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Reconstruction problems of convex bodies
from surface area measures and lightness
functions

Gangsong Leng, Chang Liu, and Dongmeng Xi

Abstract. First, we build a computational procedure to reconstruct the convex body froma pre-given

surface area measure. Nontrivially, we prove the convergence of this procedure. �en, the sufficient

and necessary conditions of a Sobolev binary function to be a lightness function of a convex body

are investigated. Finally, we present a computational procedure to compute the curvature function

from a pre-given lightness function, and then we reconstruct the convex body from this curvature

function by using the first procedure. �e convergence is also proved. �e main computations in

both procedures are simply about the spherical harmonics.

1 Introduction

Reconstruction problems of convex bodies (compact convex sets with nonempty inte-
riors in R

n) for some known geometric functions and measures (e.g., area measures,
curvatures, brightness function, and lightness functions in this paper) have caught
great attention in convex geometric analysis. For instance, a convex body K can be
uniquely determined, up to translations, by its surface area measure S(K , ⋅), which is
a spherical Borel measure defined by

S(K , η) =Hn−1(ν−1K (η)), ∀ Borel set η ⊂ Sn−1 ,

whereHn−1 denotes the (n − 1)-dimensional Hausdorffmeasure, and νK ∶ ∂K → S
n−1

is the Gaussmap definedHn−1-almost everywhere on the boundary ∂K . Investigation
about whether a spherical Borel measure µ is the surface area measure of a convex
body K is the classical Minkowski problem. Its complete solution goes back to the
work of Aleksandrov and Fenchel-Jessen (see [1, 19, 28] for references). Around 1937,
Aleksandrov also showed that a centrally symmetric convex body K is uniquely
determined, up to translations, by its brightness function

bK(v) = 1

2
∫
Sn−1
∣u ⋅ v∣dS(K , u).
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Independently, Campi [8] and Bourgain and Lindenstrauss [6] proved a stability
version of this result.

1.1 Reconstruction problems for a geometric function (or measure)

In view ofmuch of previouswork, we roughly summarize the reconstruction problems
into the following three types:

(I) Study whether a geometric function (or measure) can uniquely and stably
determine a convex body.

(II) Given a function (or measure) Ξ, study both the necessary and sufficient
conditions of Ξ so that there is a convex body K whose geometric function (or
measure) is the pre-given Ξ.

(III) Suppose the geometric function (or measure) of a convex body K is given. Try
to build a computational procedure to reconstruct the related convex body;
prove the convergence; and design an algorithm based on the computational
procedure, and then implement it and test it.

Aleksandrov’s projection theorem and its stability versions belong to the first topic
(I). �e spherical harmonic is the powerful tool therein. �is technique can also solve
problem (II) for brightness function (see, e.g., Lemma 4.4). Gardner andMilanfar [13,
14] first studied the type (III) problem for brightness function. In fact, they provided
algorithms to reconstruct the origin-symmetric convex body from its given brightness
function. Before that, they gave an algorithm to reconstruct the polytope from the
pre-given discrete measure. Gardner, Kiderlen, Milanfar, and Peyman [12] studied the
convergence of related algorithms, which belongs to the topic (III). Bianchi, Gardner,
and Kiderlen [2] studied problem (III) for covariograms of convex bodies. For studies
about the reconstruction problems for other geometric functions (or measures), see,
e.g., [20, 21, 23, 26].

�e Minkowski problems for geometric measures always involve type (I) and
type (II). Except for the surface area measure, Aleksandrov, Fenchel, and Jessen also
introduced the mixed area measures, and related problems are called the Christoffel–
Minkowski problem. For these geometric measures, type (I) problems are completely
solved, but type (II) problems are not (see [17] for a regular case). While the curvature
measureswere introduced by Federer about half a century ago, its dual counterpart was
introduced quite recently by Huang, Lutwak, Yang, and Zhang [19, 24]. �e studies of
the reconstruction problems of type (II) for the new geometric measures have caught
great attention, in both convex geometry and partial differential equations (see, e.g.,
[4, 3, 10, 22, 30]). However, the problem of type (I) for the dual curvature measure is
only solved in one special case on the plane [5]. It seems that the problem of type (III)
is only considered for surface area measure. For instance, see [14, 23] for discrete case
inRn , and see [20] for smooth case inR3. In [14], the authors reconstructed polytopes
frompre-given discretemeasures, and they proved the convergence of their algorithm;
in [20], by using the spherical harmonic, the authors gave an effective numerical
algorithm for smooth curvature functions in R

3, but they did not rigorously prove
the convergence.
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Given a convex body K in R
n , a lightness function [9] is a binary function that

gives the total reflected light resulting from illumination by a light source at infinity
in the direction w that is visible when looking in the direction v. An interesting
model appeared in [9] is the Lambertian lightness function, whichmeans that it follows
Lambert’s cosine law, and it is formally defined by

LK(v ,w) = ∫
Sn−1
(v ⋅ u)−(w ⋅ u)+dS(K , u),(1.1)

where (t)+ and (t)− denote, respectively, the positive part and negative part of a real
number t. In view of the general description of lightness function, the authors [9] also
introduced a more general lightness function

QK(v ,w) = ∫
Sn−1
(v ⋅ u)− fw(u)dS(K , u),(1.2)

where fw ∶ Sn−1
→ [0,∞) is positive and continuous in the open half-space w+ = {x ∶

x ⋅w > 0} and vanishes in its complement. �is assumption is to fulfill that a watcher
from the viewing direction w can only see a visible part of ∂K. �e authors [9] gave
exhaustive studies about the first topic (I), for these lightness functions.

�e aim of this is to study (the theoretical part of) problem (III) for surface area
measure, and problems (II) and (III) for lightness functions.We explicitly restate them
as follows:

• (III) Given the surface areameasure S(K , ⋅), try to build a computational procedure
to reconstruct the convex body, and prove the convergence.

• (II)What are the sufficient and necessary conditions of a binary functionG ∶ Sn−1 ×
S
n−1
→ R so that there is a convex body K whose lightness function QK is the pre-

given G?
• (III) Given a lightness function QK , try to build a computational procedure to
reconstruct the convex body, and prove the convergence.

�e spherical harmonics will be an important tool in this paper. �ey are the
eigenvectors of spherical Laplace–Beltrami operator ∆S ∶ C∞(Sn−1)→ C∞(Sn−1).
For more detailed introduction, see Section 2.5. We also refer to [6, 15, 27–29] as good
general references.

In Section 3, we give a computational procedure to reconstruct the convex body
from a pre-given surface area measure µ on S

n−1. �e main computations in the
procedures will be the integrals of spherical harmonics and the mixed discriminants
(which will be introduced in Section 2.3) of their Hessians. First, we consider a
sequence of convex optimization problems (PN ), and we prove in �eorem 3.5 that
the solutions of (PN ) will converge to a dilation of the convex body whose surface
area measure is the pre-given µ. Noticing that (PN ) has infinite many constraints, it
is very difficult to solve (PN ) directly. �erefore, we construct the subproblem (PN ,k),
which is an approximation problem of (PN ). Nontrivially, we prove in �eorem 3.3
that (PN ,k) are also convex optimization problems when k is sufficiently large, but
with only finitely many constraints. Since problem (PN ,k) are convex optimization
problems with only finite many constraints, they can be efficiently solved by many
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existing optimization package, and we do not build the explicit algorithm. Finally, by
combining �eorem 3.3 with �eorem 3.5, we conclude that the solution of (PN ,k)
(a�er normalization) converges (in Hausdorff metric) to the convex body K whose
surface area measure is µ.

In Section 4.2, using the language of spherical harmonics, we give both the
necessary and sufficient conditions of a binary function to be a lightness function,
under the Sobolev setting. We use Hk(Sn−1) to denote the Sobolev space of order
k, and the detailed introduction can be seen in Section 2.4. We take the Lambertian
lightness function LK(v ,w) as an example, since it has more physical explanations. A
trivial attempt is that if K is smooth and symmetric,

LK(v ,−v) = 1

2
∫
Sn−1
∣v ⋅ u∣2dS(K , u),

which is the L2 cosine transform of S(K , ⋅). However, it is well known that the Lp

cosine transform is not surjective from C∞e (Sn−1) (even functions in C∞(Sn−1)) into
C∞e (Sn−1) when p is even.

In view of this, the interesting but also reasonable thing in Section 4 is that the
convex body K can be determined by the even expansion of the binary function
LK without symmetric assumption, which is different from the brightness function.
Moreover, the representations in the main theorems naturally lead to an algorithm to
compute the curvature function of a convex body K. Our proof relies on some results
that we slightly develop in Section 4.1, including the eigenvalues and the reverse of the
partial cosine transform

C− f (v) = ∫
Sn−1
(v ⋅ u)− f (u)du

in the Sobolev setting. We note that the Sobolev setting and the tool of spherical
harmonics are very suitable and convenient to build algorithms to reconstruct convex
bodies from known surface area measures or lightness functions.

In Section 5, we use the main results in Section 4.2 to construct a computational
procedure to compute the surface area measure from a pre-given lightness function.
�en, using the Minkowski procedure (Mink-Pro) in Section 3, we are able to
reconstruct the convex bodyK (without the symmetric assumption).�e convergence
of the procedure is also shown.

�emain computations in the two procedures of Sections 3 and 5 are merely about
the spherical harmonics Ym , j ’s, including the mixed discriminants of their Hessians,
and the scalar products of themwith given function (ormeasure).�ese computations
are independent of the indicesN , k of the problem (PN ,k), and hence can be computed
in advance and stored. In other words, the two procedures are robust and easily
implementable.

2 Preliminaries

In this section, we collect some definitions, notations, and basic facts about convex
bodies, the Minkowski problem, Sobolev space on S

n−1, and the spherical harmonics.
We refer to [11, 16, 18, 28, 29] as good general references.
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2.1 Convex bodies

LetK be a nonempty convex compact set. Its support function hK ∶ Rn
→ R is defined

by

hK(u) =max{x ⋅ u ∶ x ∈ K}.
Sometimes, we also view it as a spherical function by restricting it to Sn−1.�e support
function is always sublinear. Conversely, a sublinear function uniquely determines a
nonempty convex compact set.

�e Hausdorff distance between two nonempty compact convex sets K1 ,K2 is
defined by

dH(K1 ,K2) = ∥hK1
− hK2

∥∞.

Given a function f ∈ C(Sn−1), denoteW[ f ] to be the Wullf shape determined by f :

W[ f ] = {x ∈ Rn ∶ x ⋅ u ≤ f (u),∀u ∈ Sn−1}.
If W[ f ] has interiors, and f i ∈ C(Sn−1), i = 1, . . . , is a sequence of continuous func-
tions that converges to f uniformly, thenW[ f i]→W[ f ] in the Hausdorff metric.

We say the surface area measure S(K , ⋅) has a density, if it is absolutely continuous
with respect to the spherical Lebesgue measure. In this case, we denote the Radon–
Nikodym derivative by

FK(u) = dS(K , u)
du

,

and we call FK the curvature function.
Given a function h ∈ C2(Sn−1), denote D2h by

D2h = ∇2h + hI,
where ∇2h is the Hessian of h with respect to the standard metric on S

n−1, and I
denotes the identity map. If one extend the h to a positive-homogeneous function
onRn , then D2h(u) is exactly the restriction of its Hessian inRn to the tangent space
of Sn−1 at u.

In fact, if ∂K is C2 and has positive Gauss curvature everywhere, then S(K , ⋅) has
a density,

FK(u) = dS(K , u)
du

= det(D2hK),
which is the reciprocal Gauss curvature at ν−1K (u) ∈ ∂K .

2.2 Minkowski problem and the Monge–Ampère equation

Solution to the classical Minkowski problem: Suppose µ is a finite Borel measure on
satisfying:

(1) µ is not concentrated in a half-sphere;
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(2) the centroid of µ is the origin:

∫
Sn−1

udµ(u) = 0.
�en, there is a unique (up to translations) convex bodyK inRn so that µ(⋅) = S(K , ⋅).
Moreover, the convex body K is homothetic to the solution of the maximization
problem

maxV(Q), subject to that Q is a convex body and ∫
Sn−1

hQdµ = 1.

If the measure µ has a density function g ∶ Sn−1
→ R with respect to the Lebesgue

measure of the unit sphere Sn−1, the Minkowski problem is equivalent to the study of
solution to the followingMonge–Ampère equation on S

n−1:

det(D2h) = det(∇2h + hI) = g .(2.1)

Let f ∈ L1(Sn−1) be nonnegative, satisfying ∫Sn−1 f > 0 and

∫
Sn−1

u f (u)du = 0.
�en, by the solution of theMinkowski problem, there is always a convex bodyK such
that

dS(K , u) = f (u)du.
2.3 Mixed discriminant and mixed volume

Let A1 , . . . ,Am be self-adjoint linear transforms from a k-dimensional Hilbert V to
itself. �en, the following is a k-homogeneous polynomial of t1 , . . . , tm ∈ R:

det (t1A1 + ⋅ ⋅ ⋅ tmAm) = m

∑
i1=1

. . .
m

∑
ik=1

D(A i1 , . . . ,A ik)t i1 . . . t ik .
Its coefficients D(A i1 , . . . ,A ik), which are symmetric functions of A i1 , . . . ,A ik , are
called themixed discriminants of the linear transforms.

If we choose an orthonormal basis in V, these A i can be represented by sym-
metric k × k matrices, and we still denote them by A i . Denote the matrices Ar =

(ari j)ki , j=1 , r = 1, . . . , k, and the mixed discriminant D(A1 , . . . ,Ak) can be computed

by

D (A1 , . . . ,Ak) = 1

k!
∑
σ∈Pk

RRRRRRRRRRRRRRR
a
σ(1)
11 ⋅ ⋅ ⋅ a

σ(k)
1k⋮ ⋮

a
σ(1)
k1

⋅ ⋅ ⋅ a
σ(k)
kk

RRRRRRRRRRRRRRR
,(2.2)

where Pk is the group of all permutations of the set {1, . . . , k}. Clearly, D(A1 , . . . ,Ak)
is linear in each argument.
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Let K1 , . . . ,Km be convex bodies, and let λ1 , . . . , λm ≥ 0. �en, the volume of
λ1K1 + ⋅ ⋅ ⋅ λmKm is an nth homogeneous polynomial of λ1 , . . . , λm ,

V (λ1K1 + ⋅ ⋅ ⋅ + λmKm) = ∑
i1 , . . . , in=1

V (K i1 , . . . ,K in) λ i1 ⋅ ⋅ ⋅ λ in .
�e coefficients V (K i1 , . . . ,K in), which will be called themixed volumes, are nonneg-
ative, symmetric in the indices, and dependent only on K i1 , . . . ,K in .

If ∂K is C2 and has positive Gauss curvature everywhere, then

V(K) = 1

n
∫
Sn−1

hK(u)det(D2hK)(u)du.
In addition, if hK = t1h1 + ⋅ ⋅ ⋅ tmhm , for some h i ∈ C

2 and t i ∈ R, we have

V(K) = m

∑
i1=1

. . .
m

∑
in=1

( 1
n
∫
Sn−1

h in(u)D(D2h i1 , . . . ,D
2h in−1)(u)du)t i1 . . . t in .

(2.3)

Here, D(D2h i1 , . . . ,D
2h in−1)(u) should be understood as the mixed discriminant of

linear transforms restricted on u⊥.
Especially, notice that the spherical harmonics (Ym , j) belong to C∞(Sn−1). When

we are considering the numerical algorithm in Section 3, we represent the support
function in finite-dimensional function space generated by the spherical harmonics in
each stepN, and (2.3) will be useful. Moreover, (2.3) also suggests the relation between
mixed discriminant and mixed volume, which goes back to Hilbert–Minkowski–
Aleksandrov (see [1] for reference).

2.4 Sobolev space Hk

Let k ≥ 0 be an integer. We denote Hk(Sn−1) to be the Sobolev space, which is the
completion of C∞(Sn−1) with respect to the norm

∥ f ∥Hk
=

k

∑
m=0

(∫
Sn−1
∣∇m f ∣ 2du)1/2 , f ∈ C∞(Sn−1),

where∇m f denotes themth covariant derivative of f. For a function g ∈ Hk(Sn−1) and
m ≤ k,∇m g ∈ L2(Sn−1) denotes itsweak covariant derivative, which can be defined as
the limit of∇m fk in L

2, where fk ∈ C
∞(Sn−1) (k ∈ N) is an arbitrary Cauchy sequence

with respect to the norm ∥ ⋅ ∥Hk
. See [18] for reference.

Let ∆S ∶ C∞(Sn−1)→ C∞(Sn−1) be the Laplace operator on S
n−1, which is self-

adjoint. Extend it to ∆S ∶ Hk+2(Sn−1)→ Hk(Sn−1). �en, for f , g ∈ Hk+2(Sn−1), it
satisfies

(∆S f , g) = ( f , ∆S g).
Note that (⋅, ⋅) always denotes the scalar product in L2(Sn−1) in this paper.

2.5 Spherical harmonics

�e spherical harmonics are the eigenvectors (eigenfunctions) of spherical Laplace-
Beltrami operator ∆S ∶ C∞(Sn−1)→ C∞(Sn−1). It is well known that these eigenvec-
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tors can be chosen to be the restriction onto Sn−1 of the harmonic polynomials (with
respect to an orthonormal basis e1 , . . . , en of Rn) on R

n/{0}. �e eigenvalues of ∆S

are

λm = −m(m + n − 2), m = 0, 1, . . . .

With regard to λm , the related eigenspace Em consists of all the harmonic polynomials
on R

n/{0} of degreem. �e dimension of Em is

Nm =
(2m + n − 2) ⋅ (n +m − 3)!

(n − 2)! ⋅m!
.

�e compact operator theory in functional analysis tells that one can choose the
eigenvectors to be a Hilbert basis of L2(Sn−1). More precisely, we can choose (Ym , j)
such that the eigenspace of λm is

Em = span{Ym ,1 , . . . ,Ym ,Nm
}

and

(Ym , j ,Ym ,k) = ∫
Sn−1

Ym , j(u)Ym ,k(u)du = δkj .
For distinct m,m′, we automatically have (Ym , j ,Ym′ , j′) = 0. Especially, when m = 1,
the eigenfunctions {Y1, j}nj=1 are chosen to be

Y1, j(u) = 1√
ωn

e j ⋅ u, j = 1, . . . , n,

so that (Y1,k ,Y1, j) = δkj . From this, it is easy to obtain the following formula that
describes the barycenter of an integrable function g:

v ⋅ ( 1

ωn
∫
Sn−1

ug(u)du) = n

∑
j=1

[∫
Sn−1
( e j√

ωn

⋅ u)g(u)du]( e j√
ωn

⋅ v)
=

n

∑
j=1

(g ,Y1, j)Y1, j(v).(2.4)

Since (Ym , j) is a Hilbert basis, for each g ∈ L2(Sn−1), we have
g =

∞

∑
m=0

Nm

∑
j=1

(g ,Ym , j)Ym , j .

3 Reconstruction from a pre-given surface area measure

For a given finite Borel measure µ that is not concentrated in any hemisphere and
satisfies

∫
Sn−1

vdµ(v) = 0,
we shall give a computational procedure to reconstruct the convex bodywhose surface
area measure is µ, and its convergence will also be proved.
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For our convenience, only in this section, we relabel the spherical harmonics{Ym , j ∶ m = 0, 1, . . . , j = 1, . . . ,Nm}/{Y1,1 , . . . ,Y1,n} by {Ym}∞m=0. �at is to say, in

{Yi}∞i=0, there are no spherical harmonics of degree 1. As a result, if hQ = ∑N
i=0 x iYi is

a support function of a convex body Q. �en, by (2.4),

∫
Sn−1

vhQ(v)dv = 0.
So, one convenience is to assign a specific translation of Q, since the surface area
measure S(Q , ⋅) is translation invariant.

Denote

Vi1 , . . . , in =
1

n
∫
Sn−1

Yin(v) D(D2Yi1 , . . . ,D
2Yin−1)(v) dv , i1 , . . . , in = 0, 1, . . . ,N ,

(3.1)

and

Vi = ∫
Sn−1

Yi(v)dµ(v), i = 0, 1, . . . ,N .(3.2)

Here, D is the mixed discriminant that can be computed by (2.2).
For a point (x0 , . . . , xN) ∈ RN+1 , let V be the volume function

V(x0 , . . . , xN) = N

∑
i1=0

. . .
N

∑
in=0

Vi1 , . . . , in ⋅ x i1 . . . x in .

3.1 Optimization problem (PN )

Originally, our aim in Step N is to solve the following optimization problem (PN ):

max V(x0 , . . . , xN),
subject to (x0 , . . . , xN) ∈ CN ,

where CN is a convex set (will be proved later) defined by

CN = {(x0 , . . . , xN) ∈ RN+1 ∶ D2 ( N

∑
m=0

xmYm)(u) ≥ 0, ∀u ∈ Sn−1 ,
N

∑
m=0

Vm ⋅ xm = 1} .
Solve the optimization problem (PN ) and normalize the solution.

However, the problem (PN ) cannot be solved directly by computer, since the
requirement (x0 , . . . , xN) ∈ CN has actually infinitely many inequality constraints,
although it can be shown to be a convex optimization problem.�erefore, we consider
the following optimization problem (PN ,k), for N , k ∈ N. We will show in �eorem
3.3 that the subproblem (PN ,k) is also a convex optimization problem with only
finitely many constraints when k is large, and it follows from �eorems 3.3 and
3.5 that its solution will converge to the solution of the Minkowski problem as
N , k →∞.

Now, we put our computational procedureMink-Pro and the subproblem (PN ,k) as
follows.
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For each k ∈ N, we assign a kth partition Tk = {Ok
1 , . . . ,O

k
2k
} of Sn−1 such that

Ok
i ⊂ S

n−1 , H
n−1(Ok

i ) = nωn

2k
,

2k

⋃
i=1

Ok
i = S

n−1 , and Tk+1 ⊂ Tk .(3.3)

Extract one point from each Ok
i to obtain a set Uk ⊂ S

n−1 such that Uk contains 2k

elements and

Uk+1 ⊂ Uk .(3.4)

Define

CN ={(x0 , . . . , xN) ∈ RN+1 ∶ D2 ( N

∑
i=0

x iYi)(u)≥ I

N
, ∀u ∈Sn−1 , and

N

∑
m=0

Vm ⋅ xm = 1},
and

CN ,k ={(x0 , . . . , xN) ∈ RN+1 ∶ D2 ( N

∑
i=0

x iYi)(u)≥ I

N
, ∀u ∈Uk , and

N

∑
m=0

Vm ⋅ xm = 1}.
(3.5)

Clearly, CN ,k+1 ⊂ CN ,k , and

∞

⋂
k=1

CN ,k = CN .

Consider the modified optimization problem (P∗N ):

max V(x0 , . . . , xN),
subject to (x0 , . . . , xN) ∈ CN .

Denote its solution by (x∗0 , . . . , x∗N), and define

hN = ( N

∑
i=0

x∗i Yi)V(x∗0 , . . . , x∗N)−1/(n−1) .(3.6)

3.2 Minkowski Procedure

• Input:Natural numbers n,N , k, the general mixed volumes Vi1 , . . . , in and Vi for the
spherical harmonicsY0 , . . . ,YN defined by (3.1) and (3.2), the finite setUk satisfying
(3.4) and (3.3).

• Task: Compute the function hN ,k .
• Action:

1. Solve the following convex optimization problem (PN ,k):

sup V(x0 , . . . , xN),
subject to (x0 , . . . , xN) ∈ CN ,k .

Denote the solution of (PN ,k) by (xk
0 , . . . , x

k
N).
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2. Compute

hN ,k = ( N∑
i=0

xk
i Yi)V(xk

0 , . . . , x
k
N)−1/(n−1).

Remark 3.1 1. We will show in �eorem 3.3 that (PN ,k) and (PN ) are convex
optimization problems, for sufficiently large k.�us, the maximizers (xk

0 , . . . , x
k
0 ) and(x∗0 , . . . , x∗0 ) (theoretically) exist and are unique.

Especially, the approach to find the solution of (PN ,k) is computationally tractable,
since (PN ,k) has only finitely many constraints. To write the detailed algorithm for the
approach, see [7, 25] for references.

2. We will prove in�eorem 3.3(6) that the convex body, determined by hN ,k ,

KN ,k = {z ∶ z ⋅ u ≤ hN ,k(u), ∀u ∈ Sn−1}
converges to KN as k →∞. In addition, we will prove in �eorem 3.5 that KN → K,
when N →∞, where KN is the convex body determined by hN , and S(K , ⋅) = µ.

3. Recalling equation (2.3),V(x0 , . . . , xN) is actually the volumeof the convex body
Q whose support function is

hQ =
N

∑
i=0

x iYi ,

for (x0 , . . . , xN) ∈ CN .�e quantity∑N
i=0 Vi ⋅ x i is ∫ hQdµ. �is explains that Action 1

coincideswith the optimization problem in solving theMinkowski problem.However,
they are not completely the same, and we have to prove the convergence.

4. Although our procedure can reconstruct the body from a general measure, in
practice, the smooth functions in the form

F(u) = k0

∑
i=0

z iYi(u)
are more tractable. Since the 1-degree spherical harmonics Y1,1 , . . . ,Y1,n are removed
from Yi ’s, such a function F always satisfies ∫Sn−1 uF(u)du = 0.
Lemma 3.1 Suppose K is a convex body such that

∫
Sn−1

hK(u)dµ(u) = 1
and

∫
Sn−1

uhK(u)du = 0.(3.7)

�en, there is a constant c1 that only depends on µ, such thatmax{∣x∣ ∶ x ∈ K} ≤ c1 .
Proof Since µ is not concentrated in any hemisphere, the function

v ↦ ∫
Sn−1
(u ⋅ v)+dµ(u)
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is strictly positive on Sn−1, and since the function is continuous on Sn−1, which is
compact, there exists c0 > 0 such that

∫
Sn−1
(u ⋅ v)+dµ(u) ≥ c0 > 0 for all v ∈ Sn−1 .

Denote R0 =max{∣x∣ ∶ x ∈ K̄N}. �en, there exists v0 ∈ S
n−1 such that R0 ⋅ v0 ∈ K . By

(3.7), we must have o ∈ K . �us, we obtain

R0 ⋅ c0 ≤ ∫
Sn−1

R0(v0 ⋅ u)+dµ(u) ≤ ∫
Sn−1

hK(u)dµ(u) = 1,
and hence R0 ≤ 1/c0. Denote c1 = 1/c0, and we complete the proof. ∎
Lemma 3.2 (1)�e sets CN ,CN ,CN ,k ⊂ R

N+1 are nonempty, closed, and convex.
(2) CN is bounded.

Proof (1) Since Y0 is a constant, (c, 0, . . . , 0) ∈ CN for some sufficiently large con-

stant c. SinceCN ⊂ CN andCN ⊂ CN ,k , they are all nonempty. SinceD2(∑N
i=0 x iYi)(u)

is continuous in (x0 , . . . , xN), CN ,CN , and CN ,k are closed.
If, at some u ∈ Sn−1,

D2 ( N

∑
i=0

x iYi)(u) and D2 ( N

∑
i=0

y iYi)(u)
are positive semidefinite, then

D2 ( N

∑
i=0

((1 − λ)x i + λy i)Yi)(u)
is also positive semidefinite at this u, ∀λ ∈ [0, 1]. It follows immediately that CN ,CN ,
and CN ,k are convex.

(2) By Lemma 3.1, for any (x0 , . . . , xN) ∈ CN , we have

∣hQ(u)∣ = ∣ N

∑
m=0

xmYm(u)∣ ≤ c1 , ∀u ∈ Sn−1 ,

where c1 is a constant that only depends on µ. �en,

∣xm ∣ = ∣(hQ ,Ym)∣ = ∣∫
Sn−1

hQ(u)Ym(u)du∣ ≤ c1∥Ym∥1 .
Since Ym ∈ C

∞(Sn−1) are fixed functions, we deduce that CN is bounded. ∎
�eorem 3.3 (1) V(x0 , . . . , xN) is strictly positive on CN .

(2)�e function V 1/n is strictly concave on CN .
(3) CN ,k → CN in the Hausdorff metric; and CN ⊂ int CN .
(4) (V)1/n is strictly concave on CN ,k , for sufficiently large k.
(5) (xk

0 , . . . , x
k
N)→ (x∗0 , . . . , x∗N) as k →∞.

(6) �e convex body KN ,k determined by hN ,k converges to the convex body KN

determined by hN (defined in (3.6)) as k →∞.
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Proof (1) We will use the fact that a smooth support function is either the support
function of a convex body or the support function of a fixed point. By our con-
struction, ∑N

i=0 x iYi is always smooth, and {Yi}Ni=0 does not contain the spherical
harmonics of degree 1. �us, for (x0 , . . . , xN) ∈ CN , it cannot be the support function
of a fixed point. �us, V is always positive.

(2) Since (x0 , . . . , xN) ∈ CN ,

N

∑
i=0

x iYi(u)
is a support function of some convex compact set, which we denote by K(x0 , . . . , xN).
Now,

V(x0 , . . . , xN) = V(K(x0 , . . . , xN))
is its volume. Notice also that, for (y0 , . . . , yN) ∈ CN and λ ∈ [0, 1],
(1 − λ)K(x0 , . . . , xN) + λK(y0 , . . . , yN) = K((1 − λ)x0 + λy0 , . . . , (1 − λ)xN + λyN).
�us, statement (2) follows immediately from the Brunn–Minkowski inequality,
statement (1), and the fact that

∫
Sn−1

uhK(x0 , . . . ,xN)du = ∫
Sn−1

uhK(y0 , . . . ,yN)(u)du = 0.
(3) Since CN ,k is convex and closed for each k ∈ N,

∞

⋂
k=1

CN ,k = CN ,

and CN is compact, statement (3) follows immediately.
(4) Since CN ,k → CN ⊂ intCN , and CN is compact, V is still positive on CN ,k when

k is sufficiently large. Moreover, CN ,k will also be compact. Recall that

V(x0 , . . . , xN) = N

∑
i1=0

. . .
N

∑
in=0

Vi1 , . . . , in ⋅ x i1 . . . x in

is a polynomial of degree n, where Vi1 , . . . , in are fixed constants. �us, V(⋅)C∞(RN+1).
By the construction of CN ,k , when k is sufficiently large, there is a constant θ > 0, such
that the Hessian

D2(V 1/n)(x0 , . . . , xn) ≥ θIN+1
everywhere on CN ,k .

(5) As a consequence of (3), for sufficiently large k, CN ,k is also compact. �us,
any subsequence of (xk

0 , . . . , x
k
N) has a subsubsequence, which is also denoted by(xk

0 , . . . , x
k
N), converging to a point (x̄0 , . . . , x̄N) ∈ ⋂k CN ,k = CN . It suffices to show

that (x̄0 , . . . , x̄N) = (x∗0 , . . . , x∗N).
Since (x∗0 , . . . , x∗N) ∈ CN ,k , for each k ∈ N, and (xk

0 , . . . , x
k
N) is the maximizer of

(PN ,k) for sufficiently large k, we have

V(xk
0 , . . . , x

k
N) ≥ V(x∗0 , . . . , x∗N).(3.8)
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Taking limits in (3.8), we obtain

V(x̄0 , . . . , x̄N) ≥ V(x∗0 , . . . , x∗N).
Since (x̄0 , . . . , x̄N) ∈ CN , and (x∗0 , . . . , x∗N) is the unique maximizer of (P∗N ), we must
have (x̄0 , . . . , x̄N) = (x∗0 , . . . , x∗N). �is completes the proof.

(6) By (5), we have

N

∑
i=0

xk
i Yi →

N

∑
i=0

x∗i Yi

uniformly on S
n−1. Recall the fact collected in Section 2.1: f i → f uniformly and

that W[ f ] has interior imply that W[ f i]→W[ f ] in the Hausdorff metric. Now, (6)
follows immediately from this property, the continuity of volume, and the definitions
of hN and hN ,k . ∎
Lemma 3.4 [29, �eorems 4 and 5] Suppose F ∈ C∞(Sn−1) satisfying ∫ F(u)udu =
0. Denote

FN(u) = N

∑
m=0

(F ,Ym)(u).
�en:

(1) FN converges to F uniformly on S
n−1;

(2) D2FN converges to D2F uniformly on S
n−1.

Remark 3.2 �is Lemma follows immediately from the estimates in [29, �eorems
4 and 5], which suggest the relationship between the max norm and the L2-norm
of Fourier expansion into spherical harmonics. �e assumption ∫ F(u)udu = 0 is
because our {Yi}∞i=0 does not contain the spherical harmonics Y1,1 , . . . ,Y1,n . Except
for this, the only difference is that the Dα in [29, �eorem 4(b)] is slightly different
from ours.

Let f ∈ C∞(Sn−1). Denote D̄2 f (x/∣x∣) to be the Euclidean Hessian, and D2 f to be
our notation in Section 2.1. �en, restricting to x⊥,

D̄2 f (x/∣x∣) + f (x/∣x∣)I = D2 f (x/∣x∣),
and D̄2 f (x/∣x∣) = 0 on the line Rx.

�eorem 3.5 Denote the solution of (PN ) by (x∗0 , . . . , x∗N), and
hN = ( N

∑
m=0

xmYm)V(x∗0 , x∗1 , . . . , x∗N)−1/(n−1).
Let KN be the convex body determined by hN ,

KN = {x ∶ x ⋅ u ≤ hN(u), ∀u ∈ Sn−1}.
�en, KN converges to K in the Hausdorff metric, as N →∞. Here, K is the unique
(theoretical) solution of the Minkowski problem

S(K , ⋅) = µ(⋅)
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such that

∫
Sn−1

uhK(u)du = 0.
Proof Denote

hK̄N
=

N

∑
m=0

x∗mYm ,

and denote K̄ = λK (λ > 0) to be the dilation of K such that ∫Sn−1 hK̄dµ = 1. To prove
this theorem, it suffices to prove that K̄N → K̄.

Step 1. Since {Ym}∞m=0 does not contain the {Y1, j}’s, by equation (2.4), we always
have

∫
Sn−1

uhK̄N
(u)du = 0.(3.9)

Step 2. It follows immediately from Lemma 3.1 that the sequence {K̄N}∞N=1 is
bounded.

Step 3. By Step 2 and Blaschke’s selection theorem, any subsequence of {K̄N}∞N=1
has a subsubsequence K̄N i

converging to a convex body K∗ in the Hausdorff metric.
In this step, we will show that K∗ satisfies

V(K∗) = sup{V(Q) ∶ ∫
Sn−1

hQ(u)dµ(u) = 1, Q is a convex body},(3.10)

and

∫
Sn−1

hK∗(u)dµ(u) = 1.(3.11)

�e second equation follows immediately from the convergence. Let us consider
(4.10).

• Step 3.1. Suppose Q is a smooth convex body that has positive Gauss curvature,
and ∫Sn−1 hQdµ = 1. We will show that V(K∗) ≥ V(Q). By the assumption, hQ ∈
C∞(Sn−1), and

det(D2hQ)(u) > 0, ∀u ∈ Sn−1 .

Denote

hQN
=

N

∑
m=0

(hQ ,Ym)Ym .

�en, by Lemma 3.4(1), hQN
converges to hQ uniformly. In addition, by Lemma

3.4(2), for sufficiently large N, we still have

det(D2hQN
)(u) > 0, ∀u ∈ Sn−1 ,

and hence hQN
is also support function. �erefore, if we denote

Q̄N =
1

∫Sn−1 hQN
dµ

QN ,
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by the construction of K̄N , we have V(K̄N) ≥ V(Q̄N). Since K̄N → K∗, Q̄N → Q,
we get

V(K∗) ≥ V(Q).
• Step 3.2. For any convex body L, we can choose a sequence of smooth convex bodies
Qm that have positive curvatures, and such that Qm → L. By the approximation
argument, we complete the proof of (4.10).

By the solution of the Minkowski problem, the convex body satisfying (4.10) and
(3.11) is unique up to translations. Recalling the fact that

∫
Sn−1

uhK̄(u)du = ∫
Sn−1

uhK∗(u)du = 0,
we have K̄ = K∗. Since we have proved that any subsequence of {K̄N} has a con-
vergent subsequence converging to K̄, we have actually completed the proof of this
theorem. ∎

4 Reconstruction problems (II) for the lightness function

In this section, we consider the general lightness function QK , which was defined by

QK(v ,w) = ∫
Sn−1
(v ⋅ u)− fw(u)dS(K , u),

where fw is positive and continuous in the open set w+ ∩ Sn−1 and vanishes in its
complement. Before this, we need to develop some applications about the Funk–Hecke
theorem.

4.1 Further applications of the Funk–Hecke theorem

�e following is known as the Funk–Hecke theorem.

Lemma 4.1 [28] Let f ∈ L2[−1, 1] be a function satisfying

∫
1

−1
∣ f (t)∣(1 − t2) n−3

2 <∞.

If Ym ∈F
m is a spherical harmonic of degree m, then

∫
Sn−1

f (u ⋅ v)Ym(u)du = λm( f )Ym(v),
for v ∈ Sn−1, where

λm( f ) = (n − 1)ωn−1[Cν

m(1)]−1 ∫ 1

−1
f (t)Cν

m(t)(1 − t2) n−3
2 dt,
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where

Cν

m(t) = aνm (1 − t2)−ν+1/2 ( ddt )
m (1 − t2)m+ν−1/2 ,

aνm = C
ν

m(1) (− 12)
m Γ ( n−1

2
)

Γ (m + n−1
2
) , and Cν

m(1) = Γ(m + n − 2)
Γ(n − 2)Γ(m + 1) .

Lemma 4.2 [28] For the function f (t) = ∣t∣, the eigenvalue λm( f ) in the Funk–Hecke
theorem is

λm(∣t∣) = (−1)
m−2
2 π

n−1
2 Γ(m − 1)

2m−2Γ (m
2
) Γ (m+n+1

2
) ,

for even m, and λm(∣t∣) = 0 for odd m. Furthermore, ∣λm(∣t∣)−1∣ = O (m(n+2)/2) for
even m →∞.

Since the lightness functions are defined in the form of partial cosine transform

C−g(v) = ∫
Sn−1
(v ⋅ u)−g(u)du,

we require the following Lemma to compute its eigenvalues.

Lemma4.3 Let f (t) = t−, and denote βm to be the λm( f ) in the Funk–Hecke theorem.
�en,

βm =
(−1) m−2

2 π
n−1
2 Γ(m − 1)

2m−1Γ (m
2
) Γ (m+n+1

2
) ,

for even m, βm = 0 if m is odd and m ≥ 3, and

β1 = −ωn

2
≠ 0.

Applying Lemma 4.1, one can directly compute the coefficients βm , but it will be
complicated when m ≥ 3 is odd. However, we would like to provide the following
simpler method, to understand the geometric fact that the partial cosine transform
C−g also defines a support function of a zonoid (which may not be symmetric with
respect to the origin).

Proof Since t− = 1/2(∣t∣ − t), we have
∫
Sn−1
(v ⋅ u)−g(u)du = 1

2
∫
Sn−1
∣v ⋅ u∣g(u)du − 1

2
∫
Sn−1
(v ⋅ u)g(u)du

=
1

2
∫
Sn−1
∣v ⋅ u∣g(u)du + v ⋅ ( − 1

2
∫
Sn−1

ug(u)du).(4.1)

Denote am , j = (g ,Ym , j). By the above equation and Lemmas 4.1 and 4.2, we have

∫
Sn−1
(v ⋅ u)−g(u)du = 1

2
∑

m even

Nm

∑
j=1

λm(∣t∣)am , jYm , j(v) − 1

2
∫
Sn−1
(v ⋅ u)g(u)du.

(4.2)
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Using Lemma 4.1 again, for the function (v ⋅ u)−, we know that

∫
Sn−1
(v ⋅ u)−g(u)du = ∞

∑
m=0

Nm

∑
j=1

βmam , jYm , j(v).(4.3)

By (2.4), we have

− 1
2
∫
Sn−1
(v ⋅ u)g(u)du = − ωn

2
⋅

n

∑
j=1

a1, jY1, j(v).
By this and Lemma 4.2, comparing (4.2) with (4.3), we get the desired result. ∎
Lemma 4.4 (�eorem 3.5.4 [28]) If ρ is an even signed measure on S

n−1 with

∫
Sn−1
∣(u ⋅ v)∣dρ(u) = 0 ∀ v ∈ Sn−1 ,

then ρ = 0.
If G is an even real function on S

n−1 of differentiability class Ck , where k ≥ n + 2 is
even, then there exist an even continuous function g on S

n−1 such that

G(v) = ∫
Sn−1
∣(u ⋅ v)∣g(u)du,(4.4)

for v ∈ Sn−1.

�e above Lemma and its proof can be found in [28]. Since we want to work
with the nonsmooth convex bodies, we slightly improve this result to the functions
in Sobolev spaces. Precisely, we consider the functions in Hk(Sn−1). Although the
approach is standard, we did not find the result as follows. So, for completeness, we
give a proof here.

Lemma 4.5 Let k ≥ n + 1 be an even integer. If G ∈ Hk(Sn−1) is an even function, then
there exists an even function g ∈ L2(Sn−1) such that

G(v) = ∫
Sn−1
∣(u ⋅ v)∣g(u)du,(4.5)

for all v ∈ Sn−1. Especially, g can be formulated by the convergent function series

∑
m even

Nm

∑
j=1

λ−1m (∣t∣)(G ,Ym , j)Ym , j ,(4.6)

where λ−1m (∣t∣) is provided by the Funk–Hecke theorem.

Proof Denote k = 2l . Since G ∈ Hk(Sn−1), we have
G(v) = ∞

∑
m=0

Nm

∑
j=1

(G ,Ym , j)Ym , j(v).
We aim to prove that the series

∑
m even

λm(∣t∣)−1 ⎛⎝
Nm

∑
j=1

(G ,Ym , j)Ym , j

⎞
⎠(4.7)

converges in L2(Sn−1).
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Recall that

∆SYm , j = −m(m + n − 2)Ym , j .

Since ∆S is self-adjoint, we have

(G ,Ym , j) = [ −1
m(m + n − 2)]

l

(∆l
SG ,Ym , j) .

By the Cauchy–Schwarz inequality, we have

∣(G ,Ym , j)∣ ≤ [ 1

m(m + n − 2)]
l

⋅ ∥G∥Hk
.

As a result, the right-hand side of (4.7) satisfies

∥λm(∣t∣)−1 ⎛⎝
Nm

∑
j=1

(G ,Ym , j)Ym , j

⎞
⎠∥

2

2
≤ ∥G∥2Hk

[ 1

m(m + n − 2)]
2l

⋅ λm(∣t∣)−2 ⋅ Nm .

Since G ∈ Hk , it suffices to prove that

[m(m + n − 2)]−2l ⋅ λm(∣t∣)−2 ⋅ Nm = O (mα) , for some α < −1.(4.8)

Here,

λm(∣t∣)−1 = O (m n+2
2 ) , and Nm =

(2m + n − 2) ⋅ (n +m − 3)!
(n − 2)! ⋅m!

= O (m n−2
2 ) .

If l > n/2 + 1/4, the inequality (4.8) holds for
α = −4l + 2n < −1.

�erefore, when k = 2l ≥ n + 1, we have the desired result. ∎
Lemmas 4.3 and 4.5 immediately lead to the following.

Corollary 4.6 Let k ≥ n + 1 be an even integer, and let G ∈ Hk(Sn−1). Suppose g ∈
L2(Sn−1) satisfies

∫
Sn−1
(v ⋅ u)−g(u)du = G(v).

�en,

g(u) + g(−u) = 2 ∑
m even

Nm

∑
j=1

β−1m (G ,Ym , j)Ym , j

and

∫
Sn−1

ug(u)du = − 2

ωn
∫
Sn−1

uG(u)du.
Moreover, (G ,Ym , j) = 0, for each odd integer m ≥ 3.
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Proof Denote g̃(u) = g(u) + g(−u), am , j = (g ,Ym , j), and bm , j = (g̃ ,Ym , j). When
m is even, Ym , j is even, and thus bm , j = 2am , j . On one hand, by Lemmas 4.1 and 4.2,
we have

G(v) = ∫
Sn−1
(v ⋅ u)−g(u)du = ∑

m even

Nm

∑
j=1

βmam , jYm , j(v) − ωn

2

n

∑
j=1

a1, jY1, j(v).
On the other hand,

G(v) = ∞

∑
m=0

Nm

∑
j=1

(G ,Ym , j)Ym , j(v).
Comparing the coefficients, we have the following. For each odd integer m ≥ 3, we
have (G ,Ym , j) = 0. For m = 1, we have (G ,Y1, j) = −(ωn/2)a1, j . Applying (2.4) for g
and G, respectively, we get

−ωn

2
∫
Sn−1

ug(u)du = ∫
Sn−1

uG(u)du.
For evenm, we have

(G ,Ym , j) = βm

2
bm , j .

Since g̃ is an even function, we get

g̃(u) = g(u) + g(−u) = 2 ∑
m even

Nm

∑
j=1

β−1m (G ,Ym , j)Ym , j .

�e convergence of the above function series follows from Lemma 4.5 and the fact
that 2βm = λm(∣t∣). ∎

4.2 The necessary and sufficient conditions of being a lightness function

Given a binary function G ∶ Sn−1 × Sn−1
→ R so that G(⋅,w) is Sobolev for a fixed

w ∈ Sn−1, we shall use the notation

(G(⋅,w), f ) = ∫
Sn−1

G(v ,w) f (v)dv .
Lemma 4.7 Let K be a convex body, and let k ≥ n + 1 be an even integer. If, for each
i ∈ {1, . . . , n}, its lightness functions QK(⋅, e i),QK(⋅,−e i) ∈ Hk(Sn−1), then the surface
area measure S(K , ⋅) has a density in L2(Sn−1).
Proof Denote

GK , i(v) = QK(v , e i) + QK(−v , e i) + QK(v ,−e i) + QK(−v ,−e i),
which is an even function in Hk(Sn−1). On one hand,

GK , i(v) = ∫
Sn−1
∣u ⋅ v∣ ( fe i (u) + f−e i (u)) dS(K , u).
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On the other hand, by Lemma 4.5, there is an even function FK , i ∈ L
2(Sn−1) such that

GK , i(v) = ∫
Sn−1
∣u ⋅ v∣FK , i(u)du.

Since the cosine transform is injective (Lemma 4.4), we have

( fe i (u) + f−e i (u)) dS(K , u) = FK , i(u)du.
Note that, for each u ∈ Sn−1 , there exists an i ∈ {1, . . . , n} such that ∣u i ∣ ≥ 1/√n. Since∣ f̃e i ∣ is positive and continuous in {u ∶ ∣u i ∣ ≥ 1/√n}, it has a strict positive lower bound.
�us,

dS(K , u) = FK , i(u)
fe i (u) + f−e i (u)du

has a density in L2(Sn−1), where the function FK , i/( fe i + f−e i )must be independent
of i. ∎
�eorem 4.8 Let K be a convex body, and let k ≥ n + 1 be an even integer. Suppose
QK(⋅,w) ∈ Hk(Sn−1), for any w ∈ Sn−1.�en:

(1) �e curvature function FK satisfies

1

2
fw(u)FK(u) = 1w+(u) ⋅ ∑

m even

Nm

∑
j=1

β−1m (QK(⋅,w),Ym , j)Ym , j(u).
(2) For each odd integer m ≥ 3, and for each fixed w ∈ Sn−1, the function QK(⋅,w) ∶

S
n−1
→ R satisfies

(QK(⋅,w),Ym , j) = 0, ∀ j = 1, . . . ,Nm .

(3) Moreover, FK satisfies

∫
Sn−1

vQK(v ,w)dv = −ωn

2
∫
Sn−1

u fwFK(u)du, ∀i = 1, . . . , n.
Proof By Lemma4.7, S(K , ⋅)has an L2(Sn−1)density FK ∶ Sn−1

→ [0,∞). Substitute
the function fwFK into Corollary 4.6, and observe that

QK(v ,w) = ∫
Sn−1
(v ⋅ u)− fw(u)FK(u)du.

�en, we immediately obtain (2) and (3), and

1

2
( fw(u)FK(u) + fw(−u)FK(−u)) = ∑

m even

Nm

∑
j=1

β−1m (QK(⋅,w),Ym , j)Ym , j(u).
Since fw(u) is concentrated on w+, fw(−u)FK(−u) is just a symmetric copy of
fw(u)FK(u) in w−. �us,

1

2
fw(u)FK(u) = 1w+(u) ⋅ ∑

m even

Nm

∑
j=1

β−1m (QK(⋅,w),Ym , j)Ym , j(u).
�is explains (1). ∎
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�eorem 4.9 Let G ∶ Sn−1 × Sn−1
→ R be a binary function, and let k ≥ n + 1 be an

even integer. Suppose G(⋅,w) ∈ Hk(Sn−1), for any fixed w ∈ Sn−1. In addition, suppose
G satisfies the following conditions:

(1) �e following function

F(u) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m even

Nm∑
k=1

β−1m (G(⋅,w),Ym ,k) Ym ,k(u)
fw(u)

, u ⋅w > 0

∑
m even

Nm∑
k=1

β−1m (G(⋅,−w),Ym ,k) Ym ,k(u)
f−w(u)

, u ⋅w < 0
(4.9)

is nonnegative and independent of w ∈ Sn−1.
(2) For each odd integer m ≥ 3, and for each fixed w ∈ Sn−1, the function G(⋅,w) ∶

S
n−1
→ R satisfies

(G(⋅,w),Ym , j) = 0, ∀k = 1, . . . ,Nm .

(3) �e function F in (1) satisfies

∫
Sn−1

uF(u)du = 0.
(4) G and the function F in (1) satisfy

2

ωn
∫
Sn−1

vG(v ,w)dv = ∫
Sn−1

u fw(u)F(u)du.
�en, there is a convex body K such that

G = QK ,

and K is unique up to translations.

Condition (1) means that for any w1 ,w2 ∈ S
n−1 , the related two function series are

equivalent almost everywhere.

Proof By Lemma 4.5, for each fixed w ∈ Sn−1, the function series

∑
m even

Nm

∑
j=1

β−1m (G(⋅,w),Ym , j)Ym , j(u) ∈ L2(Sn−1).(4.10)

Let e1 , . . . , en be an orthonormal basis of Rn , and denote

Ω i = {u ∈ Sn−1 ∶ ∣u ⋅ e i ∣ ≥ 1/√n}.
By (4.9) and (4.10), we infer that F ∈ L2(Ω i), i = 1, . . . , n. Since {Ω i}ni=1 covers Sn−1,
we see that F ∈ L2(Sn−1). Since Sn−1 is compact, F is also in L1(Sn−1). By conditions
(1) and (3), F is independent of w and is of centroid 0. �en, there is a unique (up to
translations) convex body K that solves the classical Minkowski problem

dS(K , u) = F(u)du.
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Notice that

1

2
( fw(u)F(u) + fw(−u)F(−u)) = ∑

m even

Nm

∑
j=1

β−1m (QK(⋅,w),Ym , j)Ym , j(u).
For this K, by Corollary 4.6, Lemma 4.3, condition (4), equation (2.4), and finally by
condition (2), we have

QK(v ,w) = ∫
Sn−1
(v ⋅ u)− fw(u)F(u)du

=
1

2
∫
Sn−1
(v ⋅ u)− 1

2
( fw(u)F(u) + fw(−u)F(−u)) du

− 1

2
∫
Sn−1
(u ⋅ v) fw(u)F(u)du

= ∫
Sn−1
(v ⋅ u)− ∑

m even

Nm

∑
j=1

β−1m (G(⋅,w),Ym , j)Ym , j(u)
+ 1

ωn
∫
Sn−1
(u ⋅ v)G(u,w)du

= ∑
m even

Nm

∑
j=1

(G(⋅,w),Ym , j)Ym , j(v) + 1

ωn
∫
Sn−1
(u ⋅ v)G(u,w)du

= ∑
m even

Nm

∑
j=1

(G(⋅,w),Ym , j)Ym , j(v) + N1

∑
j=1

(G(⋅,w),Y1, j)Y1, j(v)

=
∞

∑
m=0

Nm

∑
j=1

(G(⋅,w),Ym , j)Ym , j(v)
= G(v ,w).

�at the convex body K is unique follows from �eorem 4.8 and the uniqueness of
the Minkowski problem. ∎

5 Reconstruction from the pre-given lightness function

In this section, for a pre-given lightness function QK(v ,w) together with a function
fw as in (1.2), we give the following numerical procedure to reconstruct K.

Light-Pro

• Input: Natural numbers n,M ,N , k, the spherical harmonics Ym , j , where m =
1, . . . ,M, and j = 1, . . . ,Nm .

• Task: Compute the function hM ,N ,k .
• Action:

1. Fix a w ∈ Sn−1. Compute

Am , j = β
−1
m (Q(⋅,w),Ym , j)

and

Bm , j = β
−1
m (Q(⋅,−w),Ym , j).
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2. Compute

FM(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M

∑
m=0

m even

Nm∑
k=1

Am , j
Ym ,k(u)
fw(u)

, u ⋅w > 0,

M

∑
m=0

m even

Nm∑
k=1

Bm , j
Ym ,k(u)
f−w(u)

, u ⋅w < 0.
(5.1)

3. Compute

F̃M(u) = FM(u) − 1

ωn
∫
Sn−1
(u ⋅ v)FM(v)dv .(5.2)

4. If F̃M ≥ 0, then apply theMink-Pro to find the solution of the (PN ,k) problem for

dµ = F̃Mdu,

and denote the resulting function by hM ,N ,k .

Remark 5.1 1. On one hand, it follows from a direct computation that the F̃M defined
in (5.2) satisfies

∫
Sn−1

uF̃M(u)du = 0.
On the other hand, since fw is positive and continuous on w+ ∩ Sn−1 , by Lemma 3.4
(1) and (5.1), we see that FM → FK uniformly. By this and

∫
Sn−1

uFK(u)du = 0,
we also have F̃M → FK uniformly, too.

2. If ∂K is smooth and has positive curvature, we can prove in �eorem 5.1 that
KM ,N ,k → K asM ,N , k →∞, whereKM ,N ,k is the convex bodydetermined by hM ,N ,k .

�eorem 5.1 If ∂K is smooth and has positive curvature, then KM ,N ,k → K in Haus-
dorff metric as M ,N , k →∞.

Proof By Remark 5.1(1), F̃M → FK uniformly. Since FK is smooth and has positive
curvature, when M is sufficiently large, we also have F̃M > 0. In addition, for any g ∈
C(Sn−1),

∣∫
Sn−1

g(u)F̃M(u)du − ∫
Sn−1

g(u)FK(u)du∣→ 0, as M →∞.

�at is to say, F̃M(u)du → FK(u)du weakly. Let KM be the convex body whose
curvature function is F̃M . Since KM ,K are convex bodies such that

∫
Sn−1

uhM(u)du = ∫
Sn−1

uhK(u)du = 0,
KM → K in the Hausdorff metric. �is is a classical result that can be proved by using
Blaschke’s selection theorem (see [28] for reference). �e assertion follows from this
and�eorem 3.3. ∎
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When fw = 1w+∩Sn−1 , the characteristic function of the open hemisphere, QK

becomes the partial brightness function (which is a binary function rather than bK)

RK(v ,w) = ∫
w+
(v ⋅ u)−dS(K , u).

Recalling that the brightness function bK can only determine an origin-symmetric
convex body, for the partial brightness function, we are able to construct the convex
body without symmetric assumption. It is reasonable because the change of viewing
and illumination directions provides more information.
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