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ON THE ANALYTICITY OF THE LOCUS OF SINGULARITY

OF REAL ANALYTIC SOLUTIONS

WITH MINIMAL DIMENSION

AKIRA KANEKO

Introduction

Let P(x, D) be a linear partial differential operator with real analytic
coefficients and let C C Rn be a germ of closed subset, say at the origin.
We say that C is (the locus of) an irremovable singularity of a real
analytic solution u of P(x, D)u = 0 if u is defined outside C on a neigh-
borhood Ω of 0 but cannot be extended to the whole neighborhood Ω even
as a hyperfunction solution of P(x, D)u = 0. This usage of the word
"singularity" is the same as the one for the analytic functions in com-
plex analysis, and is different of the usual usage of "singularities of
solutions" in the theory of partial differential equations.

Until now we have given various results toward the determination of
all the irremovable singularities of real analytic solutions. In this note
we show that the minimal dimensional singularity C contained in a non-
characteristic real analytic hypersurface S is necessarily a real analytic
submanifold. By taking the contraposition we simultaneously obtain a
kind of continuation theorem for real analytic solutions. In our former
work (Kaneko [3]) we could prove these results only under the additional
condition that the solution u is tempered near the singularity C. The
proof below is based on a new result in complex analysis on continuation
of holomorphic functions (see Theorem 1.7). The proof of the latter em-
ploys profound results of Nishino-Yamaguchi on a family of parabolic
Riemann surfaces, and was communicated to me by Dr. Takeo Ohsawa [1].
I am very grateful to Dr. Ohsawa who allowed me to employ his proof
in this note. I am indebted to all my colleagues of the department of
mathematics for valuable discussions on the details of the proof, especially
to Prof. K. Oikawa for his kind help for me to learn the necessary
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64 AKIRA KANEKO

knowledge from the theory of Riemann surfaces. I am also indebted to

Prof. I. Wakabayashi and Prof. K. Kataoka for giving me precious com-

ments on the careful reading of the manuscript.

Besides the above main result we discuss here on several related

problems, e.g. on the timelike property of minimal dimensional irremovable

singularities (Theorem 4.3) and on the construction of a real analytic solu-

tion with such a singularity (Theorem 4.4). These are more or less already

treated by our earlier works but not so systematically.

§ 1. Statement of results

In order to explain the situation we repeat a part of our former work

Kaneko [3]: Let u be a real analytic solution of P(x, D)u = 0 with the

singularity C contained in a non-characteristic hypersurface S. We can

assume without loss of generality that S = {x1 = 0}. Then u\[±Xl>0} are

solutions of P(x, D)u = 0 on {±xί>0} respectively. Hence by the bound-

ary value theory of Komatsu-Kawai-Schapira (see e.g. Komatsu-Kawai [1]),

we can consider their hyperfunction boundary values bf(u), 0 < j < m — 1

(where m is the order of P) to S from the respective sides. These are

hyperfunctions of xf — (x2, , xn) defined as the uniquely determined

coefficients of the expression

ra-l

P(x, D)[u}± = ±Σ bf(u)δ^^^(Xl),
j = 0

where [u]± respectively denotes a uniquely determined extension of u\{±Xl>Q]

satisfying supp[w]± c {±xί > 0} and an identity of the above form. Put

bj(u) = &;(H) - bj(u).

We have obviously

(1.1) suppfe/w) C C.

The uniqueness of the boundary values implies especially the following

LEMMA 1.1. We have bj(ύ) = 0, 0 <j < m — 1 if and only if C is a

removable singularity.

To estimate S.S. (singular spectrum) of bj(u) we introduce the follow-

ing sets (Kaneko [2]):

(1.2) VIJP) = {(x', fθ e S X Sn~2; there exists a sequence (x{k\ ζ(fc)) such

that Pm(x{k\ ζ(fc)) = 0, ±x[k) > 0, ζ'(fc) e if-1, ± Imζf > > 0

and that x^ -> (0, x% ζ/(fc) -> £'},

https://doi.org/10.1017/S0027763000022686 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022686


LOCUS OF SINGULARITY 65

where £' = (ξ2, , ξn) etc., and put

(1.3) VSJP) = Kί,.(P) U V ^ ( P ) .

These sets have coordinate invariant meanings: By an intrinsic expression

(x\ ξ0 stands for a point of the cosphere bundle of S, and ζ[k) stands for

the roots of Pm(x{k\ ζίΛ)£ + ξ') = 0, where $ denotes the conormal of S at

xf to the positive side of S. In the case of an operator P with constant

coefficients (1.3) reduces to

(1.4) VSJP) - S X y^~

where V{UOf...,o)A(P) is the one introduced in Kaneko [1]:

{S'eSn-2; Pm(G,f0 - 0 has a non-real root for ζ,}.

This is invariant by the linear coordinate transformations. By way of

the regularity theorem up to the boundary (by Kaneko [2], Schapira [1],

Kataoka [3]) we have S.S. 6; (u) c VlA(P\ hence

(1.5) S.S. b,(u) C y , , i P ) .

DEFINITION 1.2. We say that C is weakly tίmelike with respect to the

operator P if the conormal elements of C as a subset of S are all con-

tained in VS>Λ(P).

If C is not a submanifold of S, then we say that (xf, ς') is a conormal

element of C if #' e C and if by a local coordinate transformation of class

C1 in S fixing (x\ ξ') the set C comes in one side of the hyperplane with

the conormal ξ' on a neighborhood of x;. Remark that by this definition

(x\ — fθ becomes a conormal element of C if (xf, ς') does.

By Kashiwara-Kawai's Holmgren type theorem (see e.g. Kaneko [6],

appendix to Part II; see also Remark 2) after the proof of Theorem 1.5),

the conormal elements of suppfr/i/) in this generalized sense must be

contained in S.S. b3(u). Thus from the estimates (1.1), (1.5) we obtain

THEOREM 1.3. An irremovable singularity C must be weakly timelike.

The dimension of a weakly timelike set C is bounded from below by

a constant depending on the operator P and the hypersurface S. As is

easily seen from the above theorem, this constant is given by the following

DEFINITION 1.4. We let rs(P) denote the minimal value of the codi-

mensions in Sn"2 of concentric low-dimensional subspheres contained in
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66 AKIRA KANEKO

the fiber of VSιΛ(P) at the origin.

Here a concentric subsphere means the sphere analogue of the notion

of a linear subspace.

Our main assertion in this note is the following

MAIN THEOREM 1.5. Let C be a germ of C2-class submanifold of S of

dimension rs(P) at the origin. Assume that the fiber of VStA(P) at the

origin is invariant under the antipodal mapping a: ξf -+ — ξ\ Then if C

is an irremovable singularity of a real analytic solution u of P(x, D)u = 0,

it must be automatically a germ of real analytic submanifold.

The essential step for this theorem is to prove the following lemma

which is in itself interesting and will have many other applications:

KEY LEMMA 1.6. Let v(x, t) be a germ of hyperfunction at the origin

of R1 + r containing t e Rr as real analytic parameters. Assume that there

exists a germ of continuous function φ(t) such that

0 e supp v c C = {x = φ(t)}.

Then φ is in fact a germ of real analytic function.

Remark. The lemma remains true even if the hyperfunction part con-

tains m > 1 variables x — (xl9 , xm). This general case can be easily

reduced to the above lemma by way of a definite integral with respect to

a part of x (see Kaneko [3], p. 3).

Reduction of Theorem 1.5 to Lemma 1.6. By Lemma 1.1 we have for

some of bj(u)

0 e supp bj(u) c C, S.S. bj(u) c VStA(P) -

The definition of r = rs(P) implies that bά(u) contains at least r coordi-

nates as real analytic parameters (i.e. S.S. bό(u) does not contain the

direction components which lie totally in the space of the dual variables

of these coordinates). In fact, let ϊ denote the (n — 2 — r)-dimensional

subsphere of the fiber Sn~ι of the cosphere bundle of S at the origin, con-

sisting of the conormal elements of C in S at 0. By Kashiwara-Kawai's

Holmgren type theorem we have r C S.S. ί)/w)|,,=0. We shall show that

conversely S.S. bj(u)\x,=0 c ϊ. Recall the watermelon theorem which asserts

that a fiber of S.S. at 0 of a hyperfunction u satisfying 0 6 supp u C [x1 > 0}

has the structure of the slice of a watermelon (see e.g. Kataoka [1],
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Theorem 4.3.3). Apply this to bj(ύ) with every pair of antipodal points in

Γ as the north and the south poles. We see that if S.S. bj(u)\x,=Q contains

some point outside 7, then it must contain a hemisphere of dimension (n —

1 — r) which is contained in the fibre of VSyA(P) at 0 by the above estimate.

Since the latter set is invariant under the antipodal mapping ξ' ~> — ξ' by

the assumption, we thus see that it contains in fact a subsphere of codi-

mension r — 1, which contradicts to the definition of r — rs(P).

Thus if we choose a system of coordinates in S such that the dual

variables of e.g. its last r coordinates are transversal to the linear sub-

space spanned by 7, then C takes the form as in Lemma 1.6, except that

there are n — r variables x. Together with the remark after that, this

proves Theorem 1.5.

Remark. 1) The fibers of VSiA(P) are always invariant by the an-

tipodal mapping if P has constant coefficients because then (V^A(P))a =

Vs,Λ(P), but not in general if P has variable coefficients. In Kanako [3]

we forgot this assumption. Perhaps it is too strong as a condition which

merely assures to apply Lemma 1.6. In fact, as is seen from the proof it

suffices to assume that the fiber of VStA(P) at the origin contains no closed

hemisphere of codimension r — 1.

2) We do not know for the present if we can replace the C2-regularity

of C by the (^-regularity in the above proof. A submanifold of class C1

but not of C2 cannot always be brought to one side of a hyperplane by

a local analytic coordinate transformation. The Holmgren type theorem

holds nevertheless for such submanifolds in view of the method of sweep-

ing out (this remark is due to Dr. Oaku). However we do not know if

the watermelon theorem is valid for such a manifold.

3) As a matter of fact, even the assumption of (^-regularity for C is

too strong. We can replace it by that of topological manifold in many

cases. For example, such is the case if rs{P) = 1. In fact, we can then

choose as t any direction such that ±ίdt oo g VSiA(P). The fact that t —

const, intersects C always by only one point can be shown as follows:

Assume that {t = c}f]C contains two points p, q. Then on the arc pq of

C the coordinate t must attain either its maximum or minimum value,

and hence in view of Kashiwara-Kawai's Holmgren type theorem S.S. b^u)

must contain there the directions ±idtoo, a contradiction.

In Kaneko [3] we proved the above Key lemma only for a distribu-

tion v(x, t), which posed the restriction of temperedness to the solution
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near the singularity in the main result. There are several paraphrases
for this lemma. (See Kaneko [8] where also a temporary improvement
was given.) Here we give proof to the following variant:

EXTENDED HARTOGS THEOREM 1.7. Let F(z, τ) be a holomorphic func-

tion in 1 + r variables (z, τ) defined in

({\z\<R}χ{\τt\<l, . - . , | r r | < l } ) \ B ,

where R > 1 and B is a closed subset of C1 + r satisfying the following

properties:

1) The fiber BT = {ze C; (z, τ) e B Π (Cx {r})} is contained in \z\ < 1 for

every τ.

2) Bt is a point {φ(t)} forτ — t real.

Then <p(t) becomes a real analytic function of t unless F is continued to the

whole B.

The reduction of the Key lemma to Theorem 1.7 is as follows: In
view of the real analytic parameters t we can choose a set of defining
functions F±(z, τ) of v(x, t) such that

v(x, t) = F+((x, t) + iΓO) - F_((x, t) - iΓO),

where Γ is a convex open cone containing the positive part of the imagi-
nary x-axis. Since supp v C C, by way of the edge of the wedge theorem
F±(z, τ) agree, through the real axis outside C, to a single holomorphic
function F(z, τ). This function satisfies the assumption of Theorem 1.7
with the appropriate choice of coordinates.

§ 2. Essential part of proof of Key lemma

To prove Theorem 1.7 we reduce it to the original theorem of Hartogs
[1] (see Hitotumatu [1], Theorem 3.14) which assures the same conclusion
under the assumption that Bτ is a point even for every complex τ. Thus
we shall derive the latter situation from our assumption. To do so we
can assume r = 1. In fact, we can make the variables τό from real to
complex successively for j = 1, , r, with τl9 , τj_1 fixed in the unit
disc and τj+l9 , τn fixed in the real unit interval, and prove that F(z, τ)
can beco ntinued up to {|̂ | < i?}\{^(τ)} as a holomorphic function of z for
thus defined function φ(τ). Thus applying Hartogs' lemma (see Bochner-
Martin [1], Theorem 2 to Chapter VII or Hitotumatu [1], Lemma 3.11), we
see that F(z, τ) becomes holomorphic outside the set z — φ(τ) (see also
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Remark 1) below). Further, by taking the negative power part of the

Laurent expansion instead of F(z, τ) itself, we can assume that R = +00.

Namely, we assume from the beginning that F(z, τ) is holomorphic in (Cx

{|r| < 1})\B, where B satisfies 1) and 2) of Theorem 1.7. The argument

below is due to T. Ohsawa [1] as is mentioned in the introduction. (In

fact in this situation we prove simultaneously that φ(t) extends holomor-

phically to Δ). To the convenience of the readers specialized in partial

differential equations, we rather give detailed proofs to the facts which

might be commonly known among geometers.

Let Δ denote the unit disc of C and ΔR the interval ] —1, 1[ of/?. Let

DF be the (maximal) domain of existence of the function F(z, τ) which is

realized as a Riemann domain

π: DF >C X Δ

over CxΔ. It contains an open subset Ω which corresponds homeomor-

phically to ( C \ J ) χ J by π. We shall identify these in the sequel. Let p:

CχΔ-+Δ be the projection and consider the fibering

tΰ = p o π: DF > Δ .

For each fixed τ, let DT denote the connected component of ®~ι(τ) which

contains ΩΓ\tϋ~\τ), and put

(2.1) D = UA.

This is obviously an open subset of DF. (In fact, for r0 fixed, any point

peDτo can be joined to a point of Ω(zD,0 by a path in D t0. Hence DF

contains a neighborhood of this path each point of which can be joined

to a point in Ω by a path in a fiber of DF.) D is a pseudo-convex Riemann

domain as well as DF, because we have removed from DF the union of

(eventually uncountably many) complex submanifolds of codimension 1.

Note that D is itself connected through Ω. We shall denote the natural

mappings D-^CxΔ and D-* Δ by the same letters π and zΰ as above.

We next construct another Riemann domain D whose fiber Dτ for

each r e Δ is the universal covering of Dτ. First put

D=]\Dr

as a set. The following is a variant of Hartogs' continuity theorem:

LEMMA 2.1. D can be naturally endowed with the structure of a Riemann
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domain, with respect to which the natural mapping D —> D induced from

the mappings Dτ —» Dτ is a local isomorphism.

Proof. It suffices to prove that we can give to D a topology by which

the set theoretical mapping D —> D induced from the mappings Dτ -> Dt

becomes a local homeomorphism. Fix r o e J arbitrarily. Since DτQ is an

open Riemann surface, its fundamental group π^D^Λs a free group with

at most countably many free generators Tu Γ2, (see e.g. Ahlfors-Sario

[1], Chapter I, 44A and Chapter II, 12D). Without loss of generality, we

can assume that T3 are closed curves of class C1. In view of Lemma 2.2

below each ϊ3 can be imbedded in a holomorphic family of curves Γ/r)cZ)r>

N

For any positive integer N not greater than the rank of ττi(DΓ0), let G

denote the free subgroup of π^D^) generated by ϊu , ΪN. When τ is suf-

ficiently near τ0, the correspondence ϊ3 —> Ϊ3(τ), j = 1, , N gives rise to

a homomorphism of groups

^ γ : G v > π,(DT).

We shall show below that φN is injective when r is in a small neighborhood

of r0 (depending on N). Assuming this we can construct a neighborhood

of each point p of D as a Riemann domain lying over D as follows: Recall

the standard method of construction of the universal covering. Choose

any point p of Dτo which lies over the point p e DTQ after the round trip

by an element ΐ of GN for some N. Then there exists a small neighborhood

U of p in D such that to every point of UΠDT there corresponds a unique

point of Dτ which lies over it after the round trip by the image of ϊ to

π^D,). Let us employ the set U of these points as a neighborhood of p

in D. The injectivity of φN implies that C7's for different p's over the same

p e D are disjoint. Hence with this topology D becomes a manifold which

lies over D naturally by the indicated mapping.

To show the injectivity of φN it suffices to show the injectivity of its

Abelianization

In fact, πx{D^) is likewise a free group by the above cited theorem. There-

fore by the theorem of Nielsen-Schreier (see e.g. Kurosh [1], Chapter 9,

§ 35), Image φN is also free unless it reduces to the unit element. The

injectivity of φN implies that the rank of Image φx is at least 2V. Since
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Image ψN is generated by ψxQΊ), , ^y(Γγ), these must be a set of free

generators for Image φN (see e.g. Kurosh [1], Chapter 9, § 39). Thus <pv is

injective.

Now by the Hurewicz theorem (see e.g. Ahlfors-Sario [1], Chapter I,

39D), TrXDJ/foiA), 7r,(JDr)] is isomorphic to HX(DT,Z). Hence the latter

becomes a free Abelian group and we have Hx(Dτ, C) ~ i2Ί(Zλ, Z) (g)z C.

Therefore it suffices to show that ?Ί(r), , ϊx(τ) define linearly independent

elements of H^D,, C).

As a special case of the holomorphic de Rham theory for the Stein

manifolds, there exist holomorphic 1-forms ωly , ωy on the open Riemann

surface Dτo such that

ωk = δjk , j , k = 1, . ., N.
J rj

Since D is Stein, by Cartan's Theorem B for coherent ^-modules we can

choose an extension of each ωk to a holomorphic 1-form on D (which we

shall denote by the same letter). Then

ωk = ωk\Dτ, y, k = 1,
J r,/(t ) J r;(-)

are holomorphic functions of τ for |τ — τo| < min^y^ySj. The matrix with

these entries has the determinant which is holomorphic in τ and is equal

to 1 for τ = r0, hence different from 0 for τ sufficiently near r0. Thus Γ/r),

j = 1, , N are linearly independent in Hx(Dτ, C) for such r. This com-

pletes the proof of Lemma 2.1 mudulo the following

LEMMA 2.2. Let &: D-+Δ be a surjectiυe holomorphic mapping from

a 2-dimensional Stein manifold to the unit disk. Let ϊ be a mapping of

class C1 from the unit circle Sι to Do — ezr^O). If m has maximal rank for

every point of ϊ(Sι), then there exist ε > 0 and a mapping

Φ(θ,τ): Sι X{ | r |<ε} >D

of class C\ holomorphic in r, such that

Φ(θ, 0) - ϊ(θ) , Φ(S\ τ)aD7 = ®-\τ) ,

Proof. We shall construct a holomorphic vector field X on a neigh-

borhood of the compact set K — ϊ{Sι) satisfying υs*X = d/dτ.*) Then by

*} In our present application we can simply adopt X = d/dτ since D is a Riemann
domain over C x i .
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integrating it we obtain a holomorphic mapping

Ψ(z,τ): Kχ{\τ\<ε} >D

such that Ψ(K, τ) C Dτ and that ¥(z, τ): K->Dτ is an into homeomorphism

for each fixed τ. The required mapping can then be obtained by the compo-

sition Φ(θ, τ) = Ψ(r(θ)9 r). Note that K is a Stein compact subset of D

contained in Do (in the sense that it admits a fundamental system of Stein

neighborhoods).

On a neighborhood of every point of K we can easily construct such

a vector field Xλ via a coordinate transformation to the product type.

Thus we obtain a 0-coehain (Xλ) of vector fields on a neighborhood of K.

Its coboundary (Xλμ), where Xλμ = Xμ — Xλ, satisfies zΰ*Xλμ = 0. Since Ker etf *

is a coherent 0-module, by taking a refinement if necessary we can choose

a 0-cochain (Yλ) with values in Ker w^. satisfying Xλμ —Yμ— Yλy again by

Cartan's Theorem B. Thus Xλ — Y/s glue together to a vector field X

globally defined on a neighborhood of K and satisfying πs^X = d\dτ. q.e.d.

LEMMA 2.3. D is a Stein Riemann domain.

This can be proven as in Nishino [2] based on Oka's pseudoconvexity

theorem. Note that D is not a true covering of D in general. In fact,

let 77 denote the natural mapping D -> D. From the proof of the above

Lemma 2.1 we can easily see that a connected component Vk of the inverse

image Π~\V) of a small neighborhood V of a point p e Dτo is homeo-

morphic to V if it contains a point of Π~\p), but this is not always the

case. However, Vk is always homeomorphic to V\{JτeTkDT for some index

set Tk9 because each Dτ is a true covering of Dτ, hence cannot have an

end point in Vk. (Actually this dropping out of fibers results from the

sudden vanishing of an element of πλ{D^ as τ approaches a fixed value

r e Tk. See examples in Remark 7) below.) Therefore let d (resp. d) denote

the distance from a point p = (z09 τ0) in D (resp. D) up to the boundary

measured by the equi-radius polydisc (i.e. supremum of the radius r of a

schlicht polydisc {\z — zQ\ < r, |τ — τo | < r} contained in D (resp. D). By

a theorem of Oka [1] (p. 222) it suffices to prove that — logd(p) is pluri-

subharmonic on D. With a constant ε > 0, consider the function

lip) = max{-logd(p), -\ogd(Π(p)) + ε}.

This is plurisubharmonic on D. In fact, —logd(Π(p)) is plurisubharmonic

because D is Stein and Π is holomorphic. On the other hand, — logd(p)
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> — logd(Π(p)) + ε implies that d(p) < d(Π(p)), that is, that in the con-

nected component Vk of Π~\V), where V is the polydisc of radius d(Π(p))

with center Π(p), there exists an exceptional set as above such that d(p)

is equal to the distance from p to it. Since this exceptional set is a

union of submanifold of codimension 1, — logd(p), hence fε(p) is pluri-

subharmonic on a neighborhood of such p. Because we have obviously

d(p) < d(Π(p)), letting ε -> 0 we see that — logd(p) is plurisubharmonic.

Now we enter into the heart of the proof of Theorem 1.7:

LEMMA 2.4. Dτ and Dτ are parabolic type Riemann surfaces for each

τ e Δ. (We only require the assertion for D below.)

To show this we apply a theorem of Yamaguchi ([1], p. 84, Theorems;

cf. also Nishino [3]). It suffices to verify the assumption of his theorem

that Dτ (resp. Dτ) is parabolic for τ belonging to a subset of Δ with positive

logarithmic capacity. In our case this assumption is fulfilled for the subset

ΔR, because for t e ΔR, Dt (resp. Dt) reduces to C\{φ{t)} (resp. its universal

covering which is isomorphic to C). (The remaining assumption that D

(resp. D) contains a univalent subregion of the form {\z — b\ < S] X Δ is

obviously satisfied by choosing a point corresponding to e.g. z = 2 of the

original domain and a small δ > 0.)

Thus each Dτ is conformally equivalent to the complex plane C. Ac-

cording to the famous type theorem for the universal coverings of Riemann

surfaces (see e.g. Nevanlinna [1], VIII, 8.2), Dτ is conformally equivalent

to either C\{point} or C (because there is no possibility of the torus now).

LEMMA 2.5. Each Dτ is conformally equivalent to C\{point} unless

F(z, τ) is holomorphic on C X Δ.

Proof. Assume that Dτo ^ C for some r0. Dΐ0 contains an open subset

conformally equivalent to C\{|2| < 1} by the mapping τrro = τr|r=Γ0: Dτo-> C.

The simple closed curve ϊ in Dτo corresponding to the circle \z\ = 2

by this mapping contracts to a point in DtQ. The image of this homotopy

by 7rTo gives the contraction of \z\ = 2 in C, which takes place in a bounded

region \z\ < R. Hence we see that the integral

2πi hz\=R ζ — z

vanishes if \z\ > R, by transporting it to the one on DTQ after deforming

the path to \z\ = 2 and considering the above homotopy. Since this is
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true for τ sufficiently close to ro> we can apply the standard method of

proof of Hartogs' continuity theorem to conclude that F(z, τ) can be con-

tinued to a function holomorphic on the whole C X Δ defined by the above

integral but now with z inside the circle \z\ = R. q.e.d.

LEMMA 2.6. There exists a biholomorphίc mapping h(z, r): D -

X Δ preserving the fiber structure:

D JU (C\{0}) x Δ

y

Δ
id

This follows from the uniformization theorem of Yamaguchi ([1],

Theoreme 3) combined with Hartogs' original theorem on the analyticity

of the locus of singularity. This trivialization is already given in Nishino

[1] when the fiber is isomorphic to C. We can deduce our assertion also

from the latter by applying it to D and going back to D: Note that the

discrete group of transformations of C defining the covering map Dτ->Dτ

admits a generator Tτ: w —> w + b(τ) which is holomorphic in τ, (where w

denotes the coordinate of the fiber C in the trivialization C X Δ of D).

In fact, C X Δ ^ D contains a sequence of holomorphic curves w = wk(τ),

— co < k < co each of which is identified with {2} X Δ in (C\{|z | < 1}) X J,

and hence b(τ) = wk + ί(τ) — wk(τ). Therefore the analytic coordinate trans-

formation S: (w, τ)->{b(τ)~ιw, τ) of C X Δ reduces Tτ to the translation

w —> w + 1 independent of τ.

End of Proof of Theorem 1.7. Now we have a holomorphic mapping

G(w, τ): (C\{0}) XΔ^ D —-> C X Δ ,

which is univalent for τ — te ΔR with the image C\{y>(2)}. This implies

that for r = ί € zίΛ fixed the function G(w, τ) is holomorphic on C\{0} and

bounded at {0} in w. Hence by Riemann's theorem on removable singularity

G(w, τ) extends to a function G(w, t) on the whole C. Consider the Laurent

expansion of G(w, τ) with respect to w at w — 0. Then the coefficients

are holomorphic functions of τ in the unit disc. By what is shown above

the coefficients of the negative powers of w vanish for τ e ΔR. Hence they

vanish for all τ e Δ. This means that G(w, τ) extends to a function G(w, τ)

holomorphic on the whole C for every τ e Δ. On the other hand, G(w, τ)

has a polar singularity of order 1 along w — co because π: D-^C X Δ was
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an isomorphism on Ω. Thus G(w, τ) reduces to a polynomial of degree

1 in w and we conclude that G(w, τ) is globally univalent in w for each

τ e Δ, and defines an isomorphism G: C X J ~> C X J. This implies that D

was in fact a Euclidean region G((C\{0}) X Δ) and ψ{t) = G(0, 0, that is,

<p(£) extends holomorphically to J. This completes a fairly long proof of

Theorem 1.7, hence of Lemma 1.6 and of Theorem 1.5.

Remark. 1) We cannot assume from the beginning that t is one vari-

able. This is because contrary to the holomorphic case a function φ(tlt ,

tn), whose restriction to any real analytic curve is real analytic, need not

be real analytic in (tu , tn) in general. Here is an example by M. Kashi-

wara: φ(tl912) — Vt{ + t\. We know, however, that if φ can be continued

as a holomorphic function in each variable up to a disc of fixed radius,

then ψ becomes holomorphic on a neighborhood of the real axis in all the

variables (Theorem of Browder-Cameron-Storvick-Siciak; see Siciak [1] or

Kajiwara [1], Theorem 3.4.1). We can apply this at the beginning of the

proof of Theorem 1.7.

2) The use of the universal covering is inevitable, because there exist

even plane domains which are parabolic but not conformally equivalent

to C or C\{0}. See Ahlfors-Sario [1], Chapter IV, Theorem 22B and Lemma

24B.

3) The universal covering must be taken in the fiberwise way, because

the universal covering of D need not have simply connected fibers. Cf.

example by T. Terada: D - (C X Δ)\{τ - z\

4) Lemma 2.1 is valid only for Stein manifolds of dimension 2. Cf.

example by T. Ohsawa: D = (C2 X Δ)\{z,z2 = r}.

5) Although D lies after all in C X J, it seems difficult to show it

directly: We must exclude such an example as the family of Riemann

surfaces for yV — r2, |r | < 1 (though this is not a true counter-example

because the set {τ = 0} is of capacity zero).

β) We cannot directly assert that DT is a universal covering of a

plane region, neither: We must exclude such an example as

f(z9 r) = Γ exp {τjz2)dz: C\{0} > C (with τ e Δ fixed).

For τ Φ 0, this mapping is localty univalent because (df/dz)(z, τ) Φ 0, but

does not define a covering map in the usual sense. Again in this example

the set {r — 0} is of capacity zero. It seems to me that the general theory

of parabolic coverings as in Chapter X of Tsuji [1] is helpless here.
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7) D is not necessarily a true covering of D. Consider for example

D = (C X Λ)\{r = z2} in 3). In this case our manifold D lacks at τ — 0 count-

ably many copies of DQ as the limit of points of Dτ corresponding to the

elements of π^D,) which are not in the image of elements of πx{D^ by the

mapping constructed in Lemma 2.1. If we could construct a true covering

D of D by adding these lacking copies, then we would be able to apply

a theorem of Stein-Nishino (see Stein [1] or Hitotumatu [1], p. 247) to con-

clude that D, hence D is Stein. This is not true in general. For the

present example, such a manifold D does not exist because it is impossible

to define the natural covering mapping from the universal covering of D

whose fiber at the origin is not simply connected as mentioned above.

8) Note that the above proof contains the proof of Hartogs' original

theorem as a special case: In that case by Hartogs' main theorem we

can assume from the beginning that r is a single variable. Then after

the same reduction as above employing the Laurent expansion, we can

apply the final part of the above proof to D = (C X Λ)\{2 = φ(τ); τ e Δ). Note

that the uniformization given in Lemma 2.6 is a very deep result. It

seems difficult to extend Hartogs' original theorem directly to a general

manifold with the fiber C\{0}.

§3. Examples and other applications

To clarify the meaning of our result we first show the following ex-

ample which we have often employed.

EXAMPLE 3.1. For the wave equation

P(D) = Dl+ .. +DU-DI

with the time variable xn, we have

vSiA(P) = {(*', £'); ξ\ + - - + fl-i > £ } ,

where S = {xt = 0} and xf = (x2, - , xn) etc. Hence C c S is weakly time-

like if and only if C has no conormal element (i.e. supporting hyperplane)

which is spacelike in the classical sense. Here we have rs(P) = 1, hence

our main theorem asserts that if a curve C c S i s an irremovable singu-

larity for a real analytic solution of the wave equation, then it must be

a weakly timelike real analytic curve. (Note that for this example the

conclusion of weak timelikeness is rather classical, but that of analyticity

is not at all classically obvious.) For this situation we can further assert
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that C must be either a timelike real analytic curve in the usual sense

(i.e. such that its tangent vectors are timelike) or a bicharacteristic (hence

non-timelike) straight line contained in S. See the note added in proof

of Kaneko [5] concerning this. Conversely every such C can become in

fact an irremovable singularity of some real analytic solution of the wave

equation. In the next section we shall discuss about these related pro-

blems in a little more generalized situation.

A more interesting (and less classical) example can be obtained if we

consider the ultra-hyperbolic equation

P(D) = JDJ + . . . +DI- Dl+1 - .. -Dl, 2<k<n~2.

Here the number rs(P) varies according to the choice of S: rs(P) = n —

k resp. k according to S = {xλ — 0} resp. {xk+1 — 0}. For this operator we

do not know if the alternative between timelike and non-timelike property

holds.

Although the conclusion of Theorem 1.3 is best possible as a joint

estimate for all the real analytic solutions of an operator, there exist some

more delicate cases where we can apply Lemma 1.6 to individual real

analytic solutions. For example, for a real analytic solution u of the

partial Laplace equation

P(D) = D\+ . . . + Ώ\ on Rn with n > k ,

or of the Cauchy-Riemann equation

P(D) = D1 + iD2 on Rn with n > k = 2 ,

we can assert that the difference of boundary values bj(ύ) = bj(u) — b~(u)

to x1 = 0 contains xk + 1, , xn as real analytic parameters (though we

cannot estimate S.S. bj(u) by a closed set independent of u which is dis-

joint with the set Rn x {iRdxk+1oo + + ίRdxnoo}). See Schapira [2],

Kaneko [5]. Thus we can apply our argument to obtain the following

theorem. (Such a result seems not at all obvious from the viewpoint of

complex analysis.)

THEOREM 3.2. Let u(x, t) be a real analytic function defined on a neigh-

borhood of 0 e Rn+m outside the topological submanifold

C: x , - 0 , Xj = φj(t), 2<j < n .

Assume further that u is there harmonic in x (or complex holomorphίc in
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x1 + ίx2 with n — 2). Then C must be a germ of real analytic submanifold

at 0.

We knew before that if u(x, t) is harmonic in a proper subset of the

variables x (or if n > 2 in the latter case), that is, if C has dimension

lower than the reasonable value, then u(x, t) becomes in fact real analytic

on the whole neighborhood of 0. (Cf. the proof of Theorem 1.3 combined

with the above quoted result on micro-analyticity of the boundary values.)

Theorem 3.2 asserts that C is removable even if it has the reasonable dimen-

sion unless it is real analytic.

§ 4. Timelike property of the singularity

In many cases the minimal dimensional irremovable singularities have

a little more restricted type. To describe this we recall here the definition

of timelikeness given in Kaneko [4]. Assume again that S = {xλ — 0} is

non-characteristic with respect to P. We put

(4.1) V°S,A(P) = {(*', £') € S x Sn~2; Pm(0, x\ ξl9 £0 Φ 0 if £, e R}.

We have V^A(P) c VStA(P). In fact, Pm(0, x\ ξu £') Φ 0 for all & € R implies
that the equation Pw(0, x\ ζu ξ') = 0 has complex roots. Hence by the

continuity of the roots (x'9 f
r) must belong to at least either of V^A(P)

according to the sign of the imaginary part of the complex roots.

DEFINITION 4.1. We say that a subset C of S is timelike with respect to

P if the conormal elements of C as a subset of S are contained in V°SjA(P).

These definitions have invariant meanings for a general real analytic

non-characteristic hypersurface S. We further remark that our definition

of timelikeness is coherent with the general one given by F. John [1]:

DEFINITION 4.Γ. A set C c Rn is called timelike with respect to P if

every conormal element of C as a subset of Rn is non-characteristic with

respect to P.

In fact, a conormal element (0, x\ ξl9 ξ') of C in Rn just comes from

the conormal element (x\ ξ') of C in S. The terminology of timelikeness

of course comes as an analogy from the case of the wave equation. See

Example 3.1 above.

We guess that in general an irremovable singularity C of minimal

dimension (hence analytic) is not only weakly timelike but is alternatively

either timelike or everywhere non-timelike, that is, the conormal bundle
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of C is either totally contained in V°S,Λ(P) or always contains a point of

VS,Λ(P)\V°S,A(P) in each fiber. Here we shall prove this for some class of

operators with constant coefficients.

DEFINITION 4.2. We shall say that P(x, D) has regular timelike region

with respect to S if V°V4(P) agrees with the interior of VS,A(P) a$ the

subset of the cosphere bundle of S.

THEOREM 4.3. Let P(D) be an operator with constant coefficients. As-

sume that S = {x1 — 0} is non-characteristic with respect to P, P has regular

timelike region with respect to S, and that rs(P) = 1. Then a minimal

dimensional irremovable singularity C of a real analytic solution u of P(D)u

= 0 contained in S is either everywhere timelike or everywhere non-timelike.

Proof Assume that C possesses a conormal element, say (0, i/), con-

tained in Vs%Λ(P)\VstΛ(P)' The assumption that P has regular timelike

region implies that the equation Pw(d, i/) = 0 for ζ1 has only real roots,

in view of the continuity of the roots of an algebraic equation. Therefore

by a result on the propagation of micro-analyticity along the boundary

(Kaneko [7], Theorem 2.5), we see that C Π {xV = 0} cannot contain a

compact connected component. Since C is a real analytic curve in view

of Theorem 1.5 and Remark after that, it must be identically contained

in x'v = 0. Thus C contains the direction ^ τerywhere in its conormal

elements, hence everywhere non-timelike. q.e.d.

Finally as a partial converse of the above arguments we give proof

to the following theorem briefly sketched in Kaneko [4]:

THEOREM 4.4. Every germ of timelike real analytic submanίfold C be-

comes an irremovable singularity of a real analytic solution of P(x, D)u = 0.

Proof First note that a timelike real analytic submanifold C can be

contained (at least locally) in a real analytic hypersurface S non-charac-

teristic with respect to P. Hence we can assume without loss of generality

that C is contained in the hyperplane S = {x1 = 0} which is non-charac-

teristic with respect to P. Let δc{xf) denote the measure on S with support

in C which defines the curvilinear integration along C as a distribution.

Then the product δc(x) = e>c(V)<K#i) is a distribution corresponding to the

curvilinear integration along C in Rn. We have

S.S. δc(x) = $$Rn (the conormal elements of C).
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By the assumption this set is contained in V°SiΛ(P), hence P is micro-

elliptic on this set. Thus we can obtain a well defined microfunction

P'^dx) with support in this set. Let v(x) be a hyperfunction representative

of this microfunction. Then we have

P(x, D)υ = δc(x) + h ,

where h is a germ of real analytic function. Choose a real analytic solution

w of P(x, D)w = h and put u = v — w. Then we obtain a solution u of

(4.5) P(x, D)u = δc(x) = δc(xT)δ(xd

such that S.S.u C S*Rn Thus u is a real analytic solution of P(x9 D)u

= 0 outside C. The fact that C is an irremovable singularity of u can be

shown as follows: By the uniqueness of the boundary values the identity

(4.5) implies that

hence in view of Lemma 1.1 C is irremovable. q.e.d.

EXAMPLE 3.1 (continued). In view of the above theorem the wave

equation

P(D)u = (]%+...+ DU - Dl)u = 0

possesses a real analytic solution u with any prescribed timelike real ana-

lytic curve xf = φ(xn) as irremovable singularity. Since the timelike/non-

timelike alternative holds, the remaining possibility of irremovable singu-

larity C contained in S = {x1 = 0} is only that of the bicharacteristic lines.

It is well known that the above equation possesses a real analytic solution

u whose singular support agrees with a bicharacteristic line (see e.g. Kawai

[1]). However this singularity is of course removable as a hyperfunction

solution in our sense. We shall here show that there exists in fact a real

analytic solution u which has a bicharacteristic line as irremovable singu-

larity :*} Let E(xu •• ,tfn_2) be a fundamental solution of the Laplace

equation: (D\ + + D2

n_2)E — δ(xl9 , xn-2). (We assume n > 3 because

otherwise the problem is trivial.) Then the hyperfunction

v(x) = E(xu ' ,xn-2)δ(xn-i - xn)

satisfies

:::) The author is much obliged to the referee who kindly indicated this method of
construction.
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P(D)V = δ(xί9 , Xn-2)K*n-l ~ Xn) '

Hence v is a hyperfunction solution with the bicharacteristic line

(4.6) ^ = . . . = = χn_2 = 0, xn_x = xn

as irremovable singularity. We shall modify this to a real analytic one.

Note that the initial data

have the following estimate for S.S.:

Let fj(xu , xn-i), j — 0, 1 be hyperfunctions of n — 1 variables such that

(4.7) ._?_̂ ..| ~ /(x1? . ., xn_i), — O, 1 are real analytic outside
dxi >n=0

the origin of Λ71"1;

(4.8) S.S./ /x,, , xn^) C {xn_, = 0} X {±idxn_lCχD}, j = 0, 1.

The existence of such f5 is assured in view of the above estimate for

S.S. (djv/dxJ

n\Xn=:0) and the flabbiness of the sheaf r€ of microfunctions. Then
let w be the solution of the Cauchy problem

(P(D)w = 0

\djw

In view of the estimate (4.8) we have

sing supp w C {x^_! = x2
n}.

Put u ~ υ — w. Then & satisfies

- Λ , ; = o , i

In view of (4.7) we see from this equation that

sing supp u C {xl > x\ + + x2

n_j}
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Since we have on the other hand

singsupp u C singsupp v U singsupp w c {x̂ _2 = xl},

hence by taking the intersection we conclude that

sing supp ud{xi = = xn_2 = 0, 4-i = xl}

Thus the solution u considered on a neighborhood of points on the bicharac-

teristic line (4.6) except for the origin will serve as a required example.

Remark. 1) The minimal dimension of the singularity constructible

by the above theorem is given by the number r°s(P) defined as the minimal

value of the codimensions in Sn~2 of concentric subspheres contained in

the fiber of VO

S%Λ(P) a ^ the origin. The construction of singularity with

higher dimension is much more free because we can use the superposition.

2) To extend these studies to the region VS,A(P)\VS,A(P) when it is

not thin, we must prepare a kind of factorization theory of the operator

which should lie between the one in the sense of differential polynomials

and that of pseudo-differential operators. For the moment we know the

definitive answer only in the case of singularities of dimension 0 (i.e. iso-

lated points) even for operators with constant coefficients: P(D) has a real

analytic solution with an isolated singularity if and only if P(D) has an

elliptic factor Q(D) in the sense of polynomials (for which we have obvi-

ously r%(Q) — 0). For more about this problem see Part III of Kaneko

[6],

The problem of analyticity of the singularities of real analytic solu-

tions is proposed by Prof. K. Aomoto on the occasion of the oral exami-

nation for my master thesis which contains the above cited result on real

analytic solutions with isolated singularities. We believe that in this note

we have made an important progress to this problem. Nevertheless it

remains to treat singularities which are not contained in a real analytic

non-characteristic hypersurface. Note that a timelike submanifold C is

contained in a non-characteristic hypersurface, but only of the same regu-

larity as C: We cannot assume in general that this hypersurface may be

chosen real analytic from the beginning. For the moment we do not know

any tool to treat this general case. It is possible that there appears an

analytic set with singularities as the locus of such a general singularity.
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