Bull. Aust. Math. Soc. 100 (2019), 182–188 doi:10.1017/S0004972719000352

A BOUND FOR THE CHROMATIC NUMBER OF (*P*5, GEM)-FREE GRAPHS

KATHIE [CAMERON,](https://orcid.org/0000-0002-0112-2494) [SHENWEI](https://orcid.org/0000-0002-0287-4591) HUANG^{\boxtimes} and OWEN [MERKEL](https://orcid.org/0000-0002-8839-6243)

(Received 30 December 2018; accepted 7 February 2019; first published online 28 March 2019)

Abstract

As usual, P_n ($n \ge 1$) denotes the path on *n* vertices. The gem is the graph consisting of a P_4 together with an additional vertex adjacent to each vertex of the P_4 . A graph is called (P_5 , gem)-free if it has no induced subgraph isomorphic to a P_5 or to a gem. For a graph G , $\chi(G)$ denotes its chromatic number and $\omega(G)$ denotes the maximum size of a clique in *G*. We show that $\chi(G) \leq \lfloor \frac{3}{2} \omega(G) \rfloor$ for every (*P*₅, gem)-free graph *G G*.

2010 *Mathematics subject classification*: primary 05C15; secondary 05C75, 05C85, 68R10. *Keywords and phrases*: graph colouring, hereditary classes, chi-bound.

1. Introduction

In this paper, all graphs are finite, simple and undirected.

As usual, given a positive integer *n*, we denote the path on *n* vertices by *Pn*. For an integer $n \geq 3$, C_n is the cycle on *n* vertices. The gem is the graph consisting of a P_4 together with an additional vertex adjacent to each vertex of the *P*4.

Given graphs *G* and *H*, we say that *G* is *H-free* if no induced subgraph of *G* is isomorphic to *H*. Given a graph *G* and a family H of graphs, we say that *G* is H -free if *G* is *H*-free for all $H \in H$.

A *clique* in a graph *G* is a set of pairwise adjacent vertices of *G*; a *stable set* is a set of pairwise nonadjacent vertices of *^G*. The *clique number* of *^G*, denoted by ω(*G*), is the maximum size of a clique in *G*. A *q-colouring* of *G* is a function $c: V(G) \rightarrow \{1, \ldots, q\}$, such that for each edge *uv* of *G*, $c(u) \neq c(v)$. The *chromatic number* of a graph *G*, denoted by $\chi(G)$, is the minimum number *q* for which there exists a *q*-colouring of *G*. A graph *G* is *perfect* if all its induced subgraphs *H* satisfy $\chi(H) = \omega(H)$.

Shenwei Huang is the corresponding author. The research of the first author was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2016-06517; the research of the second author was supported by the National Natural Science Foundation of China grant 11801284; the research of the third author was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2016-06517 and an NSERC Undergraduate Student Research Award. c 2019 Australian Mathematical Publishing Association Inc.

A class of graphs is called *hereditary* if it is closed under isomorphism and taking induced subgraphs. A hereditary class G of graphs is said to be χ -bounded if there exists a function *f* such that every graph $G \in \mathcal{G}$ satisfies $\chi(G) \leq f(\omega(G))$; the function *f* is called a *χ*-*bounding function*. Gyárfás [[6\]](#page-5-0) introduced *χ*-bounded graph classes as a generalisation of perfect graphs.

Gyárfás $[6]$ $[6]$ showed that for all positive integers *n*, the class of P_n -free graphs is *χ*-bounded. It is well known that P_4 -free graphs are perfect [\[9\]](#page-5-1), and thus are *χ*bounded with identity *χ*-bounding function. However, for $n \ge 5$, the best *χ*-bounding function known for the class of P_n -free graphs is exponential: it was shown in [\[5\]](#page-5-2) that every P_n -free graph *G* satisfies $\chi(G) \leq (n-2)^{\omega(G)-1}$. If a second graph is forbidden in addition to forbidding a path, much better bounds are possible. Choudum, Karthick addition to forbidding a path, much better bounds are possible. Choudum, Karthick and Shalu [\[2\]](#page-5-3) proved that every (P_6 , gem)-free graph *G* satisfies $\chi(G) \leq 8\omega(G)$ and that every (P_5, C_4) -free graph *G* satisfies $\chi(G) \leq \frac{5}{4}\omega(G)$. Gaspers and Huang [\[4\]](#page-5-4) showed that every (P_6, C_4) -free graph *G* satisfies $\chi(G) \leq \frac{3}{2}\omega(G)$. This was recently
improved by Karthick and Maffray to $\chi(G) \leq \frac{5}{2}\omega(G)$. [7], which is an optimal χ improved by Karthick and Maffray to $\chi(G) \leq \left[\frac{5}{4}\omega(G)\right]$ [\[7\]](#page-5-5), which is an optimal χ -
bounding function for the class. Chudnovsky and Sivaraman [3] proved that every bounding function for the class. Chudnovsky and Sivaraman [\[3\]](#page-5-6) proved that every (P_5, C_5) -free graph *G* satisfies $\chi(G) \leq 2^{\omega(G)-1}$.
Chaudum *V* arthight and Shalu [2] proved

Choudum, Karthick and Shalu $[2]$ proved that for any $(P_5, \text{ gem})$ -free graph G , $\chi(G) \leq 4\omega(G)$. In this note, we give a better bound by showing that $\chi(G) \leq \lfloor \frac{3}{2}\omega(G) \rfloor$.

2. Definitions

Let $G = (V, E)$ be a graph. We use $|G|$ to denote $|V|$. For $U \subseteq V$, let $G[U]$ denote the subgraph of *G* induced by *U*. For $v \in V$, let $N(v)$ denote the open neighbourhood of *v*. The *degree* of *v*, denoted by $d(v)$, is $|N(v)|$. The *complement* of *G* is denoted by \overline{G} . Let *G* and *H* be two vertex-disjoint graphs and let *x* be a vertex of *G*. By *substituting H* for *x* we mean deleting *x* and joining every vertex of *H* to each of the vertices that was adjacent to *x* in *G*.

A set *M* of vertices with $2 \le |M| \le |V(G)| - 1$ is a *homogeneous set* in *G* if for each vertex $x \in V(G) \setminus M$, *x* is adjacent to all vertices of *M* or to no vertices of *M*. A graph that contains no homogeneous set is called *prime*. A homogeneous set *M* of *G* is said to be *maximal* if no other homogeneous set properly contains *M*. The graph *G* [∗] obtained from *G* by contracting every maximal homogeneous set of *G* to a single vertex is called the *characteristic graph* of *G*. Note that if *G* is prime, then $G^* = G$ by the definition.

We say that a graph *G'* is obtained from a graph *G* by *blowing up vertices of G into cliques* if *G*^{\prime} consists of the disjoint union of cliques K_u , for every $u \in V(G)$, and all edges between cliques K_u and K_v exactly when $uv \in E(G)$. This is the same as substituting clique K_u for vertex *u* (for all *u*).

Let *A* and *B* be two disjoint sets of vertices of *G*. We say that *A* is *complete* to *B* if every vertex of *A* is adjacent to every vertex of *B* and we say that *A* is *anticomplete* to *B* if no vertex of *A* is adjacent to any vertex of *B*.

FIGURE 1. A specific graph is a graph shown here or one of its prime induced subgraphs.

A graph is called *co-connected* if its complement is connected. A graph is called *chordal* if it has no induced cycle on four or more vertices, and *co-chordal* if its complement is chordal. A vertex v is *simplical* if the set of vertices adjacent to v induces a clique. A vertex ν is *co-simplicial* if the set of vertices not adjacent to ν induces a stable set. A graph is said to be *matched co-bipartite* if its vertex set can be partitioned into two cliques C_1 and C_2 with $|C_1| = |C_2|$ or $|C_1| = |C_2| - 1$ such that the edges joining C_1 and C_2 are a matching and at most one vertex in each of C_1 and C_2 is not covered by the matching. Brandstädt and Kratsch [[1\]](#page-5-7) called a graph *specific* if it is one of the three graphs in Figure [1](#page-2-0) or one of their prime induced subgraphs.

Consider the vertices of C_5 to be ordered v_1, v_2, v_3, v_4, v_5 where v_i is adjacent to v_{i+1}
od 5). For a graph G and a vertex *v* of G, let the extension operation ext(G, *v*) denote (mod 5). For a graph *G* and a vertex *v* of *G*, let the extension operation $ext(G, v)$ denote replacing *v* with a C_5 consisting of new vertices v_1 , v_2 , v_3 , v_4 , v_5 such that v_2 , v_4 and v_5 have the same neighbourhood in *G* as *v* and the only neighbours of v_1 and v_3 are their neighbours in the cycle. For a set of vertices $U \subseteq V$ of G , let ext (G, U) denote the result of repeatedly applying the extension operation to all vertices of U. For $k \ge 0$, let \mathcal{C}_k be the class of prime graphs $G' = \text{ext}(G, Q)$ resulting from extending a co-chordal geometries of *G* gem-free graph *G* by a clique *Q* of exactly *k* co-simplicial vertices of *G*.

3. Previous results

We will use the following known results to prove our result.

THEOREM 3.1 (Brandstädt and Kratsch [[1\]](#page-5-7)). *A connected and co-connected graph G is (P*5*, gem)-free if and only if the following conditions hold.*

- (1) *The homogeneous sets of G are P*4*-free.*
- (2) *For the characteristic graph G*[∗] *of G, one of the following conditions holds:*
	- (a) *G* ∗ *is a matched co-bipartite graph;*
	- (b) *G*[∗] *is a specific graph;*
	- (c) there is a $k \geq 0$ such that G^* is in \mathcal{C}_k .

Lemma 3.2 (Gaspers and Huang [\[4\]](#page-5-4)). *Let G be a graph such that each homogeneous set of G is a clique. If the characteristic graph* G^* *of G satisfies* $\chi(G^*) \leq 3$, then $\chi(G) \leq \lfloor \frac{3}{2} \omega(G) \rfloor$ $\chi(G) \leq \lfloor \frac{3}{2}\omega(G) \rfloor.$

Lemma 3.3 (Lovász [[8\]](#page-5-8)). *The graph obtained by substituting perfect graphs for some vertices of a perfect graph is also perfect.*

4. Results

In this section, we prove our main result. First, we prove the following lemma.

Lemma 4.1. *Let G be a connected (P*5*, gem)-free graph and H a homogeneous set of G* that is not a clique. Then there exists a connected induced subgraph G' of G with $|G'| < |G|$ such that $\chi(G') = \chi(G)$ and $\omega(G') = \omega(G)$.

Proof. Let *N* and *M* be disjoint subsets of $V(G) \setminus H$ such that *H* is complete to *N* and anticomplete to *M*. Note that *N* is nonempty since *G* is connected. Since *G* is gem-free, it follows that $G[H]$ is P_4 -free. It has been shown that the class of P_4 -free graphs is perfect [\[9\]](#page-5-1). Construct G' from G by contracting the vertices of H to a clique K of size $\omega(G[H])$. Clearly *G'* is a connected induced subgraph of *G*. Since *H* is not a clique, it follows that $|G'| < |G|$. We now show that $\nu(G) = \nu(G')$ and $\omega(G) = \omega(G')$. Since *G'* follows that $|G'| < |G|$. We now show that $\chi(G) = \chi(G')$ and $\omega(G) = \omega(G')$. Since *G'* is an induced subgraph of *G* $\omega(G') \leq \omega(G)$ and $\chi(G') \leq \chi(G)$. So we must prove the is an induced subgraph of *G*, $\omega(G') \leq \omega(G)$ and $\chi(G') \leq \chi(G)$. So we must prove the reverse inequalities reverse inequalities.

We first examine $\omega(G)$ and $\omega(G')$. Suppose that a largest clique in *G* contains a largest of *H*. Then a largest clique in *G* would include a largest clique in *H* and some vertex of *H*. Then a largest clique in *G* would include a largest clique in *H* and some vertices in *N*. This clique would also appear in *G'*, so $\omega(G) \leq \omega(G')$. Now suppose that the largest clique is some subset of the largest clique in *G* contains no vertex of *H*. Then the largest clique is some subset of *N* ∪ *M*. Since *N* ∪ *M* ⊆ *V*(*G*[']) it follows that $\omega(G) \leq \omega(G')$. Therefore, $\omega(G) = \omega(G')$.
Next we examine $\omega(G)$ and $\omega(G')$. Colour *G*' with $a := \omega(G')$ colours Let S.

Next we examine $\chi(G)$ and $\chi(G')$. Colour *G'* with $q := \chi(G')$ colours. Let S_1, \ldots, S_q the colour classes. Since *K* is a clique, we may assume that the *i*th vertex *k* be the colour classes. Since *K* is a clique, we may assume that the *i*th vertex k_i of *K* is in *S_i* for $1 \le i \le |K|$. Since *G*[*H*] is perfect, $\chi(G[H]) = \omega(G[H]) = |K|$. Let $D_1, \ldots, D_{|K|}$ be a |*K*|-colouring of *H*. Since *H* contains *K*, we may assume that $k_i \in D_i$.
Now $S_1 \cup D_2$ $S_{X_1} \cup D_{X_2}$ $S_{X_3} \cup S_2$ is a *a*-colouring of *G*. This shows that Now *S*₁ ∪ *D*₁, ..., *S*_{|*K*|} ∪ *D*_{|*K*|}, *S*_{*K*|+1}, ..., *S*_{*q*} is a *q*-colouring of *G*. This shows that $\gamma(G) \leq \gamma(G')$ So $\gamma(G') = \gamma(G)$ $\chi(G) \leq \chi(G')$. So, $\chi(G')$) ⁼ χ(*G*).

We are now ready to prove the main result of this paper.

THEOREM 4.2. Let G be a $(P_5, \text{ gem})$ -free graph. Then $\chi(G) \leq \lfloor \frac{3}{2} \omega(G) \rfloor$.

PROOF. Recall that G^* denotes the characteristic graph of G. We prove the theorem by induction on $|G|$. If G is not connected, then we are done by applying the inductive hypothesis to each component of *G*. So, we may assume *G* is connected. If *G* is not co-connected, then $V(G)$ can be partitioned into two nonempty subsets V_1 and V_2 such that V_1 is complete to V_2 . Since G is gem-free, it follows that $G[V_i]$ is P_4 -free and so *G* is also P_4 -free. Hence, $\chi(G) = \omega(G)$ and so the theorem holds. So, we may assume *G* is co-connected. If *G* contains a homogeneous set that is not a clique, then we are done by Lemma [4.1](#page-3-0) and by the inductive hypothesis. So, we can assume that each homogeneous set of *G* is a clique. This implies that *G* is obtained from *G* [∗] by blowing up vertices of G^* into cliques.

Since *G* is connected and co-connected, it follows from Theorem [3.1](#page-2-1) that *G* [∗] must satisfy the following:

- (1) G^* is a matched co-bipartite graph;
- (2) $\overline{G^*}$ is a specific graph;
- (3) there is a $k \ge 0$ such that G^* is in \mathcal{C}_k .

We now consider each outcome of Theorem [3.1](#page-2-1) and prove the claimed bound for each case.

Case 1. Suppose that *G*[∗] is a matched co-bipartite graph.

PROOF. Let *G*^{*} be a matched co-bipartite graph. Co-bipartite graphs are perfect. It follows from Lemma [3.3](#page-2-2) that *G* is also perfect. Thus, $\chi(G) = \omega(G)$.

Case 2. *G*[∗] is a specific graph.

PROOF. From Lemma [3.2](#page-2-3) it is enough to show that G^* is 3-colourable. It can be readily checked that each of the graphs in Figure [1](#page-2-0) can be partitioned into 3 cliques. So, their complements are 3-colourable, as are all of their prime induced subgraphs. Thus, $\chi(G) \leq \lfloor \frac{3}{2}\omega(G) \rfloor$. $\frac{3}{2}\omega(G)$.

Case 3. There is a $k \ge 0$ such that G^* is in \mathcal{C}_k .

Proof. If $k = 0$, then $G^* \in \mathcal{C}_0$ and so G^* is a prime co-chordal gem-free graph. Cochordal graphs are perfect. It follows from Lemma [3.3](#page-2-2) that *G* is perfect. Now suppose that $k \geq 1$. Then G^* is obtained from some prime co-chordal gem-free graph by applying the extension operation at least once. Let G' be the graph before applying the last extension operation and $G^* = \text{ext}(G', v)$ for some $v \in V(G')$. Note that G^* has the structure illustrated in Figure 2. Then $\{v_1, v_2, v_3, v_4, v_5\}$ induces a G_5 in G^* and v_3 the structure illustrated in Figure [2.](#page-5-9) Then $\{v_1, v_2, v_3, v_4, v_5\}$ induces a C_5 in G^* and v_2 , v_3 and v_4 are adjacent to the neighbours of *v* and the only neighbours of *v*, and *v*₂ are v_4 and v_5 are adjacent to the neighbours of *v*, and the only neighbours of v_1 and v_3 are their neighbours in the cycle. The degree of v_1 and of v_3 in G^* is 2. Recall that *G* can be obtained from G^* by blowing up vertices into cliques, and let V_i be the clique that was substituted for *v_i* for *i* = 1, 2, 3, 4, 5 when *G* was obtained from G^* . Since $V_4 \cup V_5$ is a clique in *G* it follows that $|V_4| + |V_5| \le \omega(G)$. Thus at least one of *V_t* and *V_t* has size clique in *G*, it follows that $|V_4| + |V_5| \le \omega(G)$. Thus at least one of V_4 and V_5 has size at most $\frac{1}{2}\omega(G)$, say *V*₅. (If it is *V*₄, then apply the following argument with *V*₁ replaced
by *V*₂). Also, *V*₂ \cup *V*₂ has size at most $\omega(G)$. Thus, any vertex $\mu \in V$, has degree at by *V*₃.) Also, *V*₁ \cup *V*₂ has size at most $\omega(G)$. Thus, any vertex $u \in V_1$ has degree at most $\frac{3}{2}ω(G) - 1$ since it has at most $\frac{1}{2}ω(G)$ neighbours in *V₅* and $ω(G) - 1$ neighbours in *V₁* + *V₆* By the induction hypothesis $y(G, y) \le \frac{3}{2}ω(G, y) \le \frac{3}{2}ω(G)$. Colour all in $V_1 \cup V_2$. By the induction hypothesis, $\chi(G - v) \leq \frac{3}{2}\omega(G - v) \leq \frac{3}{2}\omega(G)$. Colour all
vertices of *C* execut y with $\frac{3}{2}\omega(G)$ colours. Since $d(v) \leq \frac{3}{2}\omega(G)$ 1 there is some vertices of *G* except *v* with $\left[\frac{3}{2}\omega(G)\right]$ colours. Since $d(v) \leq \left[\frac{3}{2}\omega(G)\right] - 1$ there is some colour approach to 3 $\omega(G)$ colours which was not used to colour any neighbour of *y* colour among the $\frac{3}{2}\omega(G)$ colours which was not used to colour any neighbour of *v*.
Colour which this colour. This gives a colouring of *C* with $\frac{3}{2}\omega(G)$ colours and thus Colour *v* with this colour. This gives a colouring of *G* with $\lfloor \frac{3}{2}\omega(G) \rfloor$ colours, and thus shows that $\chi(G) \leq \lfloor \frac{3}{2}\omega(G) \rfloor$. $\frac{3}{2}\omega(G)$.

Therefore, any $(P_5$, gem)-free graph *G* satisfies $\chi(G) \leq \lfloor \frac{3}{2} \omega(G) \rfloor$.

FIGURE 2. The structure of $G^* \in \mathcal{C}_k$ ($k \ge 1$) for some extended vertex *v*.

Note that this bound is tight for general $(P_5, \text{ gem})$ -free graphs since the bound is attained by C_5 and the Petersen graph.

References

- [1] A. Brandstädt and D. Kratsch, 'On the structure of $(P_5, \text{ gem})$ -free graphs', *Discrete Appl. Math.* 145(2) (2005), 155–166.
- [2] S. A. Choudum, T. Karthick and M. A. Shalu, 'Perfect coloring and linearly χ-bound *^P*6-free graphs', *J. Graph Theory* 54(4) (2007), 293–306.
- [3] M. Chudnovsky and V. Sivaraman, 'Perfect divisibility and 2-divisibility', *J. Graph Theory* 90(1) (2019), 54–60.
- [4] S. Gaspers and S. Huang, 'Linearly χ-bounding (*P*⁶,*C*4)-free graphs', in: *Workshop on Graphtheoretic Concepts in Computer Science WG'17*, Lecture Notes in Computer Science, 10520 (Springer, Cham, Switzerland, 2017), 263–274.
- [5] S. Gravier, C. T. Hoàng and F. Maffray, 'Coloring the hypergraph of maximal cliques of a graph with no long path', *Discrete Math.* 272(2–3) (2003), 285–290.
- [6] A. Gyárfás, 'Problems from the world surrounding perfect graphs', *Zastosowania Matematyki* 19(3–4) (1987), 413–441.
- [7] T. Karthick and F. Maffray, 'Square-free graphs with no six-vertex induced path', Preprint, 2018, [arXiv:1805.05007.](http://www.arxiv.org/abs/1805.05007)
- [8] L. Lovász, 'Normal hypergraphs and the perfect graph conjecture', *Discrete Math.* 2(3) (1973), 253–267.
- [9] D. Seinsche, 'On a property of the class of *n*-colorable graphs', *J. Combin. Theory Ser.* B 16(2) (1974), 191–193.

KATHIE [CAMERON,](https://orcid.org/0000-0002-0112-2494) Department of Mathematics, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5 e-mail: kcameron@wlu.ca

[SHENWEI](https://orcid.org/0000-0002-0287-4591) HUANG, College of Computer Science, Nankai University, Tianjin 300350, China e-mail: dynamichuang@gmail.com

OWEN [MERKEL,](https://orcid.org/0000-0002-8839-6243) David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada N2L 3G1 e-mail: owen.merkel@uwaterloo.ca