying Hilbert space in an orthogonal sum of reducing
subspaces in the context of a classical theorem due to Behncke on essentially normal
operators.
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rank-one perturbation of normal operators
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1. Introduction and preliminaries

Let H denote an infinite-dimensional separable complex Hilbert space and L(H)
the Banach algebra of all bounded linear operators on H. An operator T ∈ L(H)
is reductive if every closed invariant subspace M of T reduces T or is a so-
called reducing subspace; namely M is invariant under both T and its adjoint T �

(equivalently, both subspaces M and its orthogonal complement M⊥ are invariant
under T ). A well-known unsolved problem in the context of bounded linear opera-
tors acting on H is if every reductive operator must be a normal operator. Indeed,
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the answer is affirmative if we restrict ourselves to the class of compact operators
[1] or polynomially compact operators [36, 37]. In the general context L(H), such a
problem is equivalent to the existence of non-trivial closed invariant subspaces and
hence equivalent to provide a positive answer to the Invariant Subspace Problem in
the frame of infinite-dimensional separable complex Hilbert spaces [15].

The Invariant Subspace Problem is, by now, a long-standing open question
which have called the attention of many operator theorists since 1940s, producing
approaching strategies leading to deep theorems and intricate examples. Within
the most remarkable theorems, we mention Lomonosov theorem [30], while among
the most relevant examples, one may find the constructions by Enflo [16] and
Read [34, 35] of bounded linear operators acting on infinite-dimensional complex
Banach spaces lacking non-trivial closed invariant subspaces (or even non-trivial
closed invariant subsets). Recently, in [21] the authors exhibit a bounded linear
operator T acting on �1 such that f(T ) has no non-trivial closed invariant sub-
spaces for every non-constant analytic germ f . We refer to the classical monograph
by Radjavi and Rosenthal [32] and the recent one by Chalendar and Partington [9]
for more on the subject.

Regarding the different aforementioned approaching strategies, there is one com-
ing from the analysis of the behaviour of operators acting on finite-dimensional
subspaces which led to the concept of quasitriangular operators. Recall that a
bounded linear operator T acting on H is said to be quasitriangular if there exists
an increasing sequence (Pn)∞n=1 of finite rank projections converging to the identity
I strongly as n → ∞ such that

‖TPn − PnTPn‖ → 0, as n → ∞.

Clearly, given any triangular operator in H, that is, a bounded linear operator
which admits a representation as an upper triangular matrix with respect to a
suitable orthonormal basis, there exists an increasing sequence (Pn)∞n=1 of finite
rank projections converging to the identity I strongly as n → ∞ such that

TPn − PnTPn = (I − Pn)TPn = 0, for all n = 0, 1, 2, . . .

Based on the proof of Aronszajn and Smith’s theorem [3], Halmos [26] intro-
duced the concept of quasitriangular operators which, somehow, states that T
has a sequence of ‘approximately invariant’ finite-dimensional subspaces. Compact
operators, operators with finite spectrum, decomposable operators in the sense of
Colojoară and Foiaş [10] or compact perturbations of normal operators are exam-
ples of quasitriangular operators. Remarkably, results due to Douglas and Pearcy
[12] and Apostol, Foias and Voiculescu [2] state that the Invariant Subspace Prob-
lem is reduced to be proved for quasitriangular operators (see Herrero’s book [27]
for more on the subject).

Among the most simple quasitriangular operators for which the existence of non-
trivial closed invariant subspaces is still open are rank-one perturbations of diagonal
operators. If D ∈ L(H) is a diagonal operator, that is, there exists an orthonormal
basis (en)n�1 of H and a sequence of complex numbers (λn)n�1 ⊂ C such that
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Den = λnen, a rank-one perturbations of D can be written as

T = D + u ⊗ v, (1.1)

where u and v are non-zero vectors in H and u ⊗ v(x) = 〈x, v〉u for every x ∈ H.
While expression (1.1) is not unique as far as rank-one perturbations of diagonal
operators concern, considering the expansions of u, v with respect to the (ordered)
orthonormal basis (en)n�1

u =
∞∑

n=1

αnen, v =
∞∑

n=1

βnen, (1.2)

Ionascu showed that whenever both u and v have non-zero components αn and βn

for every n � 1 uniqueness follows (see [28, proposition 1.1]). Moreover, he stud-
ied rank-one perturbations of diagonal operators from the standpoint of invariant
subspaces identifying normal operators as well as contractions within this class.
Note that, in particular, rank-one perturbations of normal operators whose eigen-
vectors span H belongs to such a class, since they are unitarily equivalent to those
expressed by (1.1).

Later on, Foias, Jung, Ko and Pearcy showed that there is a large class of such
operators each of which has a nontrivial hyperinvariant subspace [18]; indeed they
are decomposable operators [20] (see also the papers by Fang and Xia [17] and Klaja
[29] for an extension of the results in [18] to finite rank and compact perturbations).

In a more general setting, rank-one perturbations of normal operators have been
extensively studied for decades (see the recent papers [4–7] and the references
therein). Recently, in [31], the authors have provided conditions for a possible
dissection of the spectrum of T along a curve implying a decomposition of T as
a direct sum of two operators with localized spectrum and providing sufficient
conditions to ensure the existence of invariant subspaces for T .

The aim of this work in this context is studying the existence of reducing sub-
spaces for operators T which are rank-one perturbations of diagonal operators and,
in general, of normal operators. Recently, there have been an exhaustive study on
reducing subspaces for multiplication operators whenever they act on spaces of ana-
lytic functions like the Bergman space (see the works by Douglas and coauthors
[13, 14] or those by Guo and Huang [22–24], for instance).

Our starting point will be a theorem of Ionascu where normal operators are
characterized within the class of rank-one perturbations of normal operators.
Clearly, the existence of reducing subspaces is trivial for normal operators, since the
spectral measure provides plenty of projections commuting with the operator. Nev-
ertheless, as we will show, the spectral picture will play a significant role in order
to prove the existence of reducing subspaces for rank-one perturbations of diagonal
operators whenever they are not normal. In this regard, the most extreme case is
provided when the spectrum of the operator T = D + u ⊗ v (uniquely determined
by such expression) is contained in a line, since in such a case T has a reducing
subspace if and only if T is normal (see theorem 2.1, § 2). As a consequence, we will
exhibit operators within this class being decomposable (even strongly decomposable)
with no reducing subspaces.
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When the spectrum of T = D + u ⊗ v is contained in a circle, which turns out
to be the other possible case according to Ionascu’s result to ensure that T is a
normal operator (see [28, corollary 3.2]), the situation differs drastically from the
previous case aforementioned. More precisely, it is possible to exhibit non-normal
operators with spectrum contained in a circle either having or lacking non-trivial
reducing subspaces (see theorem 3.1, § 3).

Indeed, theorem 3.1 is extended in a more general setting in § 4 allowing us
to exhibit rank-one perturbations of diagonal operators with arbitrary spectrum
lacking non-trivial reducing subspaces. The main result in this context, theorem
4.3, characterizes the reducing subspaces M of T such that the restriction of T to
M , denoted by T |M , is normal. In particular, as a consequence of theorem 4.7 it is
possible to exhibit rank-one perturbation of completely normal diagonal operators
lacking reducing subspaces. Recall that a normal operator is completely normal if
all its invariant subspaces are reducing.

Besides, we discuss these results in the context of a classical theorem due to
Behncke [8] which provides a decomposition of the underlying Hilbert space in an
orthogonal sum of reducing subspaces for essentially normal operators (see also [25,
chapter 8]). We conclude § 4 addressing some of the previous results in the more
general context of rank-one perturbations of normal operators.

Finally, in § 5, we present some examples of rank-one perturbations of diagonal
operators with multiplicity strictly larger than one in order to illustrate how the
picture of the reducing subspaces changes whenever the assumption on the uniform
multiplicity one is not assumed. Such assumption plays a key role in the proofs of
the results aforementioned.

For the sake of completeness, we close this first section with some preliminaries
regarding results about existence of invariant subspaces of rank-one perturbations
of diagonal operators as well as of normal operators, which will be of interest
throughout the paper.

1.1. Preliminaries

Let D be a diagonal operator in L(H) and denote by Λ(D) = (λn)n�1 ⊂ C its set
of eigenvalues with respect to an orthonormal basis (en)n�1 of H. It is well-known
that the spectrum of D is given by the closure of Λ(D), that is, σ(D) = Λ(D).

Let u, and v be non-zero vectors in H and consider their expansions with respect
to the (ordered) orthonormal basis (en)n�1

u =
∞∑

n=1

αnen, v =
∞∑

n=1

βnen.

Let T ∈ L(H) the rank-one perturbation of D given by expression (1.1), namely

T = D + u ⊗ v

where u ⊗ v(x) = 〈x, v〉u for every x ∈ H. As mentioned previously, Ionascu proved
in [28, proposition 1.1] that if αnβn 
= 0 for every n, then (1.1) is unique in the sense
that if T = D + u ⊗ v = D′ + u′ ⊗ v′ with D, D′ diagonal operators and u, v, u′, v′

non-zero vectors in H, then D = D′ and u ⊗ v = u′ ⊗ v′.
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Moreover, he also proved that if there exists n0 ∈ N such that αn0βn0 = 0, then
either λn0 is an eigenvalue of T or λn0 is an eigenvalue of T ∗; in both cases associ-
ated with the same eigenvector en0 (see [28, proposition 2.1]). As a straightforward
consequence T has a reducing subspace whenever there exists n0 ∈ N such that
αn0 = βn0 = 0. As we will show in theorem 2.1, this case will exhaust all the pos-
sibilities when the spectrum of the given operator T = D + u ⊗ v is contained in a
line.

Indeed, there are only two possible spectral pictures for a rank-one perturbation
of a diagonal operator T = D + u ⊗ v with uniqueness expression (αnβn 
= 0 for
every n) in order to be a normal operator as stated in proposition 3.1 and corollary
3.2 in [28]:

Theorem 1.1 (Ionascu, 2001). Let T = N + u ⊗ v be in L(H) where N is a normal
operator and u, v are nonzero vectors in H. Then T is a normal operator if and
only if either

(i) u and v are linearly dependent and u is an eigenvector for Im (αN∗) where
α = 〈u, v〉/‖v‖2, or

(ii) u, v are linearly independent vectors and there exist α, β ∈ C such that

(N∗ − αI)u = ‖u‖2βv and (N − αI)v = ‖v‖2βu,

where Re (β) = −1/2.

In particular, with the introduced notation, if D is a diagonal operator and αnβn 
= 0
for every n, then T = D + u ⊗ v ∈ L(H) is normal if and only if

(i′) there exist α ∈ C and t ∈ R such that Λ(D) lies on the line {z ∈ C : Im (αz) =
t} and u = αv, or

(ii′) there exist α ∈ C and t ∈ R such that Λ(D) lies on the circle {z ∈ C : |z −
α| = t} and

tu

‖u‖ = eiθ(D − αI)
(

v

‖v‖
)

,

where θ ∈ [0, π) is determined by the equation Re (teiθ/(‖u‖‖v‖)) = −1/2.

As we will show, this dichotomy will allow us to establish the existence of reducing
subspaces for rank-one perturbation of diagonal operators as far as their spectrum
is contained in a line.

In order to finish this preliminary section, we turn our attention to the multi-
plicity of the eigenvalues of the diagonal operator. In [28, proposition 2.2], it was
shown that if λ is an eigenvalue of D of multiplicity strictly larger than one, then
λ is an eigenvalue of the rank-one perturbation operator T = D + u ⊗ v. Indeed, a
closer look at the proof shows the following in our context:

Proposition 1.2. Assume λ is an eigenvalue of D of multiplicity strictly larger
than one and let λ = λn0 = λn1 for n0, n1 ∈ N. Suppose, in addition, that αn0 = βn0

and αn1 = βn1 . Then T has a non-trivial reducing subspace.
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Hence, according to proposition 1.2, it turns out to be easy to construct examples
of operators having non-trivial reducing subspaces if we do not assume uniform
multiplicity one for the diagonal operator. In the last section, § 5, we will address
examples in this context showing, in particular, that the assumption of uniform
multiplicity one is essential in our approach.

2. Reducing subspaces for rank-one perturbations of diagonal
operators: when the spectrum is contained in a line

In this section we will show, in particular, that if T is a uniquely determined rank-
one perturbation of a diagonal operator with spectrum contained in a line, T has
a reducing subspace if and only if it is a normal operator. The precise statement is
the following:

Theorem 2.1. Let T = D + u ⊗ v ∈ L(H) where D is a diagonal operator with
respect to an orthonormal basis (en)n�1 and u =

∑
n αnen, v =

∑
n βnen are

nonzero vectors in H. Assume D has uniform multiplicity one and its spectrum
σ(D) is contained in a line. Then, T has a non-trivial reducing subspace if and
only if T is normal or there exists n ∈ N such that αn = βn = 0.

Note that since every normal operator N whose eigenvectors span H with uniform
multiplicity one is unitarily equivalent to a diagonal operator (also with uniform
multiplicity one). Theorem 2.1 could be rephrased for rank-one perturbation of such
normal operators showing, in particular, the existence of a large class of rank-one
perturbation of normal operators lacking non-trivial reducing subspaces. Indeed,
by means of Ionascu’s theorem, it is enough to consider vectors u and v linearly
dependent where u is an eigenvector for Im (αN∗) with α = 〈u, v〉/‖v‖2.

In order to prove theorem 2.1 some previous lemmas will be necessary. Recall
that a closed subspace M ⊆ H is reducing for an operator T ∈ L(H) if and only if
the orthogonal projection PM : H → M onto M commutes with T , that is, TPM =
PMT . The notation {T}′ will stand for the commutant of T .

Lemma 2.2. Let T = D + u ⊗ v ∈ L(H) where D is a diagonal operator and u, v
are nonzero vectors in H. Let M ⊆ H be a non-trivial reducing subspace for T . If
PM is the orthogonal projection onto M and QM = I − PM , then

QMDPM = −QMu ⊗ PMv,

PMDQM = −PMu ⊗ QMv,

QMD∗PM = −QMv ⊗ PMu.

PMD∗QM = −PMv ⊗ QMu.

Proof. We show the first equality, since the other ones follow analogously.
Since M is reducing for T , QMTPM = 0 and therefore,

QMDPM = QM (T − u ⊗ v)PM = QM (u ⊗ v)PM .

In addition, for every x ∈ H

(QMu ⊗ v)PMx = 〈PMx, v〉QMu = 〈x, PMv〉QMu = (QMu ⊗ PMv)x,
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which finally leads to the desired expression. �

Next lemma refers, roughly speaking, to the location of the vectors u and v with
respect to reducing subspaces of T = D + u ⊗ v.

Lemma 2.3. Let T = D + u ⊗ v ∈ L(H) where D is a diagonal operator with respect
to an orthonormal basis (en)n�1 and u =

∑
n αnen, v =

∑
n βnen nonzero vectors in

H. Assume D has uniform multiplicity one and αnβn 
= 0 for every n ∈ N. Let PM :
H → M be a non-trivial orthogonal projection commuting with T . Then, u, v, en /∈
ker PM ∪ ker(I − PM ) for all n ∈ N.

In order to prove lemma 2.3, recall that given a linear space A of L(H), a vector
x is separating for A if Ax = 0 and A ∈ A, then A = 0.

Proof. First, observe that QM = I − PM and PM both commute with T and T ∗.
Now, since u is a separating vector for {T}′ and v for {T ∗}′ (see [19, theorem 1.4])
it follows that the vectors PMu, PMv, QMu, QMv are non-zero. In particular, one
deduces that u, v /∈ M ∪ M⊥.

On the other hand, since PMT = TPM then

DPM − PMD = u ⊗ PMv − PMu ⊗ v.

Let n ∈ N and assume, for the moment, that en ∈ M . Then,

0 = DPMen − PMDen = 〈en, v〉u − 〈en, v〉PMu. (2.1)

Note that 〈en, v〉 
= 0 since αnβn 
= 0, so u = PMu and therefore u ∈ M , which is
a contradiction. Hence en 
∈ M .

The case en ∈ M⊥ is analogous. �

As lemma 2.3, the following result deals with the location of u and v but when
the assumption αnβn 
= 0 for every n ∈ N is replaced by one regarding the spectrum
of the diagonal operator D.

Lemma 2.4. Let T = D + u ⊗ v ∈ L(H) where D is a diagonal operator with respect
to an orthonormal basis (en)n�1 and u =

∑
n αnen, v =

∑
n βnen nonzero vectors

in H. Assume D has uniform multiplicity one, its spectrum σ(D) lies in a Jordan
curve and αn and βn are not simultaneously zero. If PM : H → M is a non-trivial
orthogonal projection commuting with T, then u, v, en /∈ ker PM ∪ ker(I − PM ) for
all n ∈ N.

Proof. Let us argue by contradiction assuming PMv = 0. Then, by lemma 2.2, we
have

QMDPM = −QMu ⊗ PMv = 0,

where QM = I − PM . Then 0 = (I − PM )DPM = DPM − PMDPM or, equiva-
lently, DPM = PMDPM . Hence the closed subspace M := PM (H) is a non-trivial
closed invariant subspace for D (see [32, theorem 0.1], for instance).

Moreover, D is a completely normal operator (see [39, theorem 3] or [32, chapter
1]). Therefore, every invariant subspace of D is reducing and it is spanned by
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a subset of eigenvectors. Accordingly, DPM = PMD and M = span {en : n ∈ Λ},
where Λ is a proper subset of the natural numbers N. Observe that, in particular,
DPM = PMD implies that PMu = 0.

On the other hand, since PM is the orthogonal projection onto M =
span {en : n ∈ Λ}, trivially PM is a diagonal operator with respect to (en)n�1 (since
PMen = en for every n ∈ Λ and PMen = 0 for every n /∈ Λ). Having into account
that PMu = PMv = 0, we deduce

0 =
∑
n∈Λ

αnen =
∑
n∈Λ

βnen.

Hence, for every n ∈ Λ we have αn = βn = 0, which is a contradiction unless Λ = ∅.
But, in this latter case, it would follow that PM = 0 which is also absurd since PM

is a non-trivial projection. Therefore, PMv 
= 0 as the statement asserts.
The proof of the statement u /∈ ker PM ∪ ker(I − PM ) is analogous, just consid-

ering T ∗.
Finally, in order to show that en /∈ ker PM ∪ ker(I − PM ) for all n ∈ N, we may

argue as in lemma 2.3 considering (2.1) if en would be in M (note that, by
assumption, αn and βn are not simultaneously zero). �

With the previous results at hands, we are in position to prove theorem 2.1. The
proof will be accomplished by studying firstly the case that the diagonal operator
D is self-adjoint and therefore, its spectrum is contained in the real numbers.

Proof of theorem 2.1. Assume that T = D + u ⊗ v ∈ L(H) where D is a diago-
nal operator with respect to an orthonormal basis (en)n�1 and u =

∑
n αnen,

v =
∑

n βnen two nonzero vectors in H.
Clearly, if T is a normal operator, it has non-trivial reducing subspaces. In addi-

tion, if there exists n0 ∈ N such that αn0 = βn0 = 0, then the subspace generated
by the basis vector en0 is reducing for T as pointed out in the preliminary section.
In both cases, T has a non-trivial reducing subspace. For the converse, assume that
T has a non-trivial reducing subspace and let us show that T is normal or there
exists n0 ∈ N such that αn0 = βn0 = 0.

Case 1: D is a self-adjoint operator.
Assume that T = D + u ⊗ v has a non-trivial reducing subspace M ⊂ H and

that αn and βn are not simultaneously zero. Let PM be the non-trivial orthogonal
projection onto M and QM = I − PM . By lemma 2.2, both relations

QMu ⊗ PMv = −QMDPM = QMv ⊗ PMu

and

PMu ⊗ QMv = −PMDQM = PMv ⊗ QMu

hold. Moreover, lemma 2.4 ensures that the vectors PMu, QMu, PMv and QMv are
non-zero.
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A little computation shows that

〈PMu, PMv〉QMu = ‖PMu‖2QMv,

and since ||PMu|| > 0, we deduce

QMv =
〈PMu, PMv〉
||PMu||2 QMu.

In a similar way, we have

PMv =
〈QMu,QMv〉
||QMu||2 PMu =

〈PMv, PMu〉
||PMu||2 PMu.

Now, let us write α = 〈PMv, PMu〉/||PMu||2, so PMv = αPMu and QMv = αQMu.
Hence,

v = PMv + QMv = α PMu + α QMu.

Notice that it is enough to show that α ∈ R, so v = α u and therefore T would be
a self-adjoint operator, since it would be the sum of two self-adjoint operators.

Observe that

||v||2 = ||PMv||2 + ||QMv||2 = |α|2 ||PMu||2 + |α|2 ||QMu||2 = |α|2 ||u||2 .

Moreover,

〈u, v〉 = 〈PMu, PMv〉 + 〈QMu,QMv〉
= 〈PMu, αPMu〉 + 〈QMu, αQMu〉
= α ||PMu||2 + α ||QMu||2

= (Re (α) − iIm (α)) ||PMu||2 + (Re (α) + iIm (α)) ||QMu||2

= Re (α)(||PMu||2 + ||QMu||2) + iIm (α)(||QMu||2 − ||PMu||2)
= Re (α) ||u||2 + iIm (α)(||QMu||2 − ||PMu||2).

Note that αu − v ∈ M⊥, since PM (αu − v) = 0. Thus, QM (αu − v) = αu − v.
Similarly, αu − v ∈ M . Furthermore, (αPM + αQM )u = v. Since PM and QM

commute with T , it follows that

(αPM + αQM )T = T (αPM + αQM ).

Now,

T (αPM + αQM )u = Tv = Dv + ||v||2 u = Dv + |α|2 ||u||2 u

and

(αPM + αQM )Tu = (αPM + αQM )(Du + 〈u, v〉u)

= αPMDu + αQMDu + 〈u, v〉(αPMu + αQMu)

= αPMDu + αQMDu + 〈u, v〉v
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Thus,

Dv + |α|2 ||u||2 u = αPMDu + αQMDu + 〈u, v〉v.

So,

PMDv + QMDv + |α|2 ||u||2 u = αPMDu + αQMDu + 〈u, v〉v.

Upon applying lemma 2.2 it follows that

|α|2 ||u||2 u − 〈u, v〉v = PMD(αu − v) + QMD(α − v)

= PMDQM (αu − v) + QMDPM (αu − v)

= α(PMu ⊗ QMu)(v − αu) + α(PMu ⊗ QMu)(v − αu)

= α〈v − αu, u〉PMu + α〈v − αu, u〉QMu

= (α〈v, u〉 − α2 ||u||2)PMu + (α〈v, u〉 − |α|2 ||u||2)QMu.

Moreover, v = αPMu + αQMu, so

|α|2 ||u||2 u − 〈u, v〉v = (|α|2 ||u||2 − α〈u, v〉)PMu + (|α|2 ||u||2 − α〈u, v〉)QMu.

Consequently,

|α|2 ||u||2 − α〈u, v〉 = α〈v, u〉 − α2 ||u||2

and

|α2| ||u||2 − α〈u, v〉 = α〈v, u〉 − |α|2 ||u||2 .

From the second equality we have

2|α|2 ||u||2 = α〈v, u〉 + α〈u, v〉
= 2Re (α〈v, u〉). (2.2)

Let us write α = a + bi, with a, b ∈ R real numbers. The aim is to show that b = 0.
Recall that

〈v, u〉 = 〈u, v〉 = a ||u||2 − ib(||QMu||2 − ||PMu||2).
Then,

α〈v, u〉 = (a + bi)(a ||u||2 − ib(||QMu||2 − ||PMu||2)
= a2 ||u||2 − aib(||QMu||2 − ||PMu||2)

+ aib ||u||2 + b2(||QMu||2 − ||PMu||2).
So, Re (a〈v, u〉) = a2 ||u||2 + b2(||QMu||2 − ||PMu||2). From equation (2.2) we have

(a2 + b2) ||u||2 = a2 ||u||2 + b2(||QMu||2 − ||PMu||2),
and therefore,

b2 ||u||2 = b2(||QMu||2 − ||PMu||2).
If b 
= 0, this identity yields that ||PMu|| = 0, what contradicts lemma 2.4.
Accordingly, b = 0 and then α is a real number as we wish to prove in order to
show that T is a normal operator.
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Finally, if T has a reducing subspace and it is not a normal operator, we deduce
that there exists n ∈ N such that αn = βn = 0, so the proof in case 1 is complete.

Case 2: D is not a self-adjoint operator.
Assume first that the set of eigenvalues Λ(D) = (λn)n�1 is contained in a line Γ

in the complex plane parallel to the real axis. Let h ∈ R such that Γ = {x + ih :
x ∈ R}.

Observe that the linear bounded operator D − hiI is a diagonal, self-adjoint
operator of uniform multiplicity one. Now, observe that T has the same reducing
subspaces that T − hiI has. Then, by case 1, it follows that T − hiI has a non-
trivial reducing subspace if and only if either T − hiI is a normal operator or there
exists n ∈ N such that αn = βn = 0. Accordingly, the same conclusion holds for T .

Finally, if Λ(D) is contained in a line Γ that intersects the real axis, let θ ∈ [0, π)
denote the angle formed by Γ and the real axis measured in the positive direction.
Then, D̃ = e−iθD satisfies that its set of eigenvalues Λ(D̃) is contained in a line
parallel to the real axis. The final statement follows upon applying case 1 to the
operator e−iθT . This concludes the proof of theorem 2.1. �

Remark 2.5. We point out that the assumption on D having uniform multiplicity
one in theorem 2.1 is necessary and cannot be dropped off. Indeed, it is not diffi-
cult to provide examples of non-normal operators T = D + u ⊗ v having non-trivial
reducing subspaces such that the spectrum σ(D) is contained in a line and u and
v are non-zero vectors with non-zero components. For instance, if �2 denote the
classical Hilbert space consisting of complex sequences whose modulus are squared
summable and {en}n�1 the canonical basis in �2, let us consider D be the diagonal
operator defined by

Den =

⎧⎨⎩en n = 1, 2;
1
n

en n � 3.

Clearly, D is a self-adjoint (even a compact) operator in �2. Now, if u =∑
n�1(1/n)en and v = e1 + (1/2)e2 +

∑
n�3(1/n2)en, for instance, the operator

T = D + u ⊗ v has non-trivial reducing subspace (indeed the one generated by e1,
see proposition 1.2), the spectrum σ(D) is {1/n}n�1 ∪ {0} ⊂ [0, 1] and clearly u
and v are non-zero vectors with non-zero components. Nevertheless, T is not a
normal operator since u and v are not proportional vectors, which is required by
condition (i′) in Ionascu’s theorem (see the preliminary section).

To close this section, we observe that if D is a diagonal operator with a set of
eigenvalues Λ(D) = (λn)n�1 contained in a line or a circle then T = D + u ⊗ v is
a decomposable operator by a result due to Radjabalipour and Radjavi (see [33,
corollary 2]). Recall that an operator T ∈ L(H) is decomposable if for every open
cover U, V ⊂ C of σ(T ) there exist invariant subspaces M, N ⊂ H for T such that
M + N = H and σ(T|M ) ⊂ U and σ(T|N ) ⊂ V .

Hence, as a consequence of theorem 2.1, it is possible to exhibit one-rank per-
turbations of diagonal operators D which are decomposable but lack non-trivial
reducing subspaces. Indeed, a bit more can be achieved in this context.
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Recall that a closed subspace M ⊂ H is called a spectral maximal subspace of an
operator T ∈ L(H) if

(a) M is an invariant subspace of T , and

(b) N ⊂ M for all closed invariant subspaces N of T such that the spectrum of
the restriction T|N is contained in the spectrum of the restriction T|M , that
is, σ(T|N ) ⊆ σ(T|M ).

In addition, T ∈ L(H) is called strongly decomposable if its restriction to an arbi-
trary spectral maximal subspace is again decomposable. Indeed, the authors in
[33,corollary 2] state that if T ∗ − T belongs to the Schatten class Sp(H) for
1 � p < ∞, then T is strongly decomposable.

Corollary 2.6. There exist rank-one perturbations of self-adjoint diagonal oper-
ators T = D + u ⊗ v ∈ L(H) that are strongly decomposable operators and have no
non-trivial reducing subspaces.

Proof. Let D be a self-adjoint diagonal operator of uniform multiplicity one. Let us
consider u and v two non-zero vectors in H with non-zero components and being
not real-proportional. Then the operator T = D + u ⊗ v is strongly decomposable
since T ∗ − T is a rank two operator (and hence belongs to the Schatten class Sp(H)
for every 1 � p < ∞). Nevertheless, T is not normal and by theorem 2.1, it has no
non-trivial reducing subspaces. �

3. Reducing subspaces for rank-one perturbations of diagonal
operators: when the spectrum is contained in a circle

In this section, we will focus on rank-one perturbations of a diagonal operator with
spectrum contained in a circle. Note that this is the other possible case according
to Ionascu’s result to ensure that such operators are normal (condition (ii′) in the
preliminary section).

As we will show, the spectral picture does not determine the existence of non-
trivial reducing subspaces for non-normal operators within this class. In other
words, it is possible to exhibit non-normal operators within this class with spectrum
contained in a circle either having or lacking non-trivial reducing subspaces. Our
main result in this section reads as follows:

Theorem 3.1. Let D ∈ L(H) be a diagonal operator with respect to an orthonormal
basis (en)n�1 with uniform multiplicity one. Assume its spectrum σ(D) is contained
in a circle with center α, and let u ∈ H such that 〈u, en〉 
= 0 for every n ∈ N.
Then

(a) The operator T1 = D + u ⊗ u ∈ L(H) has no non-trivial reducing subspaces.

(b) If 〈u, Du〉 
= α ‖u‖2, there exists v ∈ H with 〈v, en〉 
= 0 for every n ∈ N

and the operator T2 = D + u ⊗ v ∈ L(H) is not normal but has non-trivial
reducing subspaces.
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Proof. First, we consider the case that the diagonal operator D is a unitary operator
and therefore, its spectrum is contained in the unit circle T.

Case 1: D is a unitary operator.
Assume, on the contrary, that M is a non-trivial reducing subspace for T =

D + u ⊗ u and denote, as usual, PM the orthogonal projection onto M . We may
assume, without loss of generality, that M is infinite dimensional (otherwise we
would argue with M⊥ since it would be an infinite-dimensional reducing subspace).

Let x be a non-zero vector in M . Clearly, Tx = Dx + 〈x, u〉u ∈ M , and since
M is reducing, T ∗x = D∗x + 〈x, u〉u is also in M . Accordingly, (D − D∗)x ∈ M
for every x ∈ M , or equivalently, M is an infinite-dimensional non-trivial closed
invariant subspace for D − D∗.

Note that D − D∗ is a non-trivial diagonal operator with the spectrum contained
in the imaginary axis of the complex plane. Indeed, if Λ(D) = (λn)n�1 denotes the
set of eigenvalues of D, then Λ(D − D∗) = (2iIm (λn))n�1. In particular, by [32,
theorems 1.23 and 1.25] D − D∗ is a completely normal operator and therefore, M
is spanned by eigenvectors of D − D∗.

On the other hand, since D has uniform multiplicity one then the eigenvalues of
D − D∗ has multiplicity at most two. Actually, if 2iIm (λn) has multiplicity two,
then there exists m ∈ N such that Im (λn) = Im (λm). For each pair of indexes of
this form, let us denote by n the smaller index and by n′ the greater one. That is,
let us denote by Ω the set of pairs of indexes

Ω = {(n, n′) ∈ N × N : n < n′ and Im (λn) = Im (λn′) where λn, λn′ ∈ Λ(D)}.
Doing so, we may consider a disjoint partition of the natural numbers

N = N1 ∪ N2 ∪ N3,

where N1 ⊂ N consists of the indexes of the eigenvalues with multiplicity two that
are the smaller index of its corresponding pair, N2 consists of the indexes of the
eigenvalues with multiplicity two that are the larger index of its corresponding pair
and N3 the indexes of the eigenvalues with multiplicity one. In other words, the set
Ω = N1 × N2.

Then, the eigenvectors of D − D∗ are

{en : n ∈ N3} and {λen + τen′ : (n, n′) ∈ Ω, λ, τ ∈ C}.
With the characterization of the eigenvectors of D − D∗, our goal now will be
identify those eigenvectors spanning M , that is, determine the proper subset Λ of
N such that

M = span {en : n ∈ N3 ∩ Λ} + {λen + τen′ : n ∈ Λ ∩ N1, (n, n′) ∈ Ω, λ, τ ∈ C}.
By lemma 2.4 for every n ∈ N we have en /∈ M ∪ M⊥, so en /∈ M for every n ∈ N3.

Assume for the moment that N3 ∩ Λ is not empty and let n0 ∈ N3 ∩ Λ. Denote by

en0 = eM
n0

⊕ eM⊥
n0

the orthogonal decomposition of en0 with respect to H = M ⊕ M⊥. Note that, in
particular, eM

n0
is non-zero because otherwise en0 ∈ M⊥.
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Having in mind that (D − D∗)PM = PM (D − D∗) because M is reducing for
D − D∗, we deduce upon applying it to en0 that

(D − D∗)PMen0 = (D − D∗)eM
n0

= (λn0 − λn0)e
M
n0

.

That is, 2iIm (λn0) is an eigenvalue of D − D∗ with eigenspace span {en0 , eM
n0
}.

Hence, 2iIm (λn0) is of multiplicity 2, but this contradicts the fact that n0 ∈ N3.
Therefore, N3 ∩ Λ is empty. Accordingly, we deduce that Λ must be a non-void
subset Λ of N1 (being possible Λ = N1), and

M = span {λen + τen′ : n ∈ Λ ⊆ N1, (n, n′) ∈ Ω and λ, τ ∈ C}. (3.1)

Moreover, we observe that for every eigenvector λen + τen′ ∈ M , the coefficients
λ and τ are non-zero (otherwise we would have en or en′ ∈ M). Accordingly,
every eigenvector λen + τen′ ∈ M is a multiple of en + (τ/λ)en′ . Since en′ /∈ M ,
we deduce that there exists coefficients τn ∈ C such that

M = span {en + τnen′ : n ∈ Λ ⊆ N1, (n, n′) ∈ Ω}. (3.2)

On the other hand, since M is a non-trivial closed invariant subspace under T , we
have that T (en + τnen′) ∈ M for every n ∈ Λ ⊆ N1 with (n, n′) ∈ Ω. If we consider
u =

∑
n αnen where αn = 〈u, en〉 
= 0 for every n ∈ N by hypotheses, then

T (en + τnen′) = λnen − λnτnen′ + 〈en + τnen′ , u〉u
= λnen − λnτnen′ + (αn + τnαn′)u ∈ M

(3.3)

for every n ∈ Λ ⊆ N1 with (n, n′) ∈ Ω.
Now, let us prove that Re (λn0) = 0 for at least one positive integer n0 ∈ N1.
First, by means of the orthogonality relations of the basis elements {en}n∈N, it

follows that for every vector x ∈ M

τm〈x, em〉 = 〈x, em′〉 for every m ∈ Λ ⊆ N1 with (m,m′) ∈ Ω. (3.4)

Let n0 be any positive integer in Λ (recall that Λ is not empty). If

αn0 + τn0αn′
0

= 0, (3.5)

then by (3.3) the vector

a = λn0en0 − λn0τn0en′
0

is in M which, by means of (3.4) particularized in the index n0, satisfies

τn0〈a, en0〉 = 〈a, en′
0
〉.

That is,

τn0λn0 = −λn0τn0 .

Having in mind that τn 
= 0 for every n ∈ N, we deduce that λn0 = −λn0 as far as
(3.5) holds, or equivalently Re (λn0) = 0 whenever (3.5) is satisfied.
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Assume, now, that (3.5) is not satisfied, that is

αn0 + τn0αn′
0

= 0. (3.6)

Let us consider m0 ∈ Λ with m0 
= n0. Observe that this is possible since, in
particular, M is given by (3.2) and the dimension of M is infinite.

Now, by (3.3), the vector

b = λn0en0 − λn0τn0en′
0
+ (αn0 + τn0αn′

0
)u

is in M . We argue as before upon considering (3.4) at b and em0 , that is,
τm0〈b, em0〉 = 〈b, em′

0
〉. Then

τm0(αn0 + τn0αn′
0
)αm0 = (αn0 + τn0αn′

0
)αm′

0
.

Since αn0 + τn0αn′
0

= 0 (i.e. our assumption (3.6)), we deduce that

τm0 =
αm′

0

αm0

.

Therefore, having in mind that em0 + τm0em′
0
∈ M , we deduce that

c = T (em0 + τm0em′
0
) = λm0em0 − λm0

αm′
0

αm0

em′
0
+

(
αm0 +

|αm′
0
|2

αm0

)
u

is also in M . Once again applying (3.4), we have τm0〈c, em0〉 = 〈c, em′
0
〉 and

therefore

αm′
0

αm0

(
λm0 + |αm0 |2 + |αm′

0
|2) = −αm′

0

αm0

λm0 + αm0αm′
0
+

|αm′
0
|2

αm0

αm′
0
.

Multiplying by αm0/αm′
0

we obtain

λm0 + |αm0 |2 + |αm′
0
|2 = −λm0 + |αm0 |2 + |αm′

0
|2,

from where, clearly, Re (λm0) = 0.
Consequently, independently if (3.5) is or not satisfied, there exists at least a

positive integer n0 ∈ N1 such that Re (λn0) = 0, as we wished to show.
In order to finish the proof of case 1, let us show that the existence of such n0 ∈ N1

yields the desired contradiction. Since D is unitary, its spectrum is contained in the
unit circle and therefore, such λn0 is either i or −i. Assume λn0 = i (the other case
is analogous). If n0 ∈ N1, by definition, there exist n′

0 ∈ N with n0 < n′
0 and λn′

0
an

eigenvalue of D, λn′
0
∈ Λ(D), such that Im (λn0) = Im (λn′

0
). Hence, Im (λn′

0
) = 1,

and therefore λn′
0

must be also i. Accordingly, i is an eigenvalue of D of multiplicity
2, which contradicts the hypotheses that the uniform multiplicity of D is one.

Case 2: D is not a unitary operator.
Now, assume D is a diagonal operator such that σ(D) is contained in a circle

with center α and radius r > 0. As in case 1, we argue by contradiction assuming
T = D + u ⊗ u has a non-trivial reducing subspace M . Since M is reducing for T ,
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it is also reducing for (1/r)(T − αI) = (1/r)(D − αI) + (1/r)u ⊗ u, which is the
contradiction.

This concludes the proof that statement (a) of theorem 3.1 holds.
Now, we will show statement (b) of theorem 3.1. As before, the key argument

will be to prove the result when D is a unitary diagonal operator.
Hence, suppose D is a unitary and u ∈ H such that 〈u, en〉 
= 0 for every n ∈ N

and 〈u, Du〉 
= 0. In order to show that there exists v ∈ H such that T = D + u ⊗
v ∈ L(H) is not normal but has non-trivial reducing subspaces, we take

v = − 1
〈u,Du〉D

∗2u.

The goal will be showing that the subspace M := span {D∗u} reduces the operator
T = D + u ⊗ v.

First, note that

〈D∗2u, en〉 = 〈u,D2en〉 = λn
2〈u, en〉 
= 0

since |λn| = 1. Then, 〈v, en〉 
= 0 for every n ∈ N.
Now, observe that

〈Dv, u〉 =
〈
− 1
〈u,Du〉D

∗u, u

〉
= − 1

〈u,Du〉 〈D
∗u, u〉 = −1.

So, we have

TD∗u = (D + u ⊗ v)D∗u = u + 〈D∗u, v〉u = u + 〈u,Dv〉u = u − u = 0.

Moreover,

T ∗D∗u = (D∗ + v ⊗ u)D∗u = D∗2u + 〈u,Du〉v = D∗2u − D∗2u = 0.

So, D∗u is a non-zero vector which turns out to be an eigenvector associated with
the eigenvalue 0 for T and T ∗.

Finally, let us show that T is not a normal operator. Assume, on the contrary, that
T is normal. Having into account condition (ii′) in Ionascu theorem 1.1, we deduce
the existence of γ ∈ C such that Dv = γu. Then, since Dv = −(1/〈u, Du〉)D∗u, we
have

D∗u = −γ〈u,Du〉u.

That is, u is an eigenvector for D∗ associated with the eigenvalue −γ〈u, Du〉.
Observe that γ 
= 0 since Dv 
= 0 and 〈u, Du〉 
= 0 by hypothesis. Therefore, there
exists n0 ∈ N such that u ∈ span {en0}, and this contradicts the fact that 〈u, en〉 
=
0 for every n ∈ N. Hence T is not a normal operator.

Now, let us prove the general case. Assume D is not unitary but σ(D) is contained
in a circle with center α and radius r > 0. Then the operator D̃ = (1/r)(D − αI)
is a diagonal unitary operator satisfying 〈u, D̃u〉 
= 0 (since 〈u, D̃u〉 = 0, would
imply 〈u, (D − αI)u〉 = 0, and therefore 〈u, Du〉 = α ||u||2 , which contradicts our
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hypotheses). Hence, from the unitary case, we ensure the existence of ṽ ∈ H such
that

T̃ = D̃ + u ⊗ ṽ

is not normal but has a non-trivial reducing subspace M . Thus,

rT̃ + αI = D + r(u ⊗ ṽ) = D + u ⊗ (rṽ)

is a non-normal operator with M as a reducing subspace. Accordingly, v = rṽ
completes the argument and the proof of theorem 3.1. �

As a consequence, the following corollary holds.

Corollary 3.2. Let D ∈ L(H) be a diagonal operator with respect to an orthonor-
mal basis (en)n�1 with uniform multiplicity one. Assume its spectrum σ(D) is
contained in a circle with center α, and let u and v vectors in H such that both
〈u, en〉 and 〈v, en〉 are not zero for every n ∈ N. If T = D + u ⊗ v ∈ L(H) has
non-trivial reducing subspaces, then u and v are linearly independent vectors.

4. Reducing subspaces for rank-one perturbations of diagonal
operators: general case

In this section, we consider the existence of reducing subspaces for rank-one per-
turbations of diagonal operators D with uniform multiplicity one but not imposing
restrictions to the spectrum of D as in the previous two sections. In particular, we
focus on the existence of reducing subspaces M such that T |M is normal as well
as the existence of reducing subspaces for self-adjoint perturbations. We start by
setting a result in the spirit of lemmas 2.3 and 2.4.

Proposition 4.1. Let T = D + u ⊗ v ∈ L(H) where D is a diagonal operator with
respect to an orthonormal basis (en)n�1 and u =

∑
n αnen, v =

∑
n βnen nonzero

vectors in H. Assume D has uniform multiplicity one and for each n ∈ N the coor-
dinates αn and βn are not simultaneously zero. Let M be a reducing subspace for
T . If u, v ∈ M or u, v ∈ M⊥ then M is trivial.

The key of the proof of proposition 4.1 relies on an argument of a theorem of
Wermer [39], which we isolate and include for the sake of completeness (see also
[32, theorem 1.25]). Recall that a normal operator T ∈ L(H) is diagonalizable if
the set of eigenvectors of T spans H.

Theorem 4.2 (Wermer, 1952). Let T ∈ L(H) be a diagonalizable normal operator.
Then, every non-zero reducing subspace of T is spanned by eigenvectors of T .

Proof. First, we claim that every non-zero reducing subspace of T contains at
least one eigenvector. In order to show the claim, let M be a non-zero reducing
subspace. Since the eigenvectors of T span H, there exists an eigenvector x not
orthogonal to M . Let Tx = λx and write x = x1 + x2 with respect to the orthogonal

https://doi.org/10.1017/prm.2022.51 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.51


1408 Eva A. Gallardo-Gutiérrez and F. Javier González-Doña

decomposition H = M ⊕ M⊥. Hence, from

Tx = T (x1 + x2) = λ(x1 + x2),

it follows

Tx1 − λx1 = x2 − Tx2

and since M is reducing, Tx1 − λx1 ∈ M and x2 − Tx2 ∈ M⊥. Thus, Tx1 = λx1

and M contains at least one eigenvector of T as claimed.
Now, let us prove the statement of the theorem. Take M a non-zero reducing

subspace for T and denote by N the closed subspace of M generated by all the
eigenvectors of T in M . Note that N is a non-zero reducing subspace because T is
normal. We claim that N = M .

Indeed, arguing by contradiction, suppose that N 
= M . Then N ′ = M ∩ N⊥ is
a non-zero invariant subspace for T which is reducing (since it is the intersection of
two reducing subspaces). Accordingly, N ′ contains at least one eigenvector z 
= 0 of
T . Thus z ∈ N⊥. But, since z ∈ M and is an eigenvector of T , z ∈ N by definition.
But this implies that z = 0, which is a contradiction. Accordingly, N = M which
yields the statement. �

We are now in position to prove proposition 4.1.

Proof of proposition 4.1. Let PM : H → M be the orthogonal projection onto M ,
which clearly commutes with T since M is reducing. The goal is to show that
either PM is the identity or the zero operator. Assume PM is not the zero operator,
QM = I − PM and suppose first that u, v ∈ M . Hence, QMu = QMv = 0.

By lemma 2.2 we have QMDPM = QMD∗PM = 0. Then, DPM = PMDPM and
D∗PM = PMD∗PM , so it follows that M is an invariant subspace for D and D∗,
that is, M is a reducing subspace for D. Thus, according to Wermer’s theorem, M
is spanned by a set of eigenvectors of D and, therefore, there exists Λ ⊂ N such
that

M = span {en : n ∈ Λ}.
Note that, if n ∈ Λ we have QMen = 0 and if n ∈ N \ Λ then QMen = en.

Now, since u =
∑

n αnen and v =
∑

n βnen and both QMu = QMv = 0, we
deduce ∑

n/∈Λ

αnen =
∑
n/∈Λ

βnen = 0.

Hence, αn = βn = 0 for every n ∈ N \ Λ which contradicts the hypothesis that αn

and βn are not simultaneously zero unless Λ = N and, PM the identity operator as
we wished to prove.

The case u, v ∈ M⊥ is analogous. �

With proposition 4.1 at hands, it is possible to characterize the reducing
subspaces M of T such that T |M is normal.
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Theorem 4.3. Let T = D + u ⊗ v ∈ L(H) where D is a diagonal operator with
respect to an orthonormal basis (en)n�1 and u =

∑
n αnen, v =

∑
n βnen nonzero

vectors in H. Assume D has uniform multiplicity one and for each n ∈ N the coor-
dinates αn and βn are not simultaneously zero. Then T has a non-trivial reducing
subspace such that T |M is normal if and only if one of the following conditions
holds:

(a) T is normal.

(b) There exists α, β ∈ C and x ∈ H such that

(D − αI)x =
〈(D − βI)x, x〉

〈u, x〉 u, (D∗ − βI)x = −〈x, u〉 v,

and M = span {x}.

Before proceeding with the proof, let us point out that it is possible to exhibit
normal operators such that their restrictions to invariant subspaces are not normal
(see [39], for instance). On the other hand, there exist normal operators such that
their restrictions to every invariant subspace is normal. This property is equivalent
to be a completely normal operator. For instance, every diagonal operator whose
spectrum is contained in a Jordan curve is completely normal. As a consequence,
every Hermitian operator is completely normal.

The proof of theorem 4.3 depends on the linear independence of {u, v, D∗u, Dv},
which we examine in the next lemma.

Lemma 4.4. Let T = D + u ⊗ v ∈ L(H) where D is a diagonal operator with respect
to an orthonormal basis (en)n�1 and u =

∑
n αnen, v =

∑
n βnen nonzero vectors

in H. Assume D has uniform multiplicity one and for each n ∈ N the coordinates
αn and βn are not simultaneously zero. Let M be a reducing subspace for T such
that T |M is normal. Then:

(i) If {u, v, D∗u, Dv} are linearly independent, then M = {0}.
(ii) If u is an eigenvector for D∗ or v is for D, then M = {0}.
(iii) If M 
= {0} and u = αv for some α ∈ C, then the spectrum of D is contained

in a line and T is normal.

(iv) If M 
= {0} and (D − αI)v = λu for some α, λ ∈ C then the spectrum of D
is contained in a circle centred in α and T is normal. The same conclusion
follows if it is assumed M 
= {0} and (D∗ − βI)u = λv for some β, λ ∈ C.

(v) If Dv = αu + βv + μD∗u for some scalars α, β, and μ ∈ C and T is not
normal, then dim M � 1.

Note that the statements (i)–(v) in lemma 4.4 cover all the possible situations
regarding the linear dependence of {u, v, D∗u, Dv}. Clearly, the linear indepen-
dence case is covered by (i). So, suppose {u, v, D∗u, Dv} is a set of linearly
dependent vectors. In such a case, (ii) covers the cases where u and D∗u or v

https://doi.org/10.1017/prm.2022.51 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.51


1410 Eva A. Gallardo-Gutiérrez and F. Javier González-Doña

and Dv are proportional. Statement (iii) deals with the situation in which u and
v are proportional, while (iv) considers the cases when {u, v, Dv} or {u, v, D∗u}
are sets of linearly dependent vectors. Finally, statement (v) deals with the gen-
eral linear dependence case assuming, in addition, that T is not normal. Note that
this assumption can be made since, otherwise, T would be normal and Ionascu’s
theorem would lead us to either statement (iii) or (iv) aforementioned.

In what follows, given T and S bounded linear operators in H, the commutator
of T and S is the operator in L(H) defined by

[T, S] := TS − ST.

Clearly, [T, S] = 0 if and only if T and S commutes.
In the proof of lemma 4.4, the following straightforward result will be repeatedly

invoked.

Lemma 4.5. Let A =
∑n

k=1 xk ⊗ yk ∈ L(H), where xk, yk ∈ H for each 1 � k � n.
Suppose that x1, . . . , xn are linearly independent vectors. If Ax = 0 for x ∈ H then
〈x, yk〉 = 0 for every 1 � k � n.

Proof of lemma 4.4. Let us begin by proving statement (i). Since {u, v, D∗u, Dv}
are linearly independent, Ionascu theorem implies that T is not normal (observe
that statement (i) in Ionascu theorem asks u and v be linearly dependent vectors
while (ii) asks Dv and u be linearly dependent). Since T |M is normal, we deduce
that M � H.

On the other hand, a straightforward computation shows

[T, T ∗] = Dv ⊗ u + u ⊗ (Dv + ||v||2 u) − D∗u ⊗ v − v ⊗ (D∗u + ||u||2 v). (4.1)

By hypotheses, T |M is normal so [T, T ∗]x = 0 for every x ∈ M . Since
u, v, D∗u, Dv are linearly independent, lemma 4.5 yields that

〈x, u〉 = 〈x, v〉 = 0

for every x ∈ M . Hence, u, v ∈ M⊥ and therefore, by proposition 4.1, M is trivial.
Now, T is not normal and accordingly M = {0}.

To prove (ii), assume u is an eigenvector for D∗ (a similar reasoning applies if v
is an eigenvector for D). Since D has uniform multiplicity one, there exists n0 ∈ N

such that u ∈ span {en0}. Without loss of generality, we may assume u = en0 . Then
equation (4.1) becomes

[T, T ∗] = Dv ⊗ en0 + en0 ⊗ (Dv + ||v||2 en0) − λn0en0 ⊗ v − v ⊗ (λn0en0 + v)

= (D − λn0I)v ⊗ en0 + en0 ⊗ ((D − λn0I)v + ||v||2 en0) − v ⊗ v.

Now, v =
∑

k βkek and βk 
= 0 for every k 
= n0 and each eigenvalue λk of D is of
multiplicity one. Hence, en0 is linearly independent of (D − λn0I)v and v. Moreover,
assume there exists β ∈ C \ {0} such that

(D − λn0I)v = βv.

Then (λk − λn0) = β for every k 
= n0 which is a contradiction. Accordingly, (D −
λn0I)v, en0 and v are linearly independent vectors, again lemma 4.5 yields that
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v, en0 ∈ M⊥ and M 
= H. Thus, proposition 4.1 yields that M = {0}, as stated in
(ii).

Let us prove now statement (iii). Assume u = αv for some α ∈ C \ {0} (observe
that α 
= 0 since u is a nonzero vector).

Assume M is a non-zero reducing subspace. We may assume M 
= H since on the
contrary, the result is just a consequence of Ionascu theorem condition (i′). We are
required to show that Λ(D) is contained in a line and that T is a normal operator.

First, observe that if v ∈ M⊥ then u ∈ M⊥ and M = {0} by proposition 4.1.
Assume, therefore, that v /∈ M⊥.

Equation (4.1) turns out to be in this case

[T, T ∗] = (αD − αD∗)v ⊗ v + v ⊗ (αD − αD∗)v. (4.2)

Now, we claim that the fact that v /∈ M⊥ implies (αD − αD∗)v = βv for some
β ∈ C. Indeed, if x ∈ M such that 〈x, v〉 
= 0, (4.2) yields

0 = 〈x, v〉(αD − αD∗)v + 〈x, (αD − αD∗)v〉v,

from where the claims follows having β = −〈x, (αD − αD∗)v〉/〈x, v〉.
So, equation (4.2) becomes

[T, T ∗] = 2Re (β)v ⊗ v.

But, once again, since T |M is normal and v /∈ M⊥, it follows that Re (β) = 0.
Hence, β = it with t ∈ R.

Finally, observe that (αD − αD∗)v = βv = itv implies

Im (αλn) = t,

so Λ(D) lies in the line {z ∈ C : Im (αz) = t} and by Ionascu theorem condition
(i′) it follows that T is normal.

This proves statement (iii).
In order to show condition (iv), assume Dv − αv = λu for some α, λ ∈ C. If

λ = 0, case (ii) yields that M = {0}, which is a contradiction. So, we may assume
λ 
= 0. Clearly, without loss of generality, we can also assume α = 0 since D − αI
is a diagonal operator of uniform multiplicity one. Thus, Dv = λu for λ 
= 0.

In addition, observe that if u and v are linearly dependent then Dv and v are
linearly dependent, and M = {0} by (ii), which is a contradiction. So we may also
suppose that u and v are linearly independent vectors.

So, assume M is a non-zero reducing subspace, Dv = λu for λ 
= 0 and {u, v}
are linearly independent. As in the proof of condition (iii), we may assume M 
= H
and the goal is to show that Λ(D) is contained in a circle and that T is normal.

Now, equation (4.1) becomes

[T, T ∗] = u ⊗ (2Re (λ) + ||v||2)u − (D∗ − αI)u ⊗ v − v ⊗ ((D∗ − αI)u + ||u||2 v)

= u ⊗ (2Re (λ) + ||v||2)u − D∗u ⊗ v − v ⊗ (D∗u + ||u||2 v) (4.3)

First, let us assume that v ∈ M⊥. Upon applying (4.3) to any vector x ∈ M , we
deduce

0 = (2Re (λ) + ||v||2)〈x, u〉u − 〈x,D∗u〉v,
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which along with the linear independence of {u, v} yields that (2Re (λ) + ||v||2) = 0
and D∗u ∈ M⊥. In addition, since M is reducing for T if follows that

Tv = Dv + ||v||2 u = λu + ||v||2 u ∈ M⊥.

Having in mind that Re (λ) = − ||v||2 /2, we deduce that Tv 
= 0. Thus, u ∈ M⊥.
At this point, we may argue either using proposition 4.1 which would yield that
M = {0} since v ∈ M⊥ or as follows. First, M is a reducing subspace for D since M
is reducing for T and u, v ∈ M⊥. Then, by means of Wermer theorem, there exists
n0 ∈ N such that en0 ∈ M . In particular, this implies that 〈u, en0〉 = 〈v, en0〉 = 0,
or equivalent, αn0 = βn0 = 0, what contradicts the hypotheses of the lemma. This
latter argument will be of use in a remark after finishing the proof of lemma 4.4.

Now, let us assume v /∈ M⊥. Once again, upon applying (4.3) to any vector x ∈ M
with 〈x, v〉 
= 0, it follows that

D∗u = μu + βv, (4.4)

where μ, β ∈ C. It can be assumed that β 
= 0. We claim that αn 
= 0 for every
n ∈ N. Indeed, from D∗u = μu + βv, it follows that for every n ∈ N

λnαn = μαn + β · βn.

So, if αn0 = 0 for some n0 ∈ N, it would imply that βn0 = 0 which contradicts the
hypotheses.

We will show that μ = 0 in (4.4) since otherwise we are led to a contradiction.
Assume, on the contrary, that μ 
= 0 in (4.4). Applying D to (4.4) we obtain

DD∗u = μDu + βDv = μDu + βλu.

Then, the eigenvalues λn of D satisfy

|λn|2 = μλn + βλ,

for every n ∈ N, since αn 
= 0 for every n ∈ N. Dividing out by −βλ (which is
different from 0), we deduce that there exist complex numbers a, b ∈ C \ {0} such
that every λn with n 
= n0 lies in

A = {z ∈ C : a|z|2 + bz = −1}.

The equation a|z|2 + bz = −1, z ∈ C is equivalent to the system

A =

{
Re (a)(x2 + y2) + Re (b)x − Im (b)y = −1,

Im (a)(x2 + y2) + Re (b)y + Im (b)x = 0,

where x = Re (z), y = Im (z) ∈ R. Observe that A is therefore the intersection of
two different conics, and hence A is a finite set of points, what contradicts the
uniform multiplicity one of D.
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Hence, μ = 0 as claimed and (4.4) becomes

D∗u = βv.

Note that u is linearly independent of D∗u because {u, v} are linearly independent.
Having in mind this and applying (4.3) to any vector x ∈ M once more time we
deduce that

(2Re (λ) + ||v||2) = 0.

That is, Re (λ) = −||v||2/2. Then, equation (4.3) turns out to be

[T, T ∗] = βv ⊗ v + v ⊗ (β + ||u||2)v = (2Re (β) + ||u||2)v ⊗ v.

On the other hand, having in mind that Dv = λu, we deduce

DD∗u = D(βv) = βλu.

Now, the fact that αn 
= 0 for every n ∈ N along with the previous equality implies
that

DD∗ = βλI.

Note that βλ is a positive number. Accordingly, the spectrum of D is contained
in a circle of center 0 and radius r =

√
βλ > 0, which is half of the statement we

wished to prove. Let us see also that T is normal.
Now, an easy computation involving coordinates in the expression Dv = λu leads

to

r ||v|| = |λ| ||u|| ,
and therefore

|λ| =
r ||v||
||u|| . (4.5)

Since Dv = λu = |λ|eiθu for θ ∈ [0, 2π), it follows

|λ|u = e−iθDv,

and by (4.5)

ru

||u|| = e−iθ Dv

||v|| .

Moreover, from Re (λ) = − ||v||2 /2 one deduces Re (re−iθ/(||u|| ||v||)) = −(1/2),
which implies that T is normal by Ionascu theorem condition (ii′). This completes
the proof of the statement (iv).

Finally, let us prove the statement (v). Assume Dv = αu + βv + μD∗u for some
α, β, μ ∈ C, and T is not normal. Since we can express

(D − βI)v = (a − μβ)u + μ(D∗ − βI)u

where a = α + 2μβ, we can assume with no loss of generality that β = 0.
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Observe that, in this case, equation (4.1) becomes

[T, T ∗] = u ⊗ ((2Re (α) + ||v||2)u + μD∗u)

− D∗u ⊗ (μu − v) − v ⊗ (D∗u + ||u||2 v).

Moreover, we can assume that D∗u, u and v are linearly independent and μ 
= 0,
otherwise cases (iii) and (iv) would yield that T is normal, a contradiction.

By hypotheses, [T, T ∗]x = 0 for every x ∈ M , so lemma 4.5 yields that (2Re (α) +
||v||2)u + μD∗u, μu − v and D∗u + ||u||2 v belongs to M⊥.

We will argue by contradiction. Assume, on the contrary, that the reducing sub-
space M has dimension strictly larger than 1. Then there exists x ∈ M \ {0} such
that 〈x, u〉 = 0. Since 〈x, μu − v〉 = 0, we have 〈x, v〉 = 0. Moreover, since x is also
orthogonal to D∗u + ||u||2 v, we have 〈x, D∗u〉 = 0. The fact that M is invariant
under T implies, in particular,

Tx = Dx + 〈x, v〉u = Dx ∈ M.

So, for every x ∈ M ∩ (span {u})⊥, Dx ∈ M and 〈Dx, u〉 = 〈x, D∗u〉 = 0. Hence,
the closed subspace M ∩ (span {u})⊥ is invariant under D.

On the other hand, M is also invariant under T ∗ because it is reducing and,
therefore,

T ∗x = D∗x + 〈x, u〉v = D∗x ∈ M.

Moreover, since Dv = αu + μD∗u we deduce 〈D∗x, v〉 = 〈x, Dv〉 = 0. In addition,
from D∗x ∈ M , it follows

〈D∗x, μu − v〉 = 0,

and therefore, 〈D∗x, u〉 = 0. Accordingly, M ∩ (span {u})⊥ is a reducing subspace
for D∗.

Now, since every reducing subspace of D contains an eigenvector because
of Wermer theorem, it follows that there exists n0 ∈ N such that en0 ∈ M ∩
(span {u})⊥.

Now, recalling that μu − v ∈ M⊥, we deduce 〈en0 , v〉 = 0. Thereby, en0 is orthog-
onal to u and v, that is, αn0 = βn0 = 0, which contradicts the hypotheses of the
lemma. Hence, the dimension of M is equal or less than one, as we wished to prove.
This concludes the proof of the statement (v) and hence that of lemma 4.4. �

Remark 4.6. A closer look at the proof of statement (iv), specifically at the argu-
ment regarding the intersection of the two different conics, allows us to remark
that the hypothesis of the uniform multiplicity one for D might be relaxed. Indeed,
observe that as far as u and v are linearly independent, a contradiction would fol-
low if we would just assume that the spectrum of D contains five or more different
eigenvalues, since an intersection of two different conics in the plane consists, at
most, of four different points. Moreover, the assumption regarding the multiplic-
ity of D is only used in this argument in the proof of (iv), so our approach allows
restating statement (iv) just assuming that D has five or more different eigenvalues.

Now, we can prove theorem 4.3.
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Proof of theorem 4.3. If T is normal, the spectral theorem for normal operators
provides plenty of reducing subspaces for T . In addition, if condition (b) is satisfied,
a simple computation shows that M is reducing for T , and since M has dimension
1, T |M is normal.

Assume now there exists a non-trivial reducing subspace M for T such that T |M
is normal. By lemma 4.4 we deduce that either T is normal or dim M = 1. Assume
T is not normal. Hence, dim M = 1 and therefore, there exists a non-zero vector
x ∈ M and α, β ∈ C such that Tx = αx and T ∗x = βx. From Tx = αx we have
(D − αI)x + 〈x, v〉u = 0, so

(D − αI)x = −〈x, v〉u.

From (T ∗ − βI)x = 0 we have (D∗ − βI)x + 〈x, u〉v = 0. Having into account that
u /∈ M⊥, we have 〈x, u〉 
= 0, and therefore

v = − 1
〈x, u〉 (D

∗ − βI)x.

Hence,

(D − αI)x =
1

〈u, x〉 〈x, (D − βI)x〉u,

which yields the result. �

Next result generalizes condition (a) in theorem 3.1 whenever rank-one pertur-
bations of diagonal operators with arbitrary spectrum are considered.

Theorem 4.7. Let D ∈ L(H) be a diagonal operator with respect to an orthonormal
basis (en)n�1 of uniform multiplicity one. Let u be a nonzero vector in H such that
〈u, en〉 
= 0 for every n ∈ N and T = D + u ⊗ u. Then, T has a non-trivial reducing
subspace if and only if T is normal.

Clearly, as a consequence of theorem 4.7, it is possible to exhibit rank-one
perturbations of completely normal diagonal operators lacking reducing subspaces.

Proof. It suffices to prove that if T has a non-trivial reducing subspace, then T
is normal since the converse is straightforward. In addition, we may assume that
D is not self-adjoint, since otherwise T would be self-adjoint and the result holds
trivially.

Thus, let M be a non-trivial reducing subspace and suppose that D is not self-
adjoint.

First, let us assume T |M is normal. By theorem 4.3 we have that either T is
normal or dim M = 1. Let us suppose that dim M = 1 since otherwise we would be
done.
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Then there exist α, β ∈ C such that Dx + 〈x, u〉u = αx and D∗x + 〈x, u〉u = βx.
Hence

xn := 〈x, en〉 
= 0

for every n ∈ N. Now,

(D − D∗)x = (α − β)x,

from where Im (λn) is constant for every n ∈ N. Thus, the spectrum of D is con-
tained in a parallel line to the real axis and by Ionascu’s theorem (i′), it follows T
is normal.

If T |M⊥ is normal, we can argue equivalently to show that T is normal.
Now, assume that neither T |M nor T |M⊥ are normal operators. If u and (D −

D∗)u are linearly dependent, then u is an eigenvector for (D − D∗), associated
with an eigenvalue λ ∈ C. Since 〈u, en〉 
= 0 for every n ∈ N, λn − λn = λ for every
n ∈ N, and hence D − D∗ = λI and T is normal. So, we may assume that u and
(D − D∗)u are linearly independent.

By assumption T |M and T |M⊥ are not normal, so there exist x0 ∈ M and y0 ∈
M⊥ such that

0 
= [T, T ∗]x0 ∈ M and 0 
= [T, T ∗]y0 ∈ M⊥. (4.6)

Note that in this case

[T, T ∗] = (D − D∗)u ⊗ u + u ⊗ (D − D∗)u (4.7)

and u /∈ M ∪ M⊥ because of proposition 4.1.
If 〈x0, (D − D∗)u〉 = 〈y0, (D − D∗)u〉 = 0, it follows that (D − D∗)u ∈ M ∩

M⊥, so (D − D∗)u = 0 and this occurs if and only if D = D∗ since 〈u, en〉 
= 0
for every n ∈ N. Hence, we can assume 〈x0, (D − D∗)u〉 
= 0.

In addition, u /∈ M so, by means of (4.6) and (4.7), 〈x0, u〉 
= 0. By considering
PM the orthogonal projection onto M and QM = I − PM , it follows that

〈x0, (D − D∗)u〉QMu = −〈x0, u〉QM (D − D∗)u.

Moreover, since QM commutes with T and T ∗ we have

DQM = QMD + QMu ⊗ u − u ⊗ QMu

and

D∗QM = QMD∗ + QMu ⊗ u − u ⊗ QMu,

so QM (D − D∗) = (D − D∗)QM . Hence, PM and QM belongs to the commutant
{D − D∗}′. Moreover,

QMu = − 〈x0, u〉
〈x0, (D − D∗)u〉 (D − D∗)QMu,

so QMu is an eigenvector for (D − D∗).
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Now, let y0 ∈ M⊥ considered in (4.6), that is, 0 
= [T, T ∗]y0 ∈ M⊥. If
〈y0, (D − D∗)u〉 = 0 then (D − D∗)u ∈ M⊥, so

(D − D∗)PMu = PM (D − D∗)u = 0,

and therefore PMu is an eigenvector associated with the eigenvalue 0. If
〈y0, (D − D∗)u〉 
= 0, we can argue similarly to deduce that PMu is also a
eigenvector for (D − D∗).

Now, recall that the eigenvalues of (D − D∗) are (2iIm (λn))n and for each n ∈ N,
the space of eigenvectors associated with 2iIm (λn) is given by

Mn = span {ek : Im (λk) = Im (λn)}.
Note that the eigenspaces Mn and Mm are orthogonal if n 
= m. Moreover, since
PMu + QMu = u and Mn 
= H for every n ∈ N (D is not self-adjoint), it follows
that both PMu and QMu are eigenvectors associated with different eigenvalues.

Moreover, there exists a partition of the positive integers N, that is, non-empty
sets N1, N2 ⊂ N such that N1 ∪ N2 = N and N1 ∩ N2 = ∅, such that

PMu =
∑

n∈N1

αnen QMu =
∑

n∈N2

αnen.

Now,

TPMu = DPMu + ||PMu||2 u ∈ M

since M is invariant under T . Since QMu ∈ M⊥, we have 〈TPMu, QMu〉 = 0. Now,
since DPMu =

∑
n∈N1

λnαnen it follows that 〈DPMu, QMu〉 = 0, so we deduce
that 〈||PMu||2 u, QMu〉 = 0, but

〈||PMu||2 u,QMu〉 = ||PMu||2 〈u,QMu〉 = ||PMu||2 ||QMu||2 ,

so PMu = 0 or QMu = 0, what contradicts lemma 2.3. �

As a byproduct of the previous results, we state the following corollary.

Corollary 4.8. Let D a diagonal operator with respect to an orthonormal basis
(en)n�1 of uniform multiplicity one and u ∈ H a non-zero vector such that 〈u, en〉 
=
0 for every n ∈ N. Then

(i) T = D + u ⊗ u has a non-trivial reducing subspace if and only if T is normal.
In particular, if the spectrum of D is not contained in a line parallel to the
real axis, T has no non-trivial reducing subspaces.

(ii) Moreover, if there exists α, β ∈ C and x ∈ H such that

(D − αI)x =
〈(D − βI)x, x〉

〈u, x〉 u

and 〈x, u〉 
= 0, then T = D + u ⊗ v has a non-trivial reducing subspace,
where v = (D∗ − βI)x.
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4.1. A remark on essentially normal operators: Behncke theorem

In this subsection, we recall Behncke’s theorem concerning the algebraic structure
of essentially normal operators and remark it in the context of the results proved.

Recall that an operator T is called essentially normal if [T, T ∗] is compact.
Behncke’s theorem [8] generalizes a previous result of [38], where the case of T − T ∗

being compact is addressed (we refer to [11, p. 159, theorem 5.4] and [25, chapter
8] for more on the subject).

Theorem 4.9 (Behncke). Let T ∈ L(H) be an essential normal operator. Then H
admits an orthogonal decomposition

H = H0 ⊕ H1 ⊕ H2 ⊕ · · · (4.8)

where

(1) each Hn is a reducing subspace for T ;

(2) T0 = T |H0 is a maximal normal operator, that is, there is no closed subspace
K0 � H0 such that K0 is reducing for T and T |K0 is normal.

(3) For n � 1 each Tn = T |Hn
has no non-trivial reducing subspaces and it is

essentially normal.

Moreover, the decomposition is unique in the sense that if Ti and Hi with i � 0
are replaced with T̃i and H̃i satisfying (1)–(3), and both T0 and T̃0 are maximal
normal operators, then after reordering H̃i for i � 1, there is a unitary operator U
commuting with T such that

U∗PHi
U = P

H̃i
and U∗TU |Hi

= T̃i (i � 0).

Observe that, if T = D + u ⊗ v ∈ L(H) is a non-normal rank-one perturbation
of a diagonal operator where D, as usual, is a diagonal operator with respect to
an orthonormal basis (en)n�1 with uniform multiplicity one and u =

∑
n αnen,

v =
∑

n βnen are nonzero vectors in H with non-simultaneously zero coordinates
for each n ∈ N, we deduce on one hand as a byproduct of lemma 4.4 and Behncke
theorem that

(a) If {u, v, D∗u, Dv} are linearly independent, or u is an eigenvector for D∗

or v is an eigenvector for D, the Hilbert space H admits an orthogonal
decomposition

H = H1 ⊕ H2 ⊕ · · ·
where for every n � 1, Hn is a reducing subspace for T and Tn = T |Hn

is a non-normal essentially normal operator with no non-trivial reducing
subspaces.

(b) The same conclusion as in (a) follows if u = αv, or (D − αI)v = λu or (D∗ −
βI)u = λv for some scalars α, λ, β ∈ C since T is not normal.
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(c) If Dv = αu + βv + μD∗u for some α, β, μ ∈ C, then the Hilbert space H
admits an orthogonal decomposition

H = H0 ⊕ H1 ⊕ H2 ⊕ · · ·
where for every n � 0, Hn is a reducing subspace for T , H0 is at most a
one-dimensional Hilbert space and for each n � 1, the operators Tn = T |Hn

are non-normal essentially normal operator with no non-trivial reducing
subspaces.

In addition, by means of corollary 4.3 and Behncke theorem, the following
consequence holds:

Corollary 4.10. Let T = D + u ⊗ v ∈ L(H) be a non-normal rank-one perturba-
tion of a diagonal operator D with respect to an orthonormal basis (en)n�1, where
u =

∑
n αnen, v =

∑
n βnen are nonzero vectors in H with non-zero simultaneously

coordinates αn and βn for each n ∈ N. Then H admits an orthogonal decomposition

H = H0 ⊕ H1 ⊕ H2 ⊕ · · ·
satisfying Behncke’s theorem conditions (1)–(3) with H0 non-trivial if and only if
H0 is one-dimensional. Moreover, if H0 = span {x} for x ∈ H \ {0}, there exists
α, β ∈ C such that

(D − αI)x =
〈(D − βI)x, x〉

〈u, x〉 u, and (D∗ − βI)x = −〈x, u〉 v.

On the other hand, in the context of Behncke theorem, one may exhibit easy
examples of rank-one perturbation of diagonal operators of multiplicity one such
that the orthogonal decomposition of H in (4.8) is trivial, namely, H0 = {0}, H1 =
H and Hn = {0} for every n � 2. Actually, theorem 2.1 or theorem 4.7 in this
context provide many of such examples. We state them as corollaries:

Corollary 4.11. Let T = D + u ⊗ v ∈ L(H) where D is a diagonal operator with
respect to an orthonormal basis (en)n�1 and u, v are nonzero vectors in H satis-
fying 〈u, en〉 
= 0 and 〈v, en〉 
= 0. Assume D has uniform multiplicity one and its
spectrum σ(D) is contained in a line. Then, the orthogonal decomposition of H in
(4.8) satisfying Behncke’s theorem conditions (1)–(3) is trivial if and only if T is
not normal.

Corollary 4.12. Let D ∈ L(H) be a diagonal operator with respect to an orthonor-
mal basis (en)n�1 of uniform multiplicity one. Let u be a nonzero vector in H such
that 〈u, en〉 
= 0 for every n ∈ N and T = D + u ⊗ u. Then, the orthogonal decom-
position of H in (4.8) satisfying Behncke’s theorem conditions (1)–(3) is trivial if
and only if T is not normal.

4.2. Rank-one perturbations of normal operators

Some of the previous results can be addressed in the context of rank-one per-
turbations of normal operators of multiplicity one and some consequences can be
derived. The first result deals with the class of unitary operators.
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Theorem 4.13. Suppose U ∈ L(H) is a unitary operator and u ∈ H is a vector
such that 〈u, Uu〉 
= 0 and {u, U∗u, (U∗)2u} are linearly independent. Then there
exists v ∈ H such that T = U + u ⊗ v has a one-dimensional reducing subspace and
T is not a normal operator.

Proof. Let us consider v = (−1/〈u, Uu〉)(U∗)2u. Note that v is well defined and

〈Uv, u〉 =
−1

〈u,Uu〉 〈U
∗u, u〉 =

−1
〈u,Uu〉 〈u,Uu〉 = −1.

Then,

TU∗u = (U + u ⊗ v)U∗u = u〈u,Uv〉u = u − u = 0.

Moreover,

T ∗U∗u = (U∗)2u + 〈u,Nu〉v = (U∗)2u − (U∗)2u = 0.

Then, M := span {U∗u} reduces T . It remains to show that T is not normal.
Assume, on the contrary, that T is a normal operator. By [28, proposition 3.1]

we have two possibilities:

(i) u and v are linearly dependent, which is absurd because v =
(−1/〈u, Uu〉)(U∗)2u and u and (U∗)2u are linearly independent by hypothe-
ses.

(ii) u and v are linearly independent and there exists α, β ∈ C such that

(U∗ − αI)u = ||u||2 βv.

That is,

U∗u − αu =
− ||u||2 β

〈u,Uu〉 (U∗)2u.

Now u, U∗u and (U∗)2u are linearly independent, so U∗u = 0 and therefore
〈u, Uu〉 = 〈U∗u, u〉 = 0, which yields a contradiction.

Hence, T is not a normal operator and the proof is finished. �

In the same circle of ideas, the following result holds.

Proposition 4.14. Let N ∈ L(H) be a normal operator and u ∈ H a non-zero
vector. Assume that there exist α, β ∈ C and x ∈ H such that 〈x, u〉 
= 0 and (N −
αI)x = (〈(N − βI)x, x〉/〈u, x〉)u. Then, the operator T := N + u ⊗ v has a non-
trivial reducing subspace, where v = −(1/〈x, u〉)(N∗ − βI)x.

The proof is a just a computation showing that T reduces M := span {x}.
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5. Rank-one perturbations of diagonal operators with multiplicity
strictly larger than one: examples

In this final section we present some examples of rank-one perturbations of diagonal
operators with multiplicity strictly larger than one in order to illustrate how the
picture of the reducing subspaces changes if we drop off the uniform multiplicity
one assumption.

Example 5.1. There exists T = D + u ⊗ v a rank-one perturbation of a diagonal
operator D with multiplicity strictly larger than one and spectrum contained in a
line such that 〈u, en〉 
= 0 and 〈v, en〉 
= 0, T has a non-trivial reducing subspace
and it is not a normal operator. It is enough to consider the operator described in
remark 2.5.

As we mentioned in § 2, this example shows that the assumption of uniform
multiplicity one cannot be dropped off the hypothesis of theorem 2.1, so the result
is sharp in that sense.

Next example is somehow an extreme case regarding rank-one perturbations of
diagonal operators with multiplicity strictly larger than one with reducing subspaces
such that lemmas 2.3 and 2.4 and proposition 4.1 do not hold.

Example 5.2. Let u, v ∈ H and consider T := I + u ⊗ v, where I denote the iden-
tity operator. Observe that I is a self-adjoint and unitary diagonal operator,
but every closed subspace M such that u, v ∈ M is reducing for T . Clearly, the
behaviour of this operator differs completely from those satisfying theorems 2.1
and 4.3 since the aforementioned lemmas and proposition play an essential role in
their corresponding proofs.

Finally, we use proposition 1.2 to show that the assumption of uniform
multiplicity cannot be dropped off theorem 4.7.

Example 5.3. Let (λn)n be any sequence in the complex plane such that λ1 = λ2

and let D be the diagonal operator such that Den = λnen for every n ∈ N. Consider
u ∈ H such that 〈u, en〉 
= 0 for every n ∈ N. Then, the operator T := D + u ⊗ u
has a non-trivial reducing subspace.
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