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108.41 Diophantine approximations for a class of recursive
sequences

Introduction: The canonical example of a divergent sequence is .
It is arguably the simplest example of a sequence  for which we can
explicitly compute that , where we recall that

the limit superior and limit inferior are defined, respectively, by
 and . Two closely related

divergent sequences are given by  and , .
Similarly, we have , but these calculations are

not nearly as simple as the ones for the canonical example  since
they essentially rely on a deeper fact regarding the equi-distribution modulo

 of the positive integers.

{(−1)n}n ≥ 1
{xn}n ≥ 1

lim⎯⎯⎯

n → ∞
xn = 1 ≠ −1 = lim

⎯n → ∞
xn

lim⎯⎯⎯

n → ∞
xn = lim

n → ∞ (sup
m ≥ n

xm) lim
⎯n → ∞

xn = lim
n → ∞ ( inf

m ≥ n
xm)

cn = cos (n) sn = sin (n) n ≥ 1
lim⎯⎯⎯

n → ∞
cn = 1 ≠ −1 = lim

⎯n → ∞
cn

{(−1)n}n ≥ 1

2π
A natural way to re-write the divergence of a bounded sequence such as

 is by considering a slightly modified version of it that behaves
monotonically. For example, let us define recursively the sequence
by

{cn}n ≥ 1
{un}n ≥ 1

un + 1 = max {un, cn} ,  n ≥ 1, (1)
with  some fixed value. Proving the convergence of the recursive
sequence (1) is a straightforward exercise found in the calculus textbook [1,
Exercise 106, p. 505]. Clearly, if , the sequence is constant and equal
to , hence convergent to . Assuming , we see that  is non-
decreasing and bounded above by 1, therefore convergent by the Monotone
Convergence Theorem. The really interesting question however, which is
not asked in [1], is finding out precisely which value does the sequence

 converge to. On a closer inspection, we discover that computing the
exact value of  propels us into the wonderful world of Diophantine

approximations, the area of mathematics concerned with the approximation
of real numbers by rational ones.

u1 ∈ �

u1 ≥ 1
u1 u1 u1 < 1 un

{un}n ≥ 1
lim

n → ∞
un
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Diophantine approximations
The calculation of  makes use of Dirichlet's Approximation

Theorem [3, Chapter II].

lim
n → ∞

un

Theorem 1 (Dirichlet)
For any  and , there exist  such that

 and .
α ∈ �\ {0} n ∈ � p, q ∈ �

1 ≤ q ≤ n |αq − p| < 1
n

Since the proof of Theorem 1 is a simple consequence of the Pigeonhole
Principle, we briefly recall it here for the convenience of the reader. We
only give the argument for . Consider the set of  numbers

, , where the floor of  is defined as
. Since all of the numbers  belong to the interval

α > 0 n + 1
f k = kα − ⎣kα⎦ 0 ≤ k ≤ n x ∈ �
⎣x⎦ = max{m ∈ � : m ≤ x} f k

[0, 1) = ∪n − 1

l = 0

⎡⎢⎣
l
n

,
l + 1

n ) ,

we conclude that there must exist some  and
 with  such that . In

particular, . Now letting  and
yields .

l0 ∈ {0, 1, … , n − 1}
k1, k2 ∈ {0, 1, … , n} k1 < k2 f k1, f k2 ∈ [ l0

n , l0 + 1
n )

|f k2 − f k1| < 1
n q = k2 − k1 p = ⎣k2α⎦ − ⎣k1α⎦

|qα − p| < 1
n

We are now ready to compute . Let  be given and choose

 such that . By Theorem 1, there exist  such
that  and . Recalling that the cosine
function is Lipschitz, that is,

lim
n → ∞

un ε > 0

N = N (ε) ∈ � 1
N < ε p, q ∈ �

1 ≤ q ≤ N |2πq − p| < 1
N < ε

|cos x − cos y| ≤ |x − y| ,  ∀x, y ∈ �,
we get

1 − cos p = cos 2πq − cos p < ε.
Finally, for all , we haven > p

|un − 1| = 1 − un ≤ 1 − up + 1 ≤ 1 − cos p < ε.
This proves that .lim

n → ∞
un = 1

Similarly for the sequence , we could have also defined
recursively the sequence  by

{un}n ≥ 1
{vn}n ≥ 1

vn + 1 = min {vn, cn} ,  n ≥ 1. (2)
By the Monotone Convergence Theorem we see that  is convergent
as well, but to what exactly? Using the substitution , this reduces
to computing , where  is given by

{vn}n ≥ 1
vn = −wn

lim
n → ∞

wn {wn}n ≥ 1

wn + 1 = max {wn, −cn} = max {wn, cos (n + π)} . (3)
The recursive sequences defined in (1) and (3) suggest that one should
consider a larger class of recursive sequences that encompasses both of
them.
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A class of recursive sequences
Let  and  be some fixed parameters, and

 some fixed function. Consider the class of sequences
 given by the recursion

β ∈ � γ ∈ [0, ∞)
u : � × [0, ∞) → �
{uβ,γ

n }n ≥ 1

uβ,γ
1 = u (β, γ) , uβ,γ

n + 1 = max {uβ,γ
n , cos (γn + β)} ,  n ≥ 1. (4)

Without loss of generality, we can assume , since we can always
replace  with , where  for some

 such that . In what follows, we break up the discussion of
the convergence of the sequence  into two cases.

β ≤ 0
cos (γn + β) cos (γn + β′) β′ = β − 2πk0

k0 ∈ � β ≤ 2πk0
{uβ,γ

n }n ≥ 1

First, let us assume that , that is,  for some
 with , . Note that in this case, for all

,  takes values from the finite set

γ
2π ∈ � γ = 2πt

t = r
s ∈ �+ gcd (r, s) = 1 s ≥ 1

n ∈ � cos (2πnr
s + β)

�β,γ = {cos (2π 
pr
s

+ β) : p ∈ {0,  1, … , s − 1}} ,

which yields . In particular, if ,

for some  then .

lim
n → ∞

uβ,γ
n = max{u(β, γ), max�β,γ} γ = 2πr

r ∈ � lim
n → ∞

uβ,γ
n = max {u (β, γ) , cos β}

 Second, consider the case where . Our claim is the following:γ
2π ≠ �

If β ≤ 0 ≤ γ, and
γ

2π
∉ �, then lim

n → ∞
uβ,γ

n = 1.

The main tool we will use to prove this claim is Kronecker's Approximation
Theorem [2].

Theorem 2 (Kronecker): Any real number can be approximated by multiples
of any irrational number modulo integers; that is, given  and

, we have
β ∈ �

α ∈ �\�

∀ε > 0, ∃q ∈ �, ∃p ∈ � such that |αq − p − β| < ε.
To prove now the claim above, start by noting that if  and

, then necessarily  in Theorem 2. If we apply Theorem 2 to
 and , we obtain for appropriate integers  that

α > 0
β ≤ 0 p ≥ 0
α = 2π

γ ∉ � β / γ p, q

|2π
γ

q − p −
β
γ | <

ε
γ

;

that is,

|2πq − (γp + β)| < ε.
From this point on, the argument concerning the computation of the limit of
the sequence  resembles the one given for the sequence .
Letting , we have

{uβ,γ
n }n ≥ 1 {un}n ≥ 1

n > p

|uβ,γ
n − 1| = 1 − uβ,γ

n ≤ 1 − uβ,γ
p+ 1 ≤ 1 − cos(γp + β)

= cos2πq − cos(γp + β) < ε,
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which proves our claim. In particular, this shows that for the sequence
defined in (3), , and then for the sequence defined in (2),

.

lim
n → ∞

wn = 1

lim
n → ∞

vn = −1

Finally, let us observe that the study of the families of recursive
sequences

ũβ,γ
n + 1 = min {ũβ,γ

n , cos (γn + β)} ,  n ≥ 1,

zβ,γ
n + 1 = max {zβ,γ

n , sin (γn + β)} ,  n ≥ 1,
and

z˜ β,γ
n + 1 = min {z˜ β,γ

n , sin (γn + β)} ,  n ≥ 1,
reduces to the obvious equalities:

ũβ,γ
n = −uβ + π,γ

n , zβ,γ
n = uβ − 1

2π,γ
n and  z˜ β,γ

n = −uβ + 1
2π,γ

n .
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108.42 On matrices whose elements are integers with given
determinant

Introduction
For matrices with large positive integer elements with a small

determinant is an interesting question in a linear algebra course. In this
paper, we investigate matrices of order  with large positive integer
elements and having a small determinant. In [1], the author explains the
method for finding an infinite family of square matrices of order 2 with
large positive integer entries and small positive integer determinant.
Motivated by this fact, we generalise it for the case of square matrices of
any arbitrary order . More precisely, we prove the following result.

n

n ≥ 2

Theorem 1: Given positive integers  and , there exist infinitely many
matrices  with integer elements satisfying  and

.

d M
A = [aij]1 ≤ i,j ≤ n aij ≥ M

det A = d
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