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ON HERMITE-FEJER TYPE INTERPOLATION

H.-B. Knoop AND B. STOCKENBERG

For the Hermite-Fejér interpolation operator of higher order

K;Q’B) constructed on the roots xig’s) 1 £k =m, of the
Jacobi-polynomial P;a’s) it is shown that K;&,B) is positive

for all m €N, if (a, B) € [-%, -%]2 . Further there is given -

an error bound, which implies 1lim “flK;a’B)f = 0 for arbitrary
Fiimatd

fecI) end (a, ) € [-%, -5[° .

1. Formulation of the problem and main results

In this paper we investigate the question of convergence for Hermite-
Fejér interpolation of higher order, introduced by Kryloff and Stayermann
[§]. To state the problem, let m €N , (a, B) € J-1, w[2 and let

1< x(u,s) < L8

(1.1) mm m=-1,m

(a,8)
. < xlm <1

be the roots of the Jacobi-polynomial P(G,B) of degree m (with regard

m

to the weight function z > (1-z)% » (1+z)B ). We denote by C(I) the
Banach-space of all continuous real-valued functions on I = [-1, 1] with

the sup-norm ||*|| . For any f € C(I) there is an uniquely determined

polynomial K(a’B)

" f of degree at most bm - 1 satisfying the conditions
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(0,B) o (a,B)] _ (a,B)
Km f[ka ]—f[ka ) , 1
(1)
{Kr(na’s)f] [x]s;’s)] =0, 1<k=m, 2=1,2, 3.

This polynomial can be represented in the following form:

KB pz) - Z w88 (g [(a B) (o )) . f[xl((:,e)J ’

1A
X
1A
3

1(@,B)

where ka = b is the kth Lagrange polynomial of degree m - 1
determined by the nodes (1.1) and where u](CZ’B) is given by
3 .
P - } ol o)
1=0
with
(o) _
Ym = 1,
(l) —_ ’ (aae)
“m = _hlkm[ka ] ’
2 - . e |(2,B) . | (,B)
Ym = 10 {ka[ka ]) - 2Z7'<m[ka ] :
and
(3) v (0B Lo [ (a,B) v | (@,8) 2,(3)],.(,B)
A 1olkm[x ] ka[ka ] - 20 [ka{ ]) Ska [km J .

As in the case of Hermite-Fejer interpolation the question arises for

which (o, B) € 1-1, "°[2 we have

(1.3) ;’:.: ”f-Kr(na’B)f” =0 for all f € C(I) .

It was shown first that (1.3) is valid in the case a« = 8 = -0.5 (ef.
Kryloff and Stayermann [§1, Laden [9] as well as Sharma and Tzimbalario

[721). fThen it was shown that estimations of

“f_KrSI-0.5,_O-5)fu a.nd Of f(x)-Kfn-o.S’_o'S)f(x)

(for = € I ) by the modulus of continuity and by the modulus of smoothness

https://doi.org/10.1017/50004972700026101 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700026101

Hermite-Fejér type interpolation 41

of f can be given (ef. Stancu [713], Florica [2], Haussmann and Knoop [61],
Mills [10], Prasad [11] and Gonska [3, 4]). Moreover, there exist error
bounds for subspaces of C(I) (ef. Gonska [3, 4] as well as Goodenough and
Mills [5]). In these investigations the positivity of the operators

K(—O-S,-O-S)

' plays a fundamental role. Now the positivity of these

operators is equivalent to

u£;0-5,—0-5)(x) >0 forall x €I, 1=k=m.
In [7] it was shown that for all m € N we have

("0'5,_()'5)

U (z) 2% forall x €I, 1=<k=m.

Other pairs (o, B) were considered by Laden. He has shown in [9] that
(1.3) is valid for all pairs (&, B) with

(o, B) € [-%, -%]° v [-%, -%[° ,

0,0
and that there is a function f € C(I) such that K( %)

m f(1) does not

converge to f(1) in the case o = -0.25 .

In this paper we show that
R K;“’B)f € ¢(I)

is a positive operator for a wider field of pairs (a, B) , namely for all
(a, B) € [-%, -%]° , and that (1.3) holds even for all

(o, B) € [-%, -5[2 . To formulate more precisely

THEOREM 1. et (a, B) € [-%, -%)° » then for any m € N , any
ke{r, ....m} andany =z € I we have
{a,B) y 3, 232 1
m (x) 2 —3n” + 2" - 2n + 1 = =

with n = max(a, B) + 1 .

THEOREM 2. Let (a, B) ¢ [-%, —%[2 » then we have for any f € C(I),
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o(f, Va'®hy if min(a, B) > %
w(fa v mh0+l * log m) , f min(a, B) = -% .

Here O = max(a, B, -0.5) , w denotes the usual modulus of continuity and

"f_K(a,B)

m

Az

D is a positive constant independent of f and m .

2. Proof of Theorem 1
s 112 .
Let m € N and (a, B) € [-%, -%]° be given. Then for the sake of
simplicity we put
Y :=a-8,

§ :=a+B+2,

and
M := m(m+o+B+1) .
We further use the notation
o fe,B) _ 7(0,B) _ . (a,8)
Ty =X , Zk = ka and W = W .

Prom the differential equation for the Jacobi-polynomials (see Szegl

[15]) we conclude

2
y+8x. Y+8x
k k 2
(2.1) uk(x) =1-2-° > ° (x—xk) + %}{———EJ . (x—xk)
l-x l-x
k k
1 'x—xk 2
+ < I:;E . sk(x) . [%-(M—G)[l—xk]-B-xk-(y+6xki}
%k
( 3 2
Y+8zx (y+6zx, ) y+8z
k 1, . - k 1 . k . 3
- 2] 30 3 *+5(8+2) 5| * =)
-y 1-z° 1-z°
k k
with
2v+(26-1)*x
s, (z) = sig’s)(x) =1 - ———————E———E . (x—xk]

l—xk

Now the assertion of Theorem 1 is an immediate consequence of the two
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following lemmas.

LEMMA 1. PFor any (a, B) € [-%, —%]2 ,any k € {1, ..., m} and any
x € I we have

8£Z’B)(x) > min(-(20+%), -(28+%)) =z 0 .

Proof. sk being a linear function it is sufficient to consider

sk(l) and sk(—l) . We compute

1l-x

= 4B+3 | Tk
Sk(l) = -—(20-"'%) + > 'l—_:xz
and
1+x
_ Lot3 | k
sk(-l) = —(2B+%) + - 1z, . ]

Now taking into consideration the estimation
L(M-8) - 1—x2 -8+ x < (y+bz ) > (y+6x )2
k k : k- k

(ef. Laden [9, Lemma 41) and putting for fixed k € {1, ..., m} and, for
fixed x €I ,

y+6xk
t := N 5 Y= r-T,
we get for any (o, B) € [-%, —%]2 .
2 . 5,12 2 2 yrx
w (x) = (1-ty)° + 2(ty)° + 2(ty)° - s, (z) - M(ty)° » |1 - 2ty +
k 6 3 k l-x2

y*x 3
2 1 k 1 tey
- (ty)~ o [%y * 3| - (6+2) >

1-x. l—xk
Thus we have for any x € I and all uk the estimation

(2.2) w(z) 2 hiz, =, v, 8)

with
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X
h[x, Tps Y 6] =-% 8t2+t °—k2+5;22y3+2t2y2-2ty+1 .
1—:ck l—xk

Now % can be estimated from below as shown in the following lemma.
LEMMA 2. For any (a, B) € [-¥, -%)° we have

inf min Az, Tps Yo ) = —§n3 + .‘:-—:.n2 -2n +1
xke]-l,l[ x€[-1,1]

with 1 = max(a, B) + 1 .
Proof. For any (o, B) € [-3%, -%]2 we have y € [-%, 3] and
§ ¢ [%, -22] . Since h(x, s Yo §) = hf-x, T, <Y, 6) we assume Y = O

in the following. At first we show that A 1is a monotone function of x .

Let t #0 . If there is a zero of dh/3x we then have

X.

A :=-ht2—t-—Ke—L22—ZO.
l—ack 1—:ck

This implies ¢ ° z, <0, hence t>0 and %, < 0 . From this we
conclude T, > -0.5 . Since A =0 implies that A has a zero (as a

polynomial in ¢ ) we have

.’L‘2
k - 16 §+2 >
2 2 1 x2
[1-xk) k
But this is impossible since &z ¢ [-0.5, 0[ . Therefore we have for

%, € J-1, 1{ , v € [0, 0.5] and 6 € [0.5, 1.5] ,

min  hfx, z,, v, 8) = min(n(-1, s Y 8), n(1, =z, v, 8)) .
x€{-1,1]

Next we compare h[—l, Lps Ys 6] with h(l, X, . Y, 5) . We put

T := (Y+6xk) /(l-xk) and compute
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x
h(-l,»‘ck,Y,5]=%T3+[2+;——k— . 12

(6+2) (14, )
+[2+},_¥
6 l—xk

] e T+ 1 =:u(T) .

If = <0 it is easily seen that (3/3T)u(T) has no zero and hence

(3/3T)u(t) > 0 . In this case we get

hii, -z, v, 8) = u[T - l—f}c;] < u(1) = (-1, T Y 8) .

If . 20 we have T 2 0 and therefore h(-l, xk, Y, 6) > 1 . Since we
will see later on that

int  h(1, x,, v, 8) <1,
xke]-l,l[

there follows for any Yy € [0, 0.5] , & € [0.5, 1.5] ,

inf min h(x, Ty s Y, 6) = inf h(l, Ly Y, 6) .
xké]-l,l[ x€e[-1,1] xkE]—l,l[

We now consider the function hl : J-1, 1[ 3> 2+~ AK(1, 2z, v, 8§) for fixed

Y and § ,

2
Y+8x (8+2) (1-z,) Y+8x
k + 1 ko, 2 k

l+xk l+xk

e

8
X

o

y+6xk]2 . xk . Y+6xk‘3

1+:ckJ 1+, 3 1+ka

-1

Obviously hl has a continuous extension to a function on ]-1, 1]

l . We now show that

v

Evidently, for z < ~-(y/8) we have hl(xk]

inf A (x,) =k (1)
xkelfl,ll l( K 1

Since we will see that hl(l) <1 , it is sufficient to show that there is
no =z, with -(Y/§) <z <1 and hl(xk) <h (1) . It is evident that

for the derivative hi we have hi(—(y/d)] < 0 . On the other hand it
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follows that

hifx,) = —t [A'x2+B°x +C]
1Yk (l+xk) N k k

with
A= -ta® - 230 - 88> - 228% - u3g - Ba®B - 1608° - kooB - 18 ,

B = -=q

lho + 1683 + h982 + Log - 16a28 - 1608 + %}

>

+

C = -4y 90, - 883 - 13162 - 158 - 8a%B + 16aBZ + 2haB - L& .

3

Now sign hi(l) sign(A+B+C) and

A+B+CS-333a2—ha—§<0.
If we now assume that there is an g € ]-(y/8), 1[ with hl[xk) < hl(l) ,

it follows that hi has two different zeros in the interval ]-(Y/8), 1l
and therefore B2 > L4C and A <0 . Now

Cc = (12(—“?7—88) + 16(1(64-%)2 - 863 - %82 - 158 _ % <0 .
We consider two cases.

CASE 1. B > 0 . We show that in this case the middle-point -(B/24)
of the zeros of hi satisfies -(B/24) > 1 , that is, a contradiction.
Indeed, from -(B/24) = 1 there follows LAC = -2BC and B = -2C . Now
2

(

B+2C=a —35-328) + a(h+328+3282) + %ﬁBz + 128

It is B + 2C =2 0 only if
_ 212 (2 46,2
D(B) := (4+32B+328°)° + L(3+328) (428°+128)
=0
But using Descartes' rule we see that D has exactly one zero B with

B. = -% and from D(-%) < 0 we conclude that D(B) <0 if

0
B € [-0.75, -0.25] . Thus B + 2C < 0 and therefore -{(B/24) > 1 .

CASE 2. B < 0 . We will show that in this case we have
-(B/24) = -1 . From the assumption -1 < —(B/24) we conclude similar as
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above B < 2C . Now we have

2¢ - B = 32a(8+1)2 - r(B)

where r with

r(B) = 3283 + 24887 4 12 + &2

is an increasing function of B . From this we see that 2C - B < 0 ;
hence we get -~(B/24) =< -1

From Case 1 and Case 2 we conclude that hi cannot have two distinct
zeros in 1]-(y/8), 1[ . Therefore

inf A (x,) =k (1)
xkéﬁfl,l] b k) 1

The result is

inf min  h(zx, Les Yo §) = -2n” + —_n2 -2n +1 .
%, €]-1,1[ z€[-1,1]

Now the right side of this equation is a strictly decreasing function of

N . Therefore

L

56 1 192
which completes the proof. a

From Lemma 2 we get in view of formula (2.2) the assertion of Theorem

In the case of a =B = -% we have - as an improvement of the result

in [7] - the estimation

m 16

u7((_0-5,_0-5)(x) > 5
for any m €N , any k=1, ..., m and any x € I .

3. Proof of Theorem 2

. a,
For (a, B) ¢ [-%, -%]2 the mappings K; B) form a sequence of
positive linear operators from C(I) into C(I) . If e is a constant

function we have K(a’B)e =e

n ; therefore the theorem of Bohman-Korovkin
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(ef. DeVore [1]) yields for any =z € I ,

(3.1) £(2)-k B p(2)| = 207, e (2)])

with

The function s; can be estimated from above. We have

LEMMA 3. For Jacobi abscissas, with (a, B) € [-%, —%]2 , there

exists a positive constant D = D, 8 independent of m such that we have
b

for any x €1,

2 mo* , if min(a, B) > <% ,
E:m(x) =D -
’"heﬂ log m , if min(a, B) = -%
with © = max(a, 8, -%) .
Proof. We get from (2.1) with P = Pr(na’B) .

Ei(x) = Z w(x) ¢ (z-z )2 . Z;:(x)

m P2(.'x:

=D * ¥ - ()
=} [1-.7: }( ]) k
2.4 L
m mP (x) m Pl(x)
+ D2 * Z 1 + D_ - m R

k=l [1-x§]2'(P,;,(xk]]h P oa [1'“’13)3(%(%])1‘

where Dl’ D2, D3 are positive constants depending only on (a, B) .
Because of the uniform boundedness of

m

m
= ana Y 15(x)

& -2 1)) k=1
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(ef. for example, Szdsz [14]) we get in view of Szegd [15, Chapter T7.32,
Chapter 8.91],

2 < . ,2*max(a,B8,-0.5)
em(x) =< Dh m

m 6 kha+6 khB+6

’-Pmax((l,s,-o-S) . ”’__ —_— e
L | Lho+8 48+8
m m

+ D_*m
> k=1 k

(ef. also Laden [9, proof of Lemma 2]).

Since
m )4 ma if ‘D>-%,
m-l“pm_2 D) K2 < p . \
k=1 6 .
mlogm , if ¢ = -% ,
and
20 < b+l =0 if -3¢ =-%,
the proof is complete. ]
Combining the estimation of Lemma 3 and formula (3.1) yields the proof
of Theorem 2. In the special case o =8 = -0.5 we derive from Theorem 2

the relation
"f_Kr(n-O-S,-O-S)f“ < ou(f, VY

(ef. Stancu [13]).
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