Bull. Aust. Math. Soc. **100** (2019), 182–188 doi:10.1017/S0004972719000352

A BOUND FOR THE CHROMATIC NUMBER OF (P₅, GEM)-FREE GRAPHS

KATHIE CAMERON, SHENWEI HUANG[™] and OWEN MERKEL

(Received 30 December 2018; accepted 7 February 2019; first published online 28 March 2019)

Abstract

As usual, P_n $(n \ge 1)$ denotes the path on *n* vertices. The gem is the graph consisting of a P_4 together with an additional vertex adjacent to each vertex of the P_4 . A graph is called (P_5, gem) -free if it has no induced subgraph isomorphic to a P_5 or to a gem. For a graph G, $\chi(G)$ denotes its chromatic number and $\omega(G)$ denotes the maximum size of a clique in *G*. We show that $\chi(G) \le \lfloor \frac{3}{2}\omega(G) \rfloor$ for every (P_5, gem) -free graph *G*.

2010 *Mathematics subject classification*: primary 05C15; secondary 05C75, 05C85, 68R10. *Keywords and phrases*: graph colouring, hereditary classes, chi-bound.

1. Introduction

In this paper, all graphs are finite, simple and undirected.

As usual, given a positive integer *n*, we denote the path on *n* vertices by P_n . For an integer $n \ge 3$, C_n is the cycle on *n* vertices. The gem is the graph consisting of a P_4 together with an additional vertex adjacent to each vertex of the P_4 .

Given graphs G and H, we say that G is H-free if no induced subgraph of G is isomorphic to H. Given a graph G and a family \mathcal{H} of graphs, we say that G is \mathcal{H} -free if G is H-free for all $H \in \mathcal{H}$.

A *clique* in a graph *G* is a set of pairwise adjacent vertices of *G*; a *stable set* is a set of pairwise nonadjacent vertices of *G*. The *clique number* of *G*, denoted by $\omega(G)$, is the maximum size of a clique in *G*. A *q*-colouring of *G* is a function $c : V(G) \longrightarrow \{1, ..., q\}$, such that for each edge uv of *G*, $c(u) \neq c(v)$. The *chromatic number* of a graph *G*, denoted by $\chi(G)$, is the minimum number *q* for which there exists a *q*-colouring of *G*. A graph *G* is *perfect* if all its induced subgraphs *H* satisfy $\chi(H) = \omega(H)$.

Shenwei Huang is the corresponding author. The research of the first author was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2016-06517; the research of the second author was supported by the Natural Science Foundation of China grant 11801284; the research of the third author was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2016-06517 and an NSERC Undergraduate Student Research Award. © 2019 Australian Mathematical Publishing Association Inc.

183

A class of graphs is called *hereditary* if it is closed under isomorphism and taking induced subgraphs. A hereditary class G of graphs is said to be χ -bounded if there exists a function f such that every graph $G \in G$ satisfies $\chi(G) \leq f(\omega(G))$; the function f is called a χ -bounding function. Gyárfás [6] introduced χ -bounded graph classes as a generalisation of perfect graphs.

Gyárfás [6] showed that for all positive integers *n*, the class of P_n -free graphs is χ -bounded. It is well known that P_4 -free graphs are perfect [9], and thus are χ bounded with identity χ -bounding function. However, for $n \ge 5$, the best χ -bounding function known for the class of P_n -free graphs is exponential: it was shown in [5] that every P_n -free graph *G* satisfies $\chi(G) \le (n-2)^{\omega(G)-1}$. If a second graph is forbidden in addition to forbidding a path, much better bounds are possible. Choudum, Karthick and Shalu [2] proved that every (P_6 , gem)-free graph *G* satisfies $\chi(G) \le 8\omega(G)$ and that every (P_5 , C_4)-free graph *G* satisfies $\chi(G) \le \lfloor \frac{5}{4}\omega(G) \rfloor$. Gaspers and Huang [4] showed that every (P_6 , C_4)-free graph *G* satisfies $\chi(G) \le \lfloor \frac{3}{2}\omega(G) \rfloor$. This was recently improved by Karthick and Maffray to $\chi(G) \le \lfloor \frac{5}{4}\omega(G) \rfloor$ [7], which is an optimal χ bounding function for the class. Chudnovsky and Sivaraman [3] proved that every (P_5 , C_5)-free graph *G* satisfies $\chi(G) \le 2^{\omega(G)-1}$.

Choudum, Karthick and Shalu [2] proved that for any $(P_5, \text{ gem})$ -free graph G, $\chi(G) \le 4\omega(G)$. In this note, we give a better bound by showing that $\chi(G) \le \lfloor \frac{3}{2}\omega(G) \rfloor$.

2. Definitions

Let G = (V, E) be a graph. We use |G| to denote |V|. For $U \subseteq V$, let G[U] denote the subgraph of *G* induced by *U*. For $v \in V$, let N(v) denote the open neighbourhood of *v*. The *degree* of *v*, denoted by d(v), is |N(v)|. The *complement* of *G* is denoted by \overline{G} . Let *G* and *H* be two vertex-disjoint graphs and let *x* be a vertex of *G*. By substituting *H* for *x* we mean deleting *x* and joining every vertex of *H* to each of the vertices that was adjacent to *x* in *G*.

A set *M* of vertices with $2 \le |M| \le |V(G)| - 1$ is a *homogeneous set* in *G* if for each vertex $x \in V(G) \setminus M$, *x* is adjacent to all vertices of *M* or to no vertices of *M*. A graph that contains no homogeneous set is called *prime*. A homogeneous set *M* of *G* is said to be *maximal* if no other homogeneous set properly contains *M*. The graph *G*^{*} obtained from *G* by contracting every maximal homogeneous set of *G* to a single vertex is called the *characteristic graph* of *G*. Note that if *G* is prime, then $G^* = G$ by the definition.

We say that a graph G' is obtained from a graph G by *blowing up vertices of* G *into cliques* if G' consists of the disjoint union of cliques K_u , for every $u \in V(G)$, and all edges between cliques K_u and K_v exactly when $uv \in E(G)$. This is the same as substituting clique K_u for vertex u (for all u).

Let *A* and *B* be two disjoint sets of vertices of *G*. We say that *A* is *complete* to *B* if every vertex of *A* is adjacent to every vertex of *B* and we say that *A* is *anticomplete* to *B* if no vertex of *A* is adjacent to any vertex of *B*.

FIGURE 1. A specific graph is a graph shown here or one of its prime induced subgraphs.

A graph is called *co-connected* if its complement is connected. A graph is called *chordal* if it has no induced cycle on four or more vertices, and *co-chordal* if its complement is chordal. A vertex v is *simplical* if the set of vertices adjacent to v induces a clique. A vertex v is *co-simplicial* if the set of vertices not adjacent to v induces a stable set. A graph is said to be *matched co-bipartite* if its vertex set can be partitioned into two cliques C_1 and C_2 with $|C_1| = |C_2|$ or $|C_1| = |C_2| - 1$ such that the edges joining C_1 and C_2 are a matching and at most one vertex in each of C_1 and C_2 is not covered by the matching. Brandstädt and Kratsch [1] called a graph *specific* if it is one of the three graphs in Figure 1 or one of their prime induced subgraphs.

Consider the vertices of C_5 to be ordered v_1, v_2, v_3, v_4, v_5 where v_i is adjacent to v_{i+1} (mod 5). For a graph *G* and a vertex *v* of *G*, let the extension operation ext(G, v) denote replacing *v* with a C_5 consisting of new vertices v_1, v_2, v_3, v_4, v_5 such that v_2, v_4 and v_5 have the same neighbourhood in *G* as *v* and the only neighbours of v_1 and v_3 are their neighbours in the cycle. For a set of vertices $U \subseteq V$ of *G*, let ext(G, U) denote the result of repeatedly applying the extension operation to all vertices of *U*. For $k \ge 0$, let C_k be the class of prime graphs G' = ext(G, Q) resulting from extending a co-chordal gem-free graph *G* by a clique *Q* of exactly *k* co-simplicial vertices of *G*.

3. Previous results

We will use the following known results to prove our result.

THEOREM 3.1 (Brandstädt and Kratsch [1]). A connected and co-connected graph G is (P_5 , gem)-free if and only if the following conditions hold.

- (1) The homogeneous sets of G are P_4 -free.
- (2) For the characteristic graph G^* of G, one of the following conditions holds:
 - (a) G^* is a matched co-bipartite graph;
 - (b) $\overline{G^*}$ is a specific graph;
 - (c) there is a $k \ge 0$ such that G^* is in \mathcal{C}_k .

LEMMA 3.2 (Gaspers and Huang [4]). Let G be a graph such that each homogeneous set of G is a clique. If the characteristic graph G^* of G satisfies $\chi(G^*) \leq 3$, then $\chi(G) \leq \lfloor \frac{3}{2}\omega(G) \rfloor$.

LEMMA 3.3 (Lovász [8]). The graph obtained by substituting perfect graphs for some vertices of a perfect graph is also perfect.

4. Results

In this section, we prove our main result. First, we prove the following lemma.

LEMMA 4.1. Let G be a connected (P_5 , gem)-free graph and H a homogeneous set of G that is not a clique. Then there exists a connected induced subgraph G' of G with |G'| < |G| such that $\chi(G') = \chi(G)$ and $\omega(G') = \omega(G)$.

PROOF. Let *N* and *M* be disjoint subsets of $V(G) \setminus H$ such that *H* is complete to *N* and anticomplete to *M*. Note that *N* is nonempty since *G* is connected. Since *G* is gem-free, it follows that *G*[*H*] is *P*₄-free. It has been shown that the class of *P*₄-free graphs is perfect [9]. Construct *G'* from *G* by contracting the vertices of *H* to a clique *K* of size $\omega(G[H])$. Clearly *G'* is a connected induced subgraph of *G*. Since *H* is not a clique, it follows that |G'| < |G|. We now show that $\chi(G) = \chi(G')$ and $\omega(G) = \omega(G')$. Since *G'* is an induced subgraph of *G*, $\omega(G') \le \omega(G)$ and $\chi(G') \le \chi(G)$. So we must prove the reverse inequalities.

We first examine $\omega(G)$ and $\omega(G')$. Suppose that a largest clique in *G* contains a vertex of *H*. Then a largest clique in *G* would include a largest clique in *H* and some vertices in *N*. This clique would also appear in *G'*, so $\omega(G) \leq \omega(G')$. Now suppose that the largest clique in *G* contains no vertex of *H*. Then the largest clique is some subset of $N \cup M$. Since $N \cup M \subseteq V(G')$ it follows that $\omega(G) \leq \omega(G')$. Therefore, $\omega(G) = \omega(G')$.

Next we examine $\chi(G)$ and $\chi(G')$. Colour G' with $q := \chi(G')$ colours. Let S_1, \ldots, S_q be the colour classes. Since K is a clique, we may assume that the *i*th vertex k_i of K is in S_i for $1 \le i \le |K|$. Since G[H] is perfect, $\chi(G[H]) = \omega(G[H]) = |K|$. Let $D_1, \ldots, D_{|K|}$ be a |K|-colouring of H. Since H contains K, we may assume that $k_i \in D_i$. Now $S_1 \cup D_1, \ldots, S_{|K|} \cup D_{|K|}, S_{|K|+1}, \ldots, S_q$ is a q-colouring of G. This shows that $\chi(G) \le \chi(G')$. So, $\chi(G') = \chi(G)$.

We are now ready to prove the main result of this paper.

THEOREM 4.2. Let G be a (P₅, gem)-free graph. Then $\chi(G) \leq \lfloor \frac{3}{2}\omega(G) \rfloor$.

PROOF. Recall that G^* denotes the characteristic graph of G. We prove the theorem by induction on |G|. If G is not connected, then we are done by applying the inductive hypothesis to each component of G. So, we may assume G is connected. If G is not co-connected, then V(G) can be partitioned into two nonempty subsets V_1 and V_2 such that V_1 is complete to V_2 . Since G is gem-free, it follows that $G[V_i]$ is P_4 -free and so G is also P_4 -free. Hence, $\chi(G) = \omega(G)$ and so the theorem holds. So, we may assume G is co-connected. If G contains a homogeneous set that is not a clique, then we are done by Lemma 4.1 and by the inductive hypothesis. So, we can assume that each homogeneous set of G is a clique. This implies that G is obtained from G^* by blowing up vertices of G^* into cliques.

Since G is connected and co-connected, it follows from Theorem 3.1 that G^* must satisfy the following:

- (1) G^* is a matched co-bipartite graph;
- (2) $\overline{G^*}$ is a specific graph;
- (3) there is a $k \ge 0$ such that G^* is in \mathcal{C}_k .

We now consider each outcome of Theorem 3.1 and prove the claimed bound for each case.

Case 1. Suppose that G^* is a matched co-bipartite graph.

PROOF. Let G^* be a matched co-bipartite graph. Co-bipartite graphs are perfect. It follows from Lemma 3.3 that *G* is also perfect. Thus, $\chi(G) = \omega(G)$.

Case 2. $\overline{G^*}$ is a specific graph.

PROOF. From Lemma 3.2 it is enough to show that G^* is 3-colourable. It can be readily checked that each of the graphs in Figure 1 can be partitioned into 3 cliques. So, their complements are 3-colourable, as are all of their prime induced subgraphs. Thus, $\chi(G) \leq \lfloor \frac{3}{2}\omega(G) \rfloor$.

Case 3. There is a $k \ge 0$ such that G^* is in \mathcal{C}_k .

PROOF. If k = 0, then $G^* \in \mathcal{C}_0$ and so G^* is a prime co-chordal gem-free graph. Cochordal graphs are perfect. It follows from Lemma 3.3 that G is perfect. Now suppose that $k \ge 1$. Then G^{*} is obtained from some prime co-chordal gem-free graph by applying the extension operation at least once. Let G' be the graph before applying the last extension operation and $G^* = \text{ext}(G', v)$ for some $v \in V(G')$. Note that G^* has the structure illustrated in Figure 2. Then $\{v_1, v_2, v_3, v_4, v_5\}$ induces a C_5 in G^* and v_2 , v_4 and v_5 are adjacent to the neighbours of v, and the only neighbours of v_1 and v_3 are their neighbours in the cycle. The degree of v_1 and of v_3 in G^* is 2. Recall that G can be obtained from G^* by blowing up vertices into cliques, and let V_i be the clique that was substituted for v_i for i = 1, 2, 3, 4, 5 when G was obtained from G^* . Since $V_4 \cup V_5$ is a clique in G, it follows that $|V_4| + |V_5| \le \omega(G)$. Thus at least one of V_4 and V_5 has size at most $\frac{1}{2}\omega(G)$, say V₅. (If it is V₄, then apply the following argument with V₁ replaced by V_3 .) Also, $V_1 \cup V_2$ has size at most $\omega(G)$. Thus, any vertex $u \in V_1$ has degree at most $\frac{3}{2}\omega(G) - 1$ since it has at most $\frac{1}{2}\omega(G)$ neighbours in V_5 and $\omega(G) - 1$ neighbours in $V_1 \cup V_2$. By the induction hypothesis, $\chi(G-v) \leq \frac{3}{2}\omega(G-v) \leq \frac{3}{2}\omega(G)$. Colour all vertices of G except v with $\lfloor \frac{3}{2}\omega(G) \rfloor$ colours. Since $d(v) \leq \lfloor \frac{3}{2}\omega(G) \rfloor - 1$ there is some colour among the $\lfloor \frac{3}{2}\omega(G) \rfloor$ colours which was not used to colour any neighbour of v. Colour v with this colour. This gives a colouring of G with $\lfloor \frac{3}{2}\omega(G) \rfloor$ colours, and thus shows that $\chi(G) \leq \lfloor \frac{3}{2}\omega(G) \rfloor$.

Therefore, any $(P_5, \text{ gem})$ -free graph *G* satisfies $\chi(G) \leq \lfloor \frac{3}{2}\omega(G) \rfloor$.

FIGURE 2. The structure of $G^* \in \mathcal{C}_k$ $(k \ge 1)$ for some extended vertex *v*.

Note that this bound is tight for general (P_5 , gem)-free graphs since the bound is attained by C_5 and the Petersen graph.

References

- [1] A. Brandstädt and D. Kratsch, 'On the structure of (P_5 , gem)-free graphs', *Discrete Appl. Math.* **145**(2) (2005), 155–166.
- [2] S. A. Choudum, T. Karthick and M. A. Shalu, 'Perfect coloring and linearly χ-bound P₆-free graphs', J. Graph Theory 54(4) (2007), 293–306.
- [3] M. Chudnovsky and V. Sivaraman, 'Perfect divisibility and 2-divisibility', J. Graph Theory 90(1) (2019), 54–60.
- [4] S. Gaspers and S. Huang, 'Linearly χ-bounding (P₆, C₄)-free graphs', in: Workshop on Graphtheoretic Concepts in Computer Science WG'17, Lecture Notes in Computer Science, 10520 (Springer, Cham, Switzerland, 2017), 263–274.
- [5] S. Gravier, C. T. Hoàng and F. Maffray, 'Coloring the hypergraph of maximal cliques of a graph with no long path', *Discrete Math.* **272**(2–3) (2003), 285–290.
- [6] A. Gyárfás, 'Problems from the world surrounding perfect graphs', Zastosowania Matematyki 19(3–4) (1987), 413–441.
- [7] T. Karthick and F. Maffray, 'Square-free graphs with no six-vertex induced path', Preprint, 2018, arXiv:1805.05007.
- [8] L. Lovász, 'Normal hypergraphs and the perfect graph conjecture', *Discrete Math.* **2**(3) (1973), 253–267.
- [9] D. Seinsche, 'On a property of the class of n-colorable graphs', J. Combin. Theory Ser. B 16(2) (1974), 191–193.

KATHIE CAMERON, Department of Mathematics, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5 e-mail: kcameron@wlu.ca

SHENWEI HUANG, College of Computer Science, Nankai University, Tianjin 300350, China e-mail: dynamichuang@gmail.com

OWEN MERKEL, David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada N2L 3G1 e-mail: owen.merkel@uwaterloo.ca