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EQUIVARIANT POLYNOMIAL AUTOMORPHISMS OF
O-REPRESENTATIONS

ALEXANDRE KURTH

ABSTRACT. We show that every equivariant polynomia automorphism of a ©-
representation and of the reduction of an irreducible ©-representation is a multiple of
the identity.

1. Introduction. GivenarepresentationV of analgebraicgroup G over C weask the
guestion: What is Autg(V), the group of polynomial automorphismsthat commute with
the linear G-action. For many reducible representations nonlinear equivariant automor-
phismsexist: Consider for examplethe SL,-module R, & Ry where R; denotesthe binary
forms of degree j. The map (p, q) — (p.q+ p?) is an SL,-equivariant automorphism.
For more information on SL,-automorphisms of R; see [13].

In order to determine Autg(V) for a simple G-module it suffices to assume G is
semisimple. First replace G by the reductive group G /R (G) sincetheradica R (G) acts
trivially on asimple module, and note that if there exists a one-dimensional subgroup of
the center acting nontrivially, every automorphism commuting with this action therefore
induces an automorphism on a projective space which is linear [6, I1. Example 7.1.1].

In thiswork we investigate Autg (V) for the so-called O-representationsG — GL (V)
whichare defined asfollows: Given aZy-graduation onasimpleLLiealgebrag = ©jez,, g
(with [gi, gj] C gisj) the induced go-operation on g, defines a G-module structure on g4
(called ©-representation) where G isaconnected reductive group with Liealgebrag, (see
3 for details). These representations which were classified by Kac ([8], [7]) have some
properties of the adjoint representations. We call the representation of the commutator
subgroup (G, G) on g the reduction of the ©-representation. The main result of this
work is:

THEOREM (3.3).

(a) Theautomorphismgroup of a ©-representationG — GL (V) of asemisimplegroup
GisC*idy.

(b) The automorphism group of the reduction of an irreducible @-representation is
also C* idy.

The question arises whether there is a simple module with nonlinear automorphisms.
In[14] itisshownthat thenatural SL3 x SLs x SL 13-representation hasan automorphism
group of dimension 2. This is the lowest dimensional module with an open orbit and
nonlinear equivariant automorphisms.
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Theorem 3.3 is proved case by caseto some extent. We distinguish between several
types of ©-representations such as adjoint representations, or more generally the ones
with finite Norg(H)/H (where H denotes a generic isotropy group). We separately
look at the prehomogeneous @-representations, and finally the ones without any of the
properties above. The biggest class of ©-representations (N := Norg(H)/H finite) can
be handled by ageneral statement (Lemma3.1). All the remaining ones are checked case
by caseto have no nonlinear equivariant automorphisms (Sections 5 and 6). However,
the embedding of a generic stabilizer H of the ©-representation V and its fixed point
space VM is of great importance. It is given for many examples of ©-representations.
In fact, if Autg(V™) only consists of linear automorphisms, then so does Autg(V) (see
proof of 2.3). For few of the ©-representations (6.1, 6.2) the method of restitution of
multilinear invariantsis used [10, Section 6].

The automorphism group of a G-module is related to a rationality question of the
linearization problem: For a (finite) Galois field extension k C K in characteristic O the
non-abelian cohomology Hl(Gal(K /K). Autg, (VK)) is the set of isomorphism classes
of Gg-actions on the space Vi (defined over k) becoming Gg-isomorphic to the Gg-
module Vi by field extension [14, Appendix], [22, 1. 1]. If Autg, (Vk) = K*idy,, then
H*(Gal(K /k). Autg, (Vk)) = 0 which showsthat every Gy-action on the affine space A}
which is Gg-isomorphic to Vi isalso linearizable over the subfield k.

ACKNOWLEDGEMENT. Thiswork is part of the author’s Ph.D. thesis[12]. | thank my
supervisor Hanspeter Kraft for his support and help and Peter L ittelmann for his helpful
suggestions.

2. Remarkson G-moduleswith closed generic orbit. Let G be areductive group
and V a finite dimensional G-module. By a theorem of Matsushima the stabilizer G,
v € V where Gv C Visaclosed orbit, is areductive group [17], [16, |.2.].

For a closed subgroup H C G the subgroup Norg(H) := {g € G | gHg™! = H} is
called the normalizer of H and define N := Norg(H)/H. It induces a linear N-action on
the fixed point spaceVH = {ve V | hv=vVh € H}.

The set of conjugacy classes(G,) where Gv C V isaclosed orbit, ispartially ordered,
that is (G;1) < (Gy) if G; is conjugate to a subgroup of G,. There is a unique minimal
isotropy class(H) of theabove set, called theprincipal isotropy class[16].LetH C G now
beaprincipal isotropy group, i.e., (H) isminimal. If G issemisimple and N finite, then it
follows from atheorem of Kraft-Petrie-Randall [11, Corollary 5.5] that VH / N =~ C' for
somer € N. By Chevalley’s Theorem N therefore acts on VH as afinite reflection group
(cf. for example [23, Theorem p. 76]).

DEFINITION. A set of hyperplanes {H; C C"}i¢ is said to be in genera position if
ﬂ Hi = {0}

i€l

LEMMA 2.1. Let o:C" — C" be a polynomial automorphism. If o stabilizes every
element of a set of hyperplanes H; := Z(l;), i € | in general position, then ¢ is
diagonalizable; in particular ¢ islinear.
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ProoF. Consider the induced (linear) automorphism on the regular functions of C"
denoted by ¢*: C[C"] — C[C"]. We have that o*(I})(V) = |i<<p(V)) = O0for any v € H;,
consequently p*(l;) € Cl;. Since the hyperplanes are in general position thereis abasis
l1,..., I of (C")* (after renumbering). This means ¢ is diagonal with respect to the dual
basisof I, ..., In. [

REMARK 2.2. If V is a simple G-module, then by 2.1 every ¢ € Auts(V) which
stabilizes a hyperplane is a homothety. A general o € Autg(V) preserves every line
C(gv) where v is a highest weight vector and g € G, since Cv is the fixed point space
VY of amaximal unipotent subgroup U C G. In fact, us(Cv) = o(uCv) = o(Cv) for all
u € U, sooloy = Aidey for some A € C*, and by equivariance o|cgy = A idegy. FOr every
x € V* this implies that o*(x)(gV) = x(c(gv)) = x(\gv). However, o*(x) may not be a
multiple of x, for we cannot show o™ (X)(w) = x(Aw) for all w € V. It would need the fact
o*(¥)(QV + G2V) = X(a(GuV + g2v)) = X(o(av) + 0(g2v)), but o is not linear.

THEOREM 2.3. Let G be a semisimple group, V a simple G-moduleand H C G a
principal isotropy group. If the generic orbit is closed and N = Norg(H) /H isfinite then
AUtG(V) =C"idy.

PROOF. LetHy,.... H; c VH be the hyperplanes associated to the generating reflec-
tionssy.....s of N. Suppose Vs := (N, Hi # {0}. Vi € VM is N-stable, and let V, be
an N-stable complement in VM. Take an x € (VH)*, x # 0 which vanishes on V5. It is
easy to see that Sx(v)) = x(v;) for all v, € Vi ands € N, j = 1,2. Hence x € C[VH]N
which is isomorphic to C[V]® by a theorem of Luna-Richardson. This means there is
anontrivial G-fixed point in V* which is impossible since V* is simple. It follows that
the hyperplanesHy, ..., H; are in general position. So by the Lemma 2.1 above gy is
linear.

We obtaintherelation oo X idy —\ idy oo = 0on GVH, evenon V sinceH isageneric
stabilizer, i.e., GVH = V. So ¢ induces an automorphism on the projective space PV
which hasto belinear [6, Il. Example 7.1.1]. Schur’s Lemma finishes the proof. ]

The essential point in the proof is the general position of the hyperplanes H;. A G-
module V without nontrivial G-fixed points also guarantees this property. So we state
the following corollary:

COROLLARY 2.4. Let G be a semisimple group and V a G-module. Let the generic
orbit be closed and N finite (thus a finite reflection group). If the hyper planes, associated
to the generators of N arein general position, then Autg(V) only consists of linear
automorphisms. In particular, if V¢ = {0}, then all automorphisms in Autg(V) are
linear.

These statements show that the adjoint representation of a semisimple group G only
admits linear automorphisms. In fact, the generic isotropy group is a maximal torus and
the generic orbit is closed. The Weyl group N = Norg(T)/T actson (LieG)" = LieT by
reflections. The hyperplanes of the associated generators of N have trivial intersection.
The adjoint representation of G is simpleiif and only if LieT is a simple N-module and
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this is equivalent to G being a simple group. So by Corollary 2.4 one obtains (cf. [1,
2.2 Proposition]):

THEOREM 2.5. Let G be a semisimple group. Every G-equivariant automor phism of
the adjoint representationislinear. In particular, such an automorphismis a multiple of
theidentity in case G issimple.

3. Introduction to ®@-representations. For many aspects adjoint representations
arethe‘nicest’ representations. A classof nicerepresentationswhich containsthe adjoint
representations, is the set of ©-representations. They fulfill two important properties
which also hold for the adjoint representations: coregularity (the algebra of invariant
functions has algebraically independent homogeneous generators) and visibility (any
fiber of the corresponding quotient map has the same dimension) [15].

Let (g, ©) (or (g, m)) denote the Z-graded Lie algebra

a=@D g
J€Lm
wherem € {1,2.3,...} U{oo} and Z,, := Z. Let © denote the corresponding linear
automorphism

O =elx. x€gj. wheree =&#/™ if m# oo

and .
Ox(x) =t'x, x¢& g;, wheret € C*, if m=oo.

There is a one-to-one correspondence between the isomorphism classes of Z,-gradings
on g and the classes of conjugate automorphismsof period mof g if m # co, respectively
the one-dimensional tori in the automorphism group of g if m = co.

Let (g,©) now be a simple Z-graded Lie algebra. The adjoint representation of g
induces by restriction a go-module g4; the adjoint group Gp of the Lie algebra g, is a
connected algebraic group, called ©-group (cf. [24] and [8]).

Set G 1= Gy, V = g, and let § be the restriction of the adjoint representation Ad to G,
i.e,

6 := Ad|g: G — GL(V).

0 is called the @-representation of (g, ©).

The semisimple elements in g are precisely the elements of closed orbits of the
adjoint representation. Thisis still true for the ©-representation ¢ of a reductive graded
Lie algebra (g, ©): an element x € g; C g issemisimple if and only if Gx is a closed
orbit [24, Section 2.4. Proposition 3]. An abelian maximal subspacec¢ C V consisting of
semisimple elementsiis called a Cartan subspace. Every closed orbit in V intersects any
fixed Cartan subspace [24, Corollary p. 473].

The notion of the Weyl group of an adjoint representation can be carried over to the
O-representations: Let Norg(c) := {g € G| 8(g)c = ¢} and Zs(c) :={g € G| 6(g)x =
x Vx € c}, then W := Norg(c)/Zs(c) is a finite reflection group ([24, Section 3.4.
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Prop. 3, Section 6.1. Thm. 8]) called the Weyl group of the graded Lie algebra (g, ©).
The (geometric) quotient ¢ /W of the induced W-module ¢ is isomorphic to V //G [24,
Section 4.4. Theorem 7], thus we obtain an isomorphism on the invariant polynomial
functions C[V]€ = C[¢]W which is induced by the restriction map. Thisimpliesdim¢ =
dimV//G.

We determine Autg(V) for al irreducible ©-representations (G, V) of simple graded
Lie algebras (g, m). The latter were classified by Kac (cf. [8], [24], [7]). So from now
on let g be simple. If m = oo then C[V]® = C (and ¢ = 0) since §(G) contains C* idy
induced by the automorphisms ©;, t € C*. In fact, al derivations of g are inner, so
t — O corresponds to a one-dimensional torus in the adjoint group Go. So in case
m = oo every G-automorphism induces an automorphism on the projective space PV
since it commutes with C*idy C 6(G), i.e., Autg(V) only contains linear elements [6,
I1. Example 7.1.1]. We therefore consider V as a (G, G)-module called the reduction of
the @-representation. Note that Popov and Vinberg call it the reduced ©-representation
(cf. [19, 8.5]). In Table 4.4 where al (irreducible) ©-representations will be listed, the
reduction of the ©-representation is taken for the ©-type (g, 00).

Interestingly, if the ©-group G is semisimple, V is automatically a simple G-module
([24, Section 8.3. Proposition 18]). Among several methodsto find Autg(V) Theorem 2.3
is the most important one. So we start looking more closely at ©-representations with
generically closed orbits.

LEMMA 3.1. Let (g, ©) bea simple Z,-graded Lie algebra where the associated ©-
representation (G, V) has generically closed orbits. Let Go be a connected algebraic
group with Lie(Gg) = g and ¢ C V denote a Cartan subspace, then:

(@) H:=Zgs(c) = Zg,(c) N G isagenericisotropy group.

(b) ¢ C VM; moreover, ¢ = VH (or equivalently dimV //G = dimV") if and only if
N := Norg(H) /H is afinite group.

(c) If Gissemisimpleand ¢ = VH, then Autg(V) = C* idy.

PrROOF. (a) Sincethe generic orbit is closed, it consists of semisimple elements and
intersectsc. Let x € ¢ beageneric element, then Zg, (X) N G is a generic isotropy group.
Using [24, Section 3.2] we seethat H = Zg,(¢) N G = Zg,(X) N G (recall that Zg,(c) is
connected).

(b) Clearly ¢ C VH.If ¢ = VM, thenitiseasy to seethat Norg(H) = Norg(V") :={g €
G| (Adg)v € VM Wv € VH}. So N = Norg(H)/H = W isfinite. For the converse set
N := Norg(c). SinceGe C VisdensedimV = dim(GxN¢) = dim G+dim ¢ —dim Norg(c),
and analogously dimV = dimG + dimV" — dimNorg(H). Therefore dim¢ = dimVH
since both, W = N /H and Norg(H) /H are finite. Recall that G xN ¢ is the (geometric)
quotient of G x ¢ by the group N; it is acting by n(g, x) = (gn—%, nx) wheren € N and
(9.X) € Gxc.

(c) now follows from (b) and Theorem 2.3. ]

REMARK 3.2. Popov and Vinberg statein [19, 8.5] that V%) = ¢ form < oo. Thisisa
mistake. In fact, consider for example the ©-representation (EYY, 2) (N° 29 in Table 4.4).

https://doi.org/10.4153/CJM-1998-020-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-020-5

EQUIVARIANT POLYNOMIAL AUTOMORPHISMS OF ©-REPRESENTATIONS 383

In 6.3 we show that dim¢ = dimV //G = 2 and dim V" = 16 where H denotes a generic
stabilizer.

The main result of thiswork is:

THEOREM 3.3.

(a) Theautomorphismgroupof a ©-representationG — GL (V) of asemisimplegroup
GisC*idy.

(b) The automorphism group of the reduction of an irreducible @-representation is
also C™ idy.

Recall that every ©-representation is irreducible in case G is semisimple [24, Sec-
tion 8.3. Proposition 18]. If G isreductive (and not semisimple), then the automorphism
group of a ©-representation is C* idy, because the center of G acts as scalar transfor-
mations on V. In this case C[V]® = C and the ©-representation is of type (g, o) (cf.
[8, Proposition 3.1.1.] and [24, Section 8.3.]).

REMARK 3.4. Unfortunately, Theorem 3.3 is not valid for reductions of reducible
©-representations. The G := SLy, x SPon, xTi-module V := (C€™)* & (C™ @ €2") defined
by

@ D.evew = (™ (@)X M(gve sw)
is the reduction of the reducible ®@-representation (Crn+1, 00). 1ts automorphism group
Autg(V)is3-dimensional if 2(2"?‘l +1) € Z whereasthegroup of linear G-automorphisms
is 2-dimensional. The proof is different from the methods for proving 3.3. Moreover, it
is quite lengthy, it uses the Littlewood-Richardson Theorem. | refer to my Ph.D. thesis
[12,7.8].

For conveniencewe give the complete list of the irreducible @-representations, resp.
of the reductions of them. All data not computed in this work, is taken from [8, Table
[1, 1], corrections in [3]. For a complete table with the degrees of the homogeneous
generating invariants see [15]. In case m = oo the group G in Table 4.4 always denotes
the corresponding reduction of the ©-group described as above. Without confusion they
will also be called @-groups. Thus G is always a semisimple group.

The following notations are used in Table 4.4: For G acting on a vector space V
we denote by SG (A'G, respectively) the G-module of the i-th symmetric (exterior,
respectively) power of V. The highest irreducible component of SG is denoted by §,G
and analogously for ALG. The column labeled by § contains the Lie algebra type of a
generic stabilizer unless ) = 0, where the finite isotropy group is given after dividing
with the kernel of the representation. 2, denotes the group of even permutations of
k elements. The explicit decomposition of the finite generic stabilizers as semidirect
productsisomitted. A, B, C, D, E, F4, G, denotethe simple Lie algebrasindexed by their
rank. ty is the Lie algebra of a k-dimensional torus and u; is aj-dimensional nilpotent
Lie algebra

The rubric ‘method’ describes how Autg(V) = C*idy is verified: The expression
‘prehom.” means that the corresponding module is prehomogeneous, i.e., it has a dense
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orbit. They arehandledin Proposition 5.1. The*adjoint’ representationshave been settled
in 2.5. ‘Finite N’ saysthat Norg(H)/H is finite, so we can make use of 3.1, respectively
of Theorem 2.3 in case of a reduced @-representation with one-dimensional quotient.
In some cases the tables of Elashvili [4], [5] are used to check dimV//G = dimV"
(which is equivalent to the finiteness of N = Norg(H)/H), but mostly we refer to
later computations. The abbreviation ‘restitution’ standsfor the restitution of multilinear
covariants[10, Section 6] which isexplicitly verified for SO, ® SPom in 6.1.

REMARK 3.5. If the generic isotropy group H is reductive, then G/H is affine, and
therefore the generic orbit is closed [9, 11.4.3. Satz 6]. All ®@-representations with
dimV //G > 0 have generically closed orbits except N° 4b in Table 4.4.

4. Equivariant automor phisms of ©-representations with finite N. In this sec-
tion we give details of ©-representations G — GL(V) with dimV" = dimV//G or
equivalently with finite N in order to apply Lemma 3.1. This shows that every G-
automorphism is a homothety. The finiteness of N for some O-representations was
shown by Elashvili [4], [5] as pointed out in Table 4.4. So, for the examples not re-
ferred to the literature we briefly indicate the representation space V, the embedding
of a generic stabilizer H C G as well as the fixed point space VH. The corresponding
©-group is aways denoted by G and its Lie algebra by g. For the verification of a
stabilizer H = G, v € V to be generic, we sometimes use the equivalent condition that
{ue V" | Gy =H}isdensein V! and V = (LieG).v+ VM (see [19, Theorem 7.3)).
The equality dim G + dim V" — dimNorg(H) = dimV (i.e, GVH = V) aso implies that
{g € G| gv=vVv e VH} isageneric isotropy group.

41. SL,® SL,. The representation space is the set of n x n-matrices M, and H =
Ge, = {(A,A) € G| A€ SL,}. SoMH = CE,.

42. SLh,®SOm,3<n=mand1l <n<m LetV denotethespaceof n x mmatrices
Muscm. L€t Mg := (En|0) € V, then H = Gy, = {(A, (AB)) |AeSOn,BeSOm_n}
andVH = CMo.

4.3. S%SOn, n > 4. This representation is the SOy-conjugation on V = Sym, /CE,
where Sym,, denotes the symmetric n x n-matrices. Let A := diag(1,2....,n) then
H=Ga={S=diag(%1l....,+1) | detS=1} > (Z,)" . OneobtainsdimV" =n—1 =
dimV//G.

4.4, SO,®SOm, N > m > 2. The composition V = Mnxm o @em I oM s the
G = SO, x SOn-quotient where 7 denotes the quotient by the group L. The matrix
A

Ao = T) € V is an element of the generic orbit where A is defined as in 4.3.

Then H = Gy, = {( (5).S) | S=diag(+L.....+1) € SOn. T € SOy} and V¥ =
{ (%) |D € Mnm isdiagonal}.
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N° G O-type 0 dimV//G method
SLn® Sk (Artm-1,20)
la n>m>1 Sln-m * 8lm + Uy(nm) 0 prehom. 5.1
1b n=m>1 3y 1 finiteN, 4.1
SLn® SO (Brrim, 00) 1
(Dn+m~, OO) 1
2a n>m>3 Slhm+30m+ Unin-m) 0 prehom. 5.1
2b n=m>3 30m 1 finite N, 4.2
2c 1<n<m 30n + 30m_n 1 finiteN, 4.2
SLn ® SPop, (Crtm, 0)
3a n>2m>4 8ln_om+ $Pom *+ U2nm(n_2m) 0 prehom. 5.1
3b 1<n<2m,nodd 8P 1 +8Pom -1+ lUom 1 0 prehom. 5.1
3c 2<n<2mneven SPp + 8Dom 1 restitution, 6.2
SOy @ SPy, (AD 4
4a n>2m>4 tm+ 80, 2, m restitution, 6.1
4b 2 <n<2mnodd k odd tn1 +8Pom n 1+ Uomn 2l resitution, 6.1
4c 2<n<2mneven k even t% +8Dom-n % restitution, 6.1
5 SO, & SO W22
(D&iz). 2)2
n>m>2 S0n—m m finite N, 4.4
6 SPZn ® SP. 2m (Csll) .2 _
n>m>1 msly + 8poy_om m finiteN, 4.5
7 AdSL,,n>2 QN th 1 n—1 adjoint
AZSLy, (Dn, 0)
8a nodd > 3 8bp_q + Uy q 0 prehom. 5.1
8b neven > 4 3Py 1 finite N, [4]
9 fSLy,n>3 (Cny 00) 30, 1 finite N, [4]
A2S0,
10 n> 3odd &M, 1) tn1 ol adjoint
10b  n>5even oM, 1) ty 8 adjoint
1 Pspyn>1 (c®, 1 t n  adjoint
£ 50, AP, 4 -
12a n > 4odd (Zp)"1 n—1 finiteN, 4.3
12b n> 4even (Z,)"2 n—1 finiteN, 4.3
13 A2SPy,n>2 A2 .2 A n—1 finiteN, [4]
14 s, (Gy,0) 73 1 6.1
15  s'si, (A2 2) (22)? 2 finiteN, 4.6
16 s, ©P.3) (23)? 2 finiteN, 47
17 A3slg (Eg,00) Ay + Ay 1 6.7
18 ASsLy (E7,00) Gy 1 finite N, [4]
19  A3slg (Eg, o) A 1 finite N, [4]
20 A3slg EP.3 (Za)* 4 finiteN, 48
TABLE |

1 Ineither caseif misodd, Bn+m is the ©-type, and D else.
2 Depending on the parity of n and m the ©-type is chosen; so if nand mare odd it is (D(nzfm. 2).
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N° G O-type 0 dimV//G method
21 Aslg EY.2 (20 7 finite N, 4.9
2 SL,edsl, GH.2) (22 2 finite N, 4.11
23 SL,eFSL3 (Fgo00) Uy 1 6.2
24 SL,ePsl, EP. 2 (242 2 finite N, 4.12
25 SL,®@A2SLg (Eg,00)  Aq+iy 0 prehom. [5]
26 SL,®A%SLg (E7,00) 374 1 6.4
27 SL,®@A2SLy (Eg,0)  Aq+ug 0 prehom. [5]
28 SL,@A2Slg EP.9 2 6.4
29  SL,eA3Slg €Y. 1 4 6.3
30 SLyeAdSPs .2 (2)? 4 6.3
31 SLy@Sping €. 4 A+t 1 6.7
32 SLy@Sping (E7.00)  Gp+A; 1 6.7
33 SL,@ Sping EP.2) 3 4 6.7
34 SL,eE (Eg.0) Dy 1 6.7
3B SL,RE; €. by 4 6.7
% S,@SlgeSly (Ego0) to 1 63
37 SLL,eSLz®SLy  (Ez00) A 1 finite N, 4.14
38  SL,@Slg@Slg  (Ego0) Ag+ip 0 prehom. [14, 3]
39 SL,@SlgeSly  (ES.6)  Ap+A 1 finite N, 4.15
0 sheses, ED.g 1 2 63
41 SLzePSlg FP.3 (2902 2 finite N, 4.13
42  Slg®A2SLg (E7,00)  Ag 1 finite N, [5]
43 SLz®A2SLg €.y 1 3 65
44 SLy@ Sping (Eg.c0) Ap+Aq 1 finite N, [5]
45  SLzcEg EP.y A 3 6.7
46 SlgeSlgesSly (B3 (737 3 6.4
47 SL4®A%SLg (Eg.0) s 1 finiteN, 4.16
48 SL,® Spingg EP.9 @) 4 6.6
49  Slg® A2SLg (Eg). 5 (Z5)? 2 finite N, 4.17
50  Sping (F1,00) Gy 1 finite N, [4]
51 Sping FP.2 By 1 finite N, [4]
52 Spingg (Eg.0) B3 +ug 0 prehom. [4]
53 Spingy (E7.00)  Ag 1 6.7
54 Sping (Eg,0) Gyp+Gy 1 finite N, [4]
55  Spingg €L (2)® 8 finite N, 4.10
56 A3SPg (Fp00) Ay 1 6.7
57 NdsPg €22 (2P 6 finite N, 4.9

TABLE | (continued)
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N° G O-type 5 dimV//G method
8 AdG, (GP.1) 1 2 adjoint

59 G oP.3) A 1 finite N, [4]
60 AdFy  (FP.D) 1y 4 adjoint

61 Fy4 €P.2 Db, 2 finite N, [4]
62 AdEs (EL.D) g 6 adjoint

63 Eg (E7,00) Fy 1 finite N, [4]
64 AdE, EW.D) 7 adjoint

65 Ep (Eg.0) Eg 1 6.7

6 AdEg (L1 g 8 adjoint

TABLE | (continued)

4.5. SP; ® SPom, n > m> 1. Therepresentation spaceV is Manxam. For i € C define
D, = (lf“) and let J := diag(D1, .. . , D) be a skew symmetric form of even rank 2k.

Then the symplectic group and Lie algebra are defined by
SPy = {S€ GLy | SIS =J} and spy := {s€ My | SJ+Js = 0}.

The stabilizer b := gp, of Ag := (%) € V where A := diag(Dy, . .., D) is a generic
stabilizer:

>~ M3l + 3Pon_om

Then V' = { (%JO_DM) [ A An € €} andsodimV? = dimV //G.

4.6. S*SL,. The representation space is Ry := C[X.Y]s. The binary dihedral group
H=Guyp = < (‘ _i) , (_11)> is ageneric isotropy group and dim R = dimRy //G.

4.7. S’SL3. Take the the ternary cubics V := C[x1. X2. X3]3 With the induced natural
G = SLs-representation. Then

G G G =
H= fo+x§+x§ = ( & , ( Q|- (§2 <i3 :%fzcis:_l%z_ 3

\ G \Cs \ G

isageneric isotropy group. It followsthat VH = C(¢ + X3 + x3) & CxyXX3 and therefore
dimVH =dimV //G.

e NgAe €V :=A3C Let usdefine

48. N3SLg. Letey..... & beabasisof C° and (jjk) denote the skew symmetric tensor
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p1 = (123) + (456) + (789), p2 := (147) + (258) + (369),

ps = (159) + (267) + (348), ps = (168) + (249) + (357).
The element p := A1p1 + Aop2 + A3Pp3 + Aaps With A1, A2, A3, Mg € C pairwise distinct,
is an element of a generic orbit [25]. The stabilizer H = G, consists of the matrices

A A A;
( " A), (Al . 3), (A ? A3)€ G wherethe A; € SL 3 alow the following shapes:
3 2 1

( ijs) ( &2 )
¢ , or &3 forallj=1,2,3
§j2 §j1

(ﬁjl )
either A = &2
\ &3/ \

(€11, €12, €13)

(€21, €22, €23)

(&31, {32, E33)

1.¢.6) 1.¢.6) 1.¢.)
(Y (SN (&Y
€16 (G 1.¢.9

The table on the right hand side lists three generators for the group isomorphic to (Z3)*
of the entries of A1, Ay, Az where ¢ = €2/3 isathird root of unity. In fact, the entries of
A; are described by (Z3)? and for any choice for A; there are 3 possibilities for A, and
Az is uniquely determined by A;, Ay. After dividing by the kernel (~ Z3) we see that
H = (Z3)*. So one obtainsthat V' = Cp;y & Cp, & Cps & Cpg, and dimVH =dimV //G.

4.9. N*SLgand A§SPs. Thisisanalogousto the computationsin 4.8. Let (jjkl) denote
the skew symmetric tensor & A g A & A § whereey, ..., g isabasis of C8. We define

p1 = (1234) + (5678),
ps = (1467) + (2358),
ps := (1256) + (3478),

P = (1278) + (3456).  ps := (1368) + (2457).

Ps := (1357) + (2468), p7 := (1458) + (2367).

The generic isotropy group is equal to H := G, where p := 7, rp;. It consists of the
elements (Al Az), (Az Al)e G where A, A> € SL4 have one of the four forms;

a1 Aj2 i3 Aij4
( Aj2 ( aj1 ( Aj4 ( i3
i3 ’ (047) ’ a1 ’ A2
\ \ \ \ o

A’-:

Aja i3 aj2

(011, 012, 013, 14) | (021, 0to2, 023, a24)
—L-L1.71) (—L-L11)
(-1.-1,1,1) (L1-1-1)
(-1.1,1, 1) (L —1,-1,1)

(i.i.i.0) (i.i.i.0)

The description of the table is similar to 4.8. After dividing with the kernel H =~ (Z,)8.
ThenV" =@/, Cpr anddimV" =dimV //G.

These computationsare also useful for /\é SPg: Consider the G = SPg-module decom-
position A*C® = AJC® & W @ Co where W = A3C8 and Co = C(ps + pe + p7) isthetrivial
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G-modulein A*C8 (see[2, VI 5.3]). Moreover, it holds Cpy & Cp, & Cps & Cps C /\6‘@8
and C(ps — Pe) © C(Ps — p7) C ASCE [2, VI 5.3]. So define p := T4, rpy + 5(ps —
Pes) + 6(ps — P7) € NEC® and from above we get that H := G, = (Z2)°. These con-
siderations yield that (A3C®)H = @, Cpr @ C(ps — ps) © C(Ps — P7), and therefore
dim(AgC®)H = dim AZC8 //G.

4.10. Spin,g. The generic isotropy group H =~ (Z)® is embedded as follows [21,
Table2]: H = (Z5)® x (Z2)? C SPg /{£id} x SO3 C G = SOs6 Where (Z,)® isembedded
in SPg as above in 4.9. The latter inclusion is induced by (SPs® SL,)/{£id} C G,

which is given by (A. (‘Z‘ 3)) — (ac': 3/’:) € G. If SPg is given with respect to the skew-

symmetric form J = (—E4EA>’ then G is defined by {S €Sl | S (J —J)S = (J —J)}.
So we obtain that H = < (igii, Cg_ig) lge Hng> C G, where Hsp, C SPg denotes
the generic stabilizer of Ag SPs (recall that the kernel of the half-spin representation of
Spinyg is Zz). Since Norg(H)? = (ZG(H)H)O it is enough to show that the centralizer
Zg(H) isfinite, whichis not difficult to verify by using thefinitenessof Zg ,(Hsp,) (4.9).
4.11. SL, ®S*SL,. Here we argue in a slightly different manner from the previous
examples: Let H C G = SL, x SL, be the binary dihedral group D, which is generated
by ( (i _i) : (‘i |)> ( (_11) : (_f)) € G. Notice that the kernel of this representation is
+(id. id). Therepresentation spaceisrealized by V := C? @ Rs, where Rz := C[x. y]s. Let
e1. & bethe standard basisof C2. Then VH = C(e; @ X +e, @ y3) & C(e1 @ Xy2 + &, @ X2Y),
and oneeasily verifiesthat thenormalizer N := Norg(H) isfinite. It followsthat GVH c V
is dense since dimG xN V" = dimG + dimV" — dimN = dimV. Hence the generic
orbit intersects V" and the generic stabilizer H’ contains H. By Lemma3.1(b) it existsa
Cartan subspace ¢ such that ¢ ¢ V*' ¢ VH. But dimc¢ = 2 = dim V" which implies that
¢ = VI, Furthermore, it is now easy to seethat H’ = H since Zg(c) = H.

4.12. SL, @ SL4. Asusud let e, e be the standard basisof C2andV = C° @ R,
the representation space where R, := C[u, X, Y, Z]». The stabilizer H = G, of an element
weW:=C(e® (P +x3) +e® (Y2 + 7)) & C(er ® yz+& @ ux) in general positionis
ageneric isotropy group. H is generated by the three elements (¢ = €/4)

Itisisomorphic (modulothekernel Z4) to (Z4)?. Hence V' = Wand dim VM = dimV //G.

4.13. SL3;®SSL3. Consider thefinite subgroupH C G = SL3 x SL 3 generated by the
three elements

(e MO T L)

https://doi.org/10.4153/CJM-1998-020-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-020-5

390 ALEXANDRE KURTH

where ¢ = €2/3, H is isomorphic to (Z3)® and the kernel of the module is isomorphic
to Z3. The representation spaceis realized by V := €3 ® R, where R, := C[x. Y, 7). Let
e1. &, e denote the standard basis of C3. The space of H-fixed pointsis

Vi=C@oX+a0y+e07)®teoxy+e@xz+te @Y.

The normalizer N := Norg(H) is easily seen to be finite. Therefore GVM C V is dense
because dimG xN VM = dimV. Now we make use of the same arguments as in 4.11
because dimVH = dimV//G, i.e, V" is a Cartan subspace and H is a generic isotropy
group.

4.14. SL,®SL3®SL4. Consider Lie algebra g of SL, x SL3 x SL4 acting on V =
Mexs = C? @ C* @ C* by embedding the 3[, x 3(s-action in 3[(g; the embedded Lie

E,
algebra is denoted by g4. The orbit gm with m = (_41) € V is generic because
1
gm+ V9 =V, The stabilizer of mis

ab 2c ]
c 3a 2c a b 2c
f= —3a b 2b (3c 3a
- c -a 2b |’ —3a 3b
b c —-ab \Zb c —a
\\ b cC Cc a

It follows V® = Cmand dimV* =V //G.

€g,x8ly|abceC;)xs3l,.

4.15. SL,®SL3® SLe. This representation is realized by left-action of G; := SL;, x
SL3 C SLg andright-action of SLg onMe. ThestabilizerH = Gg, = {(S T) € Gy x SLg |
SEeT 1 = Eg} = SL, x SL3 of the identity matrix Es € Me is a generic stabilizer. The
H-fixed points are M§ = {A € Mg | SAS? = A} = CEs and therefore dimME =

4.16. SL4® A2 SLs. Leter.....e,resp. fr...., fs be the standard basis of C*, resp.

C° Then(i.jk) =g @f Afifor1<i <4,1<j<k<5isabasisof V:= C*® A2C°.
Consider thefinite subgroup H C G = SL4 x SL5 generated by the two elements

0001\ (10000 01 10y (0000 1
000 1) [10001 ST ) (o110 1

a=|| 20 7|-fotoo-1|lb={| st T al.|o-11-10
00101 1-11-10

\\OO0L1=1/ {00011 \\00 01/ 0110

The alternating group s is generated by the permutations o1 = (12345) and o> = (123).
The SL4- (resp. SLs-) component of a and b are the images of o1 and o, of the unique
irreducible 4- (resp. 5-) dimensional representation of 5. Thisconstruction and Schur’s
Lemma immediately yield that Zg(H) is contained in the scalar matrices of G, hence
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finite. Since Norg(H)° = (Zg(H)H)° it follows that Norg(H)/H is finite. The H-fixed
point spaceis VM = Cv where

v = (L.12) — (1.15) — (1, 24) — (L. 25) — (1. 45)
+2(2.12) +2(2. 13) + (2, 14) + (2. 23) — (2, 25) + (2. 34) — (2, 35) — 2(2. 45)
+(3.12) + 2(3. 13) + 2(3, 14) + (3. 23) — 2(3, 25) + (3. 34) — (3, 35) — (3. 45)
+(4.12) + (4. 13) + 2(4. 14) + (4. 15) — (4. 23) + 2(4, 34) + (4. 35).

SincedimG + dimV" — dimNorg(H) = dimV the finite group H is ageneric stabilizer.

4.17. SLs® A% SLs. Takethe same notations as in 4.16. Consider the finite subgroup
H C G = SLs x SL5 generated by

1 1 ¢ 1
1 1 ¢ ¢
a= 1 g 1 . b= 1 . <
1 1 <3 <3

W10 W\ ¢/ \ ¢t

¢ = (¢*Es. (Es)
where ¢ = €2"/5, The H-fixed point space turns out to be

VP = C[(1, 12) + (2. 23) + (3. 34) + (4, 45) — (5, 15)]
@ C[(L. 35) — (2. 14) — (3, 25) + (4. 13) + (5. 24)].

Just like in 4.16 Zg(H) and therefore Norg(H) are finite. Since dimG + dimVH —
dimNorg(H) =dimV itiseasyto seethat {g € G | gv=v Vv € VH} = H isageneric
stabilizer (cf. [18, Lemma5.1]).

5. Equivariant automorphisms of prehomogeneous ©-representations. For a
prehomogeneous module V the embedding of a generic stabilizer H is also the main tool
to find the equivariant automorphism group. We determine the dimension of the H-fixed
point space V. Infact, for every prehomogeneousG-module (G semisimple) it is shown
in [14, 2] that dimAutg(V) = dim V" = dimNorg(H) /H.

PrOPOSITION 5.1. Let V be an irreducible prehomogeneous @-representation of a
(semisimple) group. Then V" is one-dimensional. In particular, Autg(V) = C* idy.

ProOOF. For SL,® SLm, n > m > 1 (N° 1a) consider the representation space V of
n x m-matrices. The element v = (E—Om) is in a generic orbit with stabilizer H =
{( (g ;).g) €SLnxSLm|g€ESLmse SLn_m}.CIearIy, VH = Cv.

The same arguments can also be used for SL,, @ SO, (N° 28), n > m > 3 aswell as
for SLn ® SPom, N > 2m > 4 (N° 3a).
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A genericisotropy algebral) of SL, ® SPom, 2 < n < 2m,nodd (N° 3a) isgivenin[20,
pp. 101-102]. It isisomorphic to $pom ® $Pon—m—1 © 112n—1 Where 1; isaj-dimensional
unipotent Lie algebra. It is easy to seethat dim(C*" @ €™ =1,

The module A? SLoms1, m > 1 (N° 8a) is listed in [4, Table 1]. However, we present
this situation explicitly. The skew symmetric matrix M is an element of a generic orbit
with stabilizer H:

( 0 En|O Al
M=| —-E, 0|0 H= € SLomt1 | A € SPom} 2 SPom XUom
0 0]0 0]l

We obtain (A2C2™1HH = cM.
All modulesSL, @ A? SLome1, m > 1 are prehomogeneousand have one-dimensional
fixed point space VM [5, Table 6 N° 1]. These modules handle the casesN° 25 and N° 27

of Table4.4.
For both modules, SL, ® SL3 ® SLs (N° 38) [14, 3.] and Spin,g (N° 52) [4, Table 1],
the dimension of the fixed point spaceis one. ]

REMARK 5.2. For an arbitrary simple prehomogeneous G-module (G semisimple),
Proposition 5.1 is not valid. In [14] it is shown that Auts , x st x s.,5(C® ®@ C° @ CB) is
two-dimensional.

6. Other methods. We briefly introduce the restitution of multilinear invariants
which is the main tool to show the triviality of the automorphism group of certain
O-representations. We keep the notations of the previous sections.

Let G be an algebraic group and Vu, ..., V. W are defined to be G-modules. We
call a G-equivariant morphism V; @ - -- & Vi — W a G-covariant (of type W). Any
G-covariant can be seen as a sum of multihomogeneous G-covariants (of multi-degree
(d1,....dm) withdy,..., dm € N). For amultilinear (i.e., multihomogeneous of multi-

degree (1,..., 1)) map f: Vfl @ -+ ® Vi — W the multihomogeneous map R:V; @

-+ @ Vin — W defined by

Re(va. ..., Vi) =f(ve, .oV, ey Vims -« - 5 Vim)

N — e
dl dm

is called the restitution of f. Every multihomogeneous G-covariant of multi-degree
(dg,..., dm) istherestitution of amultilinear G-covariant on Vfl @@V with values
in W (cf. [10, Section 6]).
The vector space of multilinear G-covariants Mult(V‘ljl @ @ Vi W)C can be
determined by using the canonical G-isomorphism
Mult(VE @ - @ Vo W) — MUlt(VE @ - - - @ Ve @ WF, ©).
Now, we are able to handle another type of ©-representations.

PROPOSITION 6.1. Autso, x 5p,,(C" @ €™) = C* idn, c2n Wherem > 1 and n > 2.
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ProOOF. Distinguishtwo cases: (8) 2 < n <2mand(b) 4 <2m < n.

(a) Let(,) denotethe corresponding SPom-invariant non-degenerate skew-symmetric
bilinear form. By classical invariant theory [26, Theorem 6.1.A] it is known for every
n>2,m> lthat

@ cl(c®™"]
(2) C [(CZm)n @ (CZm)* ]SPZm

Fr=cll|1<i<j<n]

=c[lp.al1<i<j<n 1<l<n]

where (i, j)(v1, - - - Vi) == (Vi) and gy (ve, . . ., Vi, T) := f(v). Every automorphism o €

Autso, x sp,,, (C"® C?™) can beseenasan n-tuple (o1, . . . , an) of SPay-covariants (of type

™M) g (C*™M" — €M s=1,..., n. By determining the restitution of the multilinear
invariants of (2) it follows that

n
(3) Us(V1,...,Vn):Zpr5Vr. 3:1....,n
r=1

where pys € C[(C2™"]SPm (see above). We claim that all p;s are constant polynomials.

Denoting o* the corresponding automorphism on C[(C?™)"] we see that a*((i.j)) =
u(i, j) since o induces an automorphism on (C*™)" // SPom = A2C" (adjoint representa-
tion), which is amultiple of the identity (2.5).

Let P denotethe n x n-matrix ( pij)1<ij<n With pj € C[(C*™)"]SP2n from equation (3). It
wasjust shownthat the (3) x ()-matrix A2P consisting of all 2 x 2-minors of Pisascalar
multiple of the identity matrix E(g). Since the kernel of the canonical homomorphism
GL(V) — GL(A?V) is {#id} (dimV > 2), it follows that P € C*E, i.e., o isascalar
multiple of id(sz)n (cf. [13, Proof of 3.1])

(b) Exchangethe rdles of SP,y, and SO,: Here, (,) denotes the corresponding SOp-
invariant non-degenerate symmetric bilinear form. For the SOn-invariants there is an
analogousrelation [26, Theorem 2.9.A, 2.17.A]:

clen™ ™ =cip |1<i<j<2m)
c[eyme @y =c@i)a |1<i<j<2m1<] < 2m)

We can make the same conclusions as in (@) since SPon, acts on (C")2"// SO, =~ SC*"
by the adjoint representation and the kernel of the canonical homomorphism GL (V) —
GL(SV)isaso {*id} (dimV > 2). "

REMARK 6.2. Inthe sameway asin proof (8) of 6.1 one can show Auts,, x sp,, (C" ®
C?™) = €% idgn, oo fOr 2 < n < 2m, neven. Indeed, ¢ € Auts., x sp,,(C" @ C*™) induces
an SLp-automorphism o € Auts,, (A?C") which turns out to bein C* id,2cn (See N° 8b if
n>4;incasen =2, o islinear since A2C? = C).

Analogously, thisis also true if nisodd.

In the following an adaptation of the method for finite N = Nor(H)/H works best.
The fixed point space V" of ageneric stabilizer H for the following examples no longer
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coincides with a Cartan subspace. However, with the earlier methods we will be able to
show that Autg(VH) consists of linear automorphisms. Just like in the proof of 2.3 this
inducesthat every o € Autg(V) isamultiple of idy by looking at o o A idy — A idy oo.

PROPOSITION 6.3. AUtsL, x 5., x 5L, (C? @ €" @ C") = C* iz, g0 fOr N> 3.

ProoF. Embed SL, x SL,, into SL,, and consider thelinear G = SL, x SL, X SLp-
action on the space of 2n x n-matrices V = Manxn. L€t th—1 C 3[, denote the diagonal
matrices. The stabilizer § = g, of

A
A= ( where A, = (‘3) with pairwise distinct a. by
VoA J
hastheform §) = {(0,t,t) € q | t € tn-1} = tn1. Itsfixed point setis
My
Vi = ( 'Mj (21)662.j:1 ..... nb o (2.
\ Mo '
The normalizer n(h) consists of the elements (s, t) € 3o, x 3(, where
Sl n
s:( Withgz(azdj _atldj). >4 =0

Vs

andt € t,_1. Theagebral)isageneric stabilizerand n(h) =~ s, x t,_1 xt,_1 C g.Here
we cannot make use of Lemma 3.1. So take a closer look at the Norg(H) /H-action on
V! whichis equivalenttothe ™ := SL, xS, x Th_1-action on (C?)" defined as follows:

(s diag(ts. .. ., t0).7) - (Vi oo Vo) = (taSVeq)s - - -+ taSVrqr))
Itisshownin[13, 3.1] that Aut-((C%)") = C* idc2n Whichinduces Autg(V) = C* icy.
PROPOSITION 6.4. Auts,, x sL,,(C? @ A2C?") = C*id2,, o0 fOr N > 3.

PROOF. Let er. e, resp. fy, ..., fon be the standard basis of C?, resp. of C". Define
Vik=e®(fAf)eVi=C?@A2CM for 1 <i<21<]<k< 2n. Consider the
G = SL; x SLp-orbit through

1
2 n
V=YY Vg1 €V where H= (11). ‘AiESLz = (SLo)"
i=1 j=1 An

is the stabilizer of v. The H-fixed points are V? = &2 1 @y CVig-12. The group
N = Norg(H)/H |S|somorph|cto MN=9SL,xS X Th. It follows that H is a generic
isotropy group since GVH = V. The N-action on VH is equivalent to the -module (C?)"
as described in the proof of 6.3. We have Autr ((C?)") = C*id.2), asshownin [13, 3.1]
which induces Autg(V) = C* idy. ]
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6.1. S*SL,. Thismoduleisisomorphic to the SL,-representation on the binary forms
V = C[x,Y]s. A generic isotropy group is given by H = Gya,ys = { (< Cl) G= 1} o
Z3. Every ¢ € Autg(V) induces a o € Autnorgny(VH) which must be linear, for o
preserves Cx3 = VY where U = { (; 1) ’ ae C}, and analogously ¢ also preserves Cy®
(Lemma2.1).

6.2. SL,®FSL3. Thismoduleisrealizedby theG = SL, x SLs-actiononV = C’@R,
whereR; := C[x, Y, Z], arethetenary forms of degree?2. Let e1, e, bethe standard basi s of
C? anddefinev; := e1@ (}2+y2), Vo = @ (Y2 +X2), V := V1+V, € V. A generic stabilizer
H isequal to G, (cf. [18, p. 243)); it is generated by the three elements (¢ = €/3)

fla )} w3
w=(() 320

\ 4 4% -1

The finite group H is isomorphic to 4, the alternating group of 4 elements (the iso-
morphism is given by g — (234), g — (12)(34), g3 — (14)(23)). As usua we
determine the H-fixed points in V which turn out to be VP = Cv; @ Cv,. Since
T; x {E3} C N := Norg(H) one easily sees that every ¢ € Auty(V") is linear by
using Lemma2.1.

6.3. SL,@ A3SLgand SL, @ A3 SPs. Leter. e, resp. fr. ... fs be the standard basis

of C?, resp. of C°. Then (ijk) := fi Afj Af for 1 <i < < k < 6isabasisof A3C®.
Consider the element

2
vi=>(ig ®(123) + 2 g ® (126) + 3j g @ (135) +4j g © (156)
j=1
+5j g © (234) + 6j g © (246) + 7j g © (345) + 8j g @ (456)).

The stabilizer H =G, € G=SL, x SLg of v € V = C? ® A3C® hasthe following shape:

A () eels= (v ) rmeemssmif

For the space of H-fixed points one obtains

2
V" = p(Cq @ (123) & Cg @ (126) & Cg @ (135) ® Ceg @ (156)
=1

@ Cq @ (234) & Cg @ (246) & Cq @ (345) & Cg @ (456)).
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The normalizer N := Norg(H) is the following semidirect product:

N:SLZX

A= (2; ﬁi) € SLe | A = diag(ay. aj2. aj2). det A= 1) xS
It follows that Gv is a generic orbit. The identity component of N /H is isomorphic to
(SL,)* and therefore the N-module V" is equivalent to the SO, x SO4-module C* @ €*
(because C[C? @ C?]S-2* Stz = C[q] whereqis aquadratic form). It follows with 4.4 that
AUtN(VH) =C ide.

To examine the automorphism group of SL, @ A3 SPs take the above notations. By
using the methodsin [2, VI 5.3] the skew-symmetric tensors (123), (126), (135), (156),
(234), (246), (345), (456) are elements of A306. Therefore the element v from aboveis
also an element of the generic orbit of thesimple G = SL, x SPs-moduleV = C?@ A3C°.
The stabilizer H = G, is of the following shape:

()55 el

The H-fixed point space as well as Norg(H)? are the same as for SL, ® A3 SLg above.
So the same arguments lead to Autg(V) = C*idy.

6.4. SL3®SL3®SLs. Let er. . 3 be the standard basis of €3 and define (ijk) =
e2geecV=C*eCc®®c3fori,j,k =12 3. Theisotropy group H of

+1
+1 ,detS=e==41% = (7))
+1

v = (112) + 2(222) + 3(333) + 4(123) + 5(132) + 6(213) + 7(231) + 8(312) + 9(321)

is the finite group generated by the three elements (¢ = €#7/3)

[ 00
(<)

The space of H-fixed pointsis easily computed:
VH = €(111) © €(222) © €(333) © C(123) & C(132) & C(213) & €(231)  C(312) © C(321)

The connected component of N := Norg(H) has the shape
Aj
=169 e6|S5=] u o €7, =1.2.38 = (Ty)°.
Ot

Since dimG + dimVH — dimN = dimV the finite group H is a generic stabilizer.
Let Vit C V" be the hyperplane spanned by &l standard basis elements except
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(ijk) € VM and consider the element s := (SS9 € N with S = diag(t,t.t ).t €
C*. Then {w € V" | lim_oswexists} = Vg33), and this hyperplane is stabilized
by every ¢ € Autyo(V"). Anaogously, V(i is Autye(V")-stable by taking s :=
(diag(t™2. t.t). diag(t. t2.t), diag(t.t.t2)) € NC. In total one obtains 9 hyperplanes
in general position which are Autye (VH)-stable. By Lemma 2.1 Autye(VH) only consists
of linear automorphisms.

6.5. SL3@ A2SLg. Leten. e, es resp.fi...., fs be the standard basis of €3, resp. C°.
Thenvijx =6 @ (fiAf),1<i<3,1<j<k<6isabasisof V=C>® A%C® The
isotropy group of the element

V 1= V114 + 2Vi 05 + 3V 36 T 4V 14 + SV2 o5 + 6V 35 + 7V3 14 + BV3 05 + V3 35

+10vy 15 + 11vy 16 + 12V 24 + 13y 26 + 14Vy 34 + 15V 35

turns out to be a generic stabilizer and hasthe form

H = Hlll).(m A_lEs)) eG‘AeG*}gC*.

\\

The space of H-fixed pointslooks as follows:

3
VM = P(CVi14 © CVi 15 D CVi 16 D CVi 2 D CVi 25 B CVi 26 © CVi 34 & CVi 35 & CVi 36).

i=1
Since N° := (Norg(H) /H)® = SL3 x(SL3)? and the N°-action on V" is equivalent to the
natural (SL3)3-action on C* @ €3 @ €2 it holds that Autip(VM) = C* idyw (6.4).

6.6. SL4® Spiny,. Consider the finite subgroup H C G := SL4 x Spin,, generated by
the two elements:

hy = (diag(l, 1. —1. —1). diag(L. —i. 1.i. 1; —1.i. =1, =i, —1))
hy := (diag(—1, 1. —1. 1), diag(i.i, 1. 1, 1; —i, —i, =1, -1, —1)).

The Spinyy-part of h; acts as diag(Es. —Es) on €6 (see [20, 5.28, 5.38]). For a short
outline of the spin-representation of Spin,; we refer to [20, p. 110 ff. and 5.38].

The representation space of SL4 ® Spin,, is defined to be the space of 4 x 16-matrices
V = Max1e. The space of H-fixed points turns out to be:

[fuu0 0O 0|0 O O 0|0 u O us{ 0O us 0O ]
WH {(00u50u50u70 O 00 0|0 O O ug UEC}
0 Ug 0 0|0 O OO Uio O Uy Ojlup 0 0 O :
L 0 0 O0uslOuy OuslO0 O O 00 Oug O
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The Lie algebran of N := Norg(H) consists of the elements

a
a
ag ags bss
t1 =W
( t as3 as —bss
t3 ’ —a
\ —t1—t—13 —a
Cas —a3 —as3
—a4
—Cs5 —agzs —as

where al variables are complex numbers. The algebra n is isomorphic to t3 @ t3 &
804 ((Ez EZ)) ,wheret := t3 @ t3 commuteswith 304 (cf. [20, 5.38]); the second copy of

tzint consistsof the elements (a;, ay. ay) € $019. For agenericelementv € VH, Gvisa
generic orbitand GVH C Visdensesincedim Gv = 60 and dim(G xNVH) = 64 = dimV.
Therefore it suffices to show that Auty(VH) consists of linear elements. Notice that H
is not a generic isotropy group, one can only say that H is contained in it. A generic
stabilizer isisomorphic to (Z)* [18, Table 1].

Up to an outer isomorphismthe 304-module V! correspondstothe SL, x SL,-module
(CH)* @ (C?)* where the first (second) copy of SL, naturally acts on the first (second)
four copies of C? (consider the 304-part in [20, 5.38] acting on VH =~ (C?)8). Its ring of
invariant functionsis

et & @7 =@ ol =i | S5
where[i, j](vi, - - - , vg) = det(v;, vj). Theideal of therelationsamongthe[i, j] isgenerated
by the Plucker relations[1, 2][3, 4] —[1, 3][2, 4] +[1, 4][2, 3] and [5, 6][7, 8] —[5, 7][6, 8] +
[5. 8][6. 7). Using the fact Auts, «gx T, ((C?)*) = C*id 2 [13, Prop. 3.1] and the t3-
equivariance of the copy t3 C 3y every N-automorphism of VH is linear. Since
GVM c Visdense Autg(V) = C*idy.

6.7. . For thelast few casesof Table 4.4 where Norg(H)/H is not finite, we are going
to use Elashvili’s tables [5, Table 6] and [4, Table 1]. Let (G, V) denote a G-module V.
Asusual H C Gisageneric stabilizer and N = Norg(H)/H. In all following examples
we usethefact that if Autg(VH) = C*idys, then also Autg(V) = C* idy (see proof of 2.3).

For (G.V) = SL,® Spiny, (N° 32) it is (N°. VH) =~ (T3 C SL4. C*). This represen-
tation does not admit any nonlinear automorphisms: Take t, = diag(u=3. u.u.u) € T3,
u € C*. Letv € €% then lim,_ot,v exists if and only if v lies in a hyperplane. This
hyperplaneis stabilized by any T3-equivariant automorphism (cf. 6.3). By changing the
spot of the entry u=2 one obtains four hyperplanesin total which arein general position.
Now Lemma 2.1 finishes this example.
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Concerning SL, ® Spin,, (N° 33) thereisamistakein [5, Table 6, No. 7]. A generic
stabilizer is isomorphic to 3A; embedded in Dg [8] (also cf. [20, Section 5, Propo-
sition 38]). Its normalizing Lie algebrain A; + Dg is then isomorphic to 7A;. Hence
(N°, VM) isisomorphic to ((SL2)*. (€?)™4) = ((SOa)% (C*)*2). This module is without
nonlinear automorphisms (4.4).

For SL, ®Es (N° 34) we have (N, VH) ~ (SLa xSz T, (€?)®) whose equivariant
automorphism arelinear [13, 3.1].

Themodule SL, ®E; (N° 35) yields (N, VH) =~ ((SL2)*. (€%)™*) = ((S0u)2. (C*)72).
By 4.4 there are no nonlinear automorphisms.

For (G.V) = SL3 ®Eg (N° 45) one obtains (N, V) = ((SL3)%. (€%*2); in 6.4 all
equivariant automorphisms are proved to be linear.

The modules A® SLg (N° 17), SL, ® Spin, (N° 31), Spin,, (N° 53), A3 SPs (N° 56)
and E7 (N° 65) areall of the sametype: Using thetables|[5, Table 6], [4, Table 1] all these
modules fulfil (N°, VM) 2 (€%, €?) and dimV //G = dimV" //N° = 1. ¢* actson C? by a
positive and a negative weight. By a limit consideration either line through the weight
vector is preserved by every o € Autge(VH) implying that o is linear (see Lemma2.1).
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