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On the stability of

barrelled topologies, I

W.J. Robertson and F.E. Yeomans

This note investigates, for locally convex topological vector

spaces, the question of how far the property of being barrelled

is stable under small increase in the size of the dual space. If

the dual F of a barrelled space E is enlarged by a finite

dimensional vector space M , then E remains barrelled under

the new Mackey topology z(E, F+M) . We discuss what happens

when M has countable dimension.

1. Since the property of being barrelled carries over to all products,

sums and quotients, the study of its permanence has been concentrated

mainly upon the question of inheritance by some particular types of vector

subspace. Dieudonne showed in 1952 [4] that, in a barrelled space, any

hyperplane, and so any vector subspace of finite codimension, is barrelled.

It was not until 1971 that this was finally extended to:

THEOREM A. A vector subspace of countable codimension in a barrelled

space is barrelled.

This was proved by Saxon and Levin [7] and by Valdivia [9]; the same

result for a metrisable space had been established by Amemiya and Komura

three years previously [/].

Here, instead of varying the size of the space by a small amount, we

perturb its dual, by adding to it a finite or countable number of

Received 3 April 1979- The authors are grateful to Professor H.G.
Garnir for drawing the paper [3] to their attention. An error in this
paper was pointed out to them by Dr Ian Tweddle (see p. 387, footnote), and
they would like to thank Dr Tweddle for helpful discussions and for
communication of further results.

385

https://doi.org/10.1017/S0004972700011096 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011096


3 8 6 W . J . R o b e r t s o n a n d F . E . Y e o m a n s

dimensions.

We suppose throughout that the spaces considered are all locally-

convex Hausdorff spaces over the real or complex field. To avoid

repetition, we shall always suppose that E is a "barrelled space with dual

F ; then its topology is the Mackey topology x(E, F) . The algebraic

dual of E is denoted by E* , the value of the linear form / in E* at

x in E being written as fix) . Otherwise the notation and terminology

are those of [6]. We use "countable" to mean "countably infinite".

2. We deal f irst with the finite dimensional case.

LEMMA. Let T(E, F) be barrelled and fQ € E*\F . Then

i[E, F + span / ) is barrelled.

This lemma i s s t a t ed , in s l igh t ly d i f fe rent form, by De Wilde and

Schmets ( [ 3 ] , 2a and 2b), and proved by using the theorem of Dieudonne

re fe r r ed to above. For the sake of completeness, we give a br ie f

i nd i ca t i on of a d i r e c t proof, based on Dieudonne's method.

Proof. I f B i s a bounded subset of F + span / . and g € B , then

g = f + Xf with / € F , so tha t B e A + A/ , say. If A i s not

bounded there ex i s t g € S , f i A , ^ £A , with g = f + X f and

|A | •+ °° . I t follows t h a t A^1/ •* -fQ in a[F + span / , E) and then

t h a t f - i F , s ince T(E, F) i s ba r re l l ed . Thus A , and so also A ,

a re bounded; then B l i e s in the sum of two compact s e t s .

From the lemma we have immediately:

THEOREM 1. If T{E, F) is barrelled and if N n E* is finite

dimensional, then x{E, F+N) is barrelled.

3. There is no parallel to Theorem 1 in which the dual is decreased.

Even if H is a hyperplane in F (such that (E, H) is a dual pair) ,

x(E, H) may or may not be barrelled, as the following simple examples

show.

(a) Let E be barrelled under a topology T(E, G) with G t E* ,

l e t / € E*\G , and le t F = G + span / . Then by the lemma T:(E, F) is

barrelled. Let H = G ; then x(E, H) is barrelled.
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(b) Let E be a Banach space and H a dense hyperplane in F •

Then T{E, H) is s tr ict ly coarser than the fully complete topology

T(E, F) and so "by the closed graph theorem can not be barrelled.

4. In a l l that follows, we shall use M to denote a vector subspace of

oo

E* , of countable dimension, with M n F = [o] • Write M = U M , with
n=\ n

(M ) increasing and each M n-dimensional; then Theorem 1 shows that

there is on £ a sequence of barrelled topologies i\E, F+M ) , each finer

than the preceding. The first natural question to ask is whether, by

analogy with Theorem A, there is a theorem asserting that the Mackey

topology T{E, F+M) is always barrelled. But it is easy to prove:

THEOREM 2. If E has an infinite dimensional bounded set then there

exists M such that x(£, F+M) is not barrelled.

Proof. Let A = \e , e , ...} be a bounded linearly independent

infinite set and extend to form a Hamel basis for E . For each n define

a linear form / on E by putting / [e ) - n and / zero on the

remaining basis elements. Then the set B = {f-, •> / ?, •••} is linearly

independent and o(£"*, E)-bounded. Let G = F + span B . Then A is

a(E, G)-bounded, B is a{G, 2?)-bounded but not uniformly on A , and so

is not T(E, G)-equicontinuous. Hence T(E, G) is not barrelled. By

Theorem 1, F can not have finite codimension in G , and so G = F + M ,

where M n F = {o} and M is of countable dimension.

5. Tweddle and Yeomans [S] investigate the problem of constructing an M

for a given barrelled space E such that T ( £ , F+M) is barrelled; they

show that this can be done whenever E has a bounded set of dimension

greater than or equal to a .

De V/ilde and Schmets ([3], 3) consider refining the topology x{E, F)

by demanding that an extra seminorm sup{|^(x)| : g d K] be continuous,

where K is a convex o(£"f, £)-compact subset of E*\F . The dual then

turns out to be F + span K . However, the proof that the resulting space

is barrelled contains an error.1 It is not known whether or not

1 This was pointed out to us by Dr Tweddle. Professor Schmets writes that
he and Professor Ee V.'ilde were sware of this error but have not yet had an
opportunity to mention it; they ask that we should do so here.
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T(E, F + span K) is necessarily barrelled. As far as our present paper is

concerned, we observe that span K can not be of countable dimension:

span K = span A , where A is the a{E*, E)-closed absolutely convex

envelope of K and so is o(E*, E)-compact. Then span A is a Banach

space under the norm topology for which A is the unit ball, and no Banach

space can have countable dimension.

6. We turn to the general case, when M is given; then

M = spanj/ , /„, ...} for some linearly independent sequence (/ ) • We

write

GO

M° = {x € E : f(x) = 0 for all / € M) = fl /^(O) ;
n=X n

thus M is an intersection of hyperplanes, each dense in E under the

* !
b a r r e l l e d t o p o l o g y T(E, F) . I f N, = fl / ( 0 ) , t h e n

K n=l n

E 2 N 2 • • • 2 Nji 2 \ + 1 2 • • • 2 w° • Wow \ ^ ^j.+i f o r a n v k (since

{/ , . . . , / , . } i s l inea r ly independent) . Hence M has in f in i te

(countable or uncountable) codimension. The next theorems give information

about the topology T(£' , F+M) in terms of properties of M

Fi r s t we need some notat ion. We write G~ for the quasicompletion of

the vector subspace G of E* under the topology o(E*, E) ; G~ i s the

smallest quasicomplete vector subspace containing G . Since a space E

i s bar re l led i f and only i f i t s dual i s o(E*, E)-quasicomplete, the

topology r(E, F+M) i s barre l led if and only if F + M = (F+M)~ . We have

always F + Mc_F + M~c_ (F+M)~ . How with any loca l ly convex topology i s

associated a barre l led topology, which we ca l l i t s Komura topology. Of a l l

bar re l led topologies finer than the given topology, i t i s the coarsest , or

a l t e rna t ive ly , t he i r inductive limit (Komura [5 ] ) . Thus {F+M)~ i s the

dual of E under the Komura topology associated with T(E, F+M) . We

sha l l use:

LEMMA. Let E and G be locally convex spaces, D a dense vector

subspace of E barrelled in the relative topology, and A a set of

continuous linear mappings of E into G . If A is pointwise bounded on
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D then A is equicontinuous (on E ).

Proof. For each closed neighbourhood V of o in G , there is an

open neighbourhood U of o in E such that f(D n U) c V for all

f (. A , since D is barrelled and A pointwise bounded. Then U c D n U

since D is dense; thus f(U) <= f{D n £/) c f(0 n y) c ? = K for all

/ € A .

THEOREM 3. If M is dense in E and barrelled under the relative

T(E, F) topology then the Komura topology associated with T(E, F+M) is

T(E, F+M~) .

Proof. We have to prove F + M~~ quasicomplete. First we show

M~ n F = {o} . If f t M n F (the second polar being taken in E* ),

then fix) = 0 on M and so on E , since M is dense and /

continuous. Now M is complete and so M~ c M ; thus M~ n F = {°} .

Let B be a a{F+M~, E)-bounded set. Then we can write, uniquely,

g = f + q for each g (. B , with f (. F and q € M~ ; let A and Q be

the sets of such f and q as g runs through B . Since q € M~ c W ,

<?(x) = 0 for x i. M , and since B is bounded, A is pointwise bounded

on M . By the lemma, A is equicontinuous on E and so lies in an

absolutely convex compact subset of F . Certainly A is bounded, and so

Q c B - A is a bounded subset of M~ . Now M~ is quasicomplete; thus

Q lies in an absolutely convex compact subset of M~ . Hence B , being a

subset of A + Q , is T(£", F+M~)-equicontinuous.

NOTE. The lemma is reminiscent of a much used (but not deep) theorem

of Banacii and Stei nhaus (see, for example, [2], Chapitre V, Theoreme 3). If

[T ) is a sequence of continuous linear mappings of a normed space E

into a Banach space F such that [T (x)] converges on a dense vector

subspace D of E , and if (H21 II) is bounded, then T (x) -* T(x) on £

and 21 is continuous. One possible generalisation to locally convex

spaces E and F , with F sequentially complete, is to suppose D

barrelled in the place of the hypothesis that [\\T ||) is bounded. The

conclusion follows: the lemma shows [T ) equicontinuous and the rest is
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straightforward.

THEOREM 4. If M has countable codimension, then T(E, F+M) is

not barrelled.

Proof. The relative o(E*, E) topology on M°° is O{M°°, E/M°) ,

since M is o(E, £*)-closed, and dim E/M = codim M . Hence M is

metrisable, and so also is M ; therefore M is the completion M of

M , and M + M since M has countable dimension. Wow if x(ff, F+M) is

barrelled, F + M c F + A f c {F+M)~ = F + M , and so M~ c F + M . Hence

M~ = (M~ n F) + M (for M c M~ ). Since M~ is a Frechet space and F

is quasicomplete, M n F is quasicomplete, metrisable, and thus complete,

therefore closed; "but a Frechet space can not have a closed vector sub-

space of countable codimension.

..Putting Theorems 3 and h together and using Theorem A, we have

immediately:

THEOREM 5. If M is dense and of countable codimension, then

x(E, F+M) is not barrelled and its associated Komura topology is

T[E, F+M00) .

(The proof of Theorem h shows that M~ = M in this case.)

7. The simple construction of Theorem 2 can be refined to show that the

hypotheses of Theorem 5 can be satisfied.

THEOREM 6. If E has an infinite dimensional bounded set then there

exists M such that M is dense and of countable codimension in E .

Proof. Let \e , e?, ...} be a bounded linearly independent infinite

set, and extend to a basis of E . Define f [e ) = 1 and f zero on

nv n' n
all other basis elements. Then at most a finite number of the f are

n

continuous (since the set of nf is bounded, but not uniformly on the set

of e J. Discard any that are continuous, put the corresponding e into

the rest of the basis, and relabel (as f , f ... and e , e , ... ) .
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Write M1 = s p a n ^ , f^, ...} ; then M° = fl and

spanje , e , ...} is an algebraic supplement of M . Let L = M . Then

codim L - codim M and so L has finite or countable codimension. We may-

e . (Let u = e . for the least i such that e. I I ; let «„ = e .
m ^ 1 i % <l %

suppose that an algebraic supplement of L has for basis a subset of the

m

for the least i such that e . ^ span{£, u } ; if {u , ..., u } are

defined, let u . = e . for the least i such that
m+x t

e. \ span{L, u , ..., u } . Then each e. is in some

span{t, u , ..., u } and each u is some e. .)

Now L is a closed vector subspace of the barrelled space E ; if I

has countable codimension then ([7], 2, Proposition) span{u , u~, ...} is

isomorphic to the space <p (countable direct sum of copies of the scalar

field). Hence each bounded set is finite dimensional. But the set of u

m

is bounded; thus L has finite codimension, k say. If k = 0 , write

M = M ; if k > 0 , an algebraic supplement of £ is spanned by some

{e , ..., e } . Write M = span!/ : r c * n . , l S i 5 ? c } . Then

en i M° (1 < £ < k) and 1^ c «° ; thus £ c «° and so

W ^ span{L, e , ..., e } = E . Hence M is dense and has countable
"l nk

codimension. Also M n F = {o} , since M is dense.

NOTES. (l) The proof shows the (curious) fact that if {e , e_, ...}

is linearly independent and bounded in a barrelled space, then there -exists

an algebraic supplement to span{e : m 2 m } for some m which is dense

in E .

(2) To each linearly independent bounded sequence [e ] in E
v J71

corresponds 14 , as in the theorem; if \e ) and (e1) are two

sequences whose spans differ by more than a finite dimensional space, then
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the corresponding M and M' are distinct. Thus in general there are

plenty of vector subspaces to which Theorem 5 applies.

8. The codimension of M is always infinite. Theorem k shows that if

T{E, F+M) is barrelled, then M has uncountable codimension. Here we

show that the converse is not true.

First, we give an example in which M is dense, barrelled, and of

uncountable codimension. This shows that the hypothesis of Theorem 3 may

be satisfied even when that of Theorem k is not. (There are examples of

dense barrelled vector subspaces of uncountable codimension, for instance

in [7]; here we elaborate on Saxon and Levin's method to get one of the

oo

special form H /~1(0) .)
n=l n

Let E be the product of countably many copies of the reals; then E

is a Frechet space and S , the countable (algebraic) direct sum of reals,

is dense in E . Extend a basis of S to a basis [e ) of E . Since E

is e-dimensional, we may suppose that a runs through the interval

(0, l) , and that the basis elements of S correspond to the values

1 - 2~n of a (n = 1, 2, ...) . For each n , let

L = spanje : 2~n 5 a < l[ . Then S c L , [L ) is increasing, and

E = U L . If each L is meagre, so is E ; therefore since E is a
tt=l n n

Frechet space, at least one, L, say, is non-meagre. Write L for L, .

Then L is barrelled, and dense since S c L . Let

L' = span-je : 0 < a < 2 >• . Then £' is an algebraic supplement of L

and has uncountable dimension.

For each x in E , x = y + z , where y € L and z € L' ; since

L' C E , 3 is a sequence (? ) . Define / (x) = C, . There must be an

infinite subsequence of / not identically zero. For if / = 0 for all

n 2 m , L' would be m-dimensional. Wow L c /" (0) and L is dense,
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so, if / # 0 , / (0) i s not closed. Hence each such / i s not

CO

continuous. Also L - H /" (0) . Put M = span{f : n = 1, 2, ...} .
n=l n n

Then M = L , which has in f in i t e codimension, and so M i s not f in i t e

dimensional. Thus M c_E* , i s of countable dimension, and M n F = [6]

since M is dense; also M i s barrel led and of uncountable

codimension.

Now write E , F , M for the E, F, M above; l e t E„, F , M be

such that T[E„, F +M ) i s not barre l led, and M dense and barrelled

(possible by Theorems 6 and k). Let E = E' x £ . Then

F = Fl + F2 - El + E2 = E* ' l e t W = Wl + H2 - E* ' N°W T ^ ' F^ i s

barrel led, being a product of barrel led topologies. But T{E, F+M) i s not

barrel led, since i t i s the product of T[E , F +M ) and x[E , F +M) ,

and the l a t t e r i s not barre l led . (if B i s a x(ff , F+A/J-barre l , then

E x B is a x(E, F+M)-barrel. J Also i f N and // are algebraic

supplements of M and M in fi1 and £„ , then N x iV is an

algebraic supplement of M = M * M in E x E . Since M has

uncountable codimension, so has M . Final ly, M i s dense and

barrel led, since both M and M a re .

9. Finally, we consider the special case of a normed space.

THEOREM 7. Let E be a normed space. Then T(E, F+N) is novmable

if N has finite dimension; i{E, F+M) is metrisable and non-normable if

M has countable dimension.

P r o o f . I f N = s p a n { / , . . . , / } t h e n p ( x ) = s u p { | | x | | , | / . ( x ) | }
isisn z

is a norm on E , giving a topology with dual F + N ; if

M = spa.n{f1, ..., f , ...} , the norms [p ) give a metrisable topology

CO

with dual U [F+H ) = F + M .
n=l l nl
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Now F is a Banach space under the topology &(F, E) ; if i{E, F+M)

is normable, F + M is also a Banach space under &(F+M, E) and so is

"barrelled. Hence F , being of countable codimension in F + M , is

barrelled, by Theorem A, under the relative ${F+M, E) topology. But this

is coarser than &(F, E) ; hence, by the closed graph theorem, they

coincide. Thus F is a complete, and so closed, vector subspace of F + M

under &{F+M, E) . But then F is a closed vector subspace of countable

codimension in a Banach space, which is impossible.

The same argument shows, for example, that if E is a (DF)-space

under i{E, F) then E can not also be a (OF)-space under T(E, F+M) .
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