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Abstract
Carefully designing blade geometric parameters is necessary as they determine the aerodynamic performance of
a rotor. However, manufacturing inaccuracies cause the blade geometric parameters to deviate randomly from the
ideal design. Therefore, it is essential to quantify uncertainty and analyse the sensitivity of the blade geometric
deviations on the compressor performance. This work considers a subsonic compressor rotor stage and examines
samples with different geometry features using three-dimensional Reynolds-averaged Navier-Stokes simulations.
A method to combine Halton sequence and non-intrusive polynomial chaos is adopted to perform the uncertainty
quantitative (UQ) analysis. The Sobol’ index and Spearman correlation coefficient help analyse the sensitivity and
correlation between the compressor performance and blade geometric deviations, respectively. The results show that
the fluctuation amplitude of the compressor performance decreases for lower mass flow rates, and the sensitivity of
the compressor performance to the blade geometrical parameters varies with the working conditions. The effects
of various blade geometric deviations on the compressor performance are independent and linearly superimposed,
and the combined effects of different geometric deviations on the compressor performance are small.

Nomenclature
MCS Monte Carlo simulation
PCA principal component analysis
NIPC non-intrusive polynomial chaos
CFD computational fluid dynamics
UQ uncertainty quantification
LE leading edge
TE trailing edge
Sim numerical simulation results
Exp experimental data
Sec. sections from blade root to tip
SS suction surface
PS pressure surface

Symbols
ma mass flow rate
π total pressure ratio
η isentropic efficiency
εLoo leave-one-out cross-validation error
Si first-order Sobol’ index
ST

i total Sobol’ index
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δ(r) circumferential average total pressure loss coefficient
ρ spearman correlation coefficient
φ dissipation function

1.0 Introduction
Compressors are one of the most important components of aeroengines, so their aerodynamic per-
formance and stability greatly influence the comprehensive performance of the engine [1, 2]. With
continuous improvements in the compressor performance requirements of modern aeroengines, three-
dimensional design structures of compressor rotor blades are becoming increasingly complex [3]. The
increased degree of bending, twisting and sweeping of the blade increases the processing difficulty.
However, geometric deviations inevitably exist on compressor blades and have strong uncertainty char-
acteristics based on inherent machining vibrations and internal workpiece strain. Although deviations
in various geometric parameters on the blade are relatively small, changes in the aerodynamic perfor-
mance due to machining deviations are non-negligible [4]. As the basic working unit in the compressor,
the rotor blade dictates the performance, and geometric variations between the manufactured blades
and ideal designs significantly influence the aerodynamic performance of compressors and even com-
plete engines [5]. Therefore, it is increasingly important to investigate the influence of blade geometric
uncertainty on compressor performance and determine the critical geometric variables [6].

Bammert and Sandstede experimentally studied the impact of blade parameter deviations on the aero-
dynamic performance of a cascade and found that the cascade performance is greatly affected by blade
thickness and stagger angle deviations but was less affected by blade chord length deviations [7]. Lange
et al. captured three-dimensional measurements on a group of 150 blades and used Monte Carlo simu-
lations (MCS) to quantify the effects of various blade profile machining deviations on the aerodynamic
performance of high-pressure compressors [8–10]. They noticed that the isentropic efficiency and total
pressure loss coefficient were most affected by thickness-related parameters. The blade stagger angle
is the most important geometric parameter affecting the relative flow angle. Goodhand et al. experi-
mentally and numerically studied the effects of blade leading shape deviations on the separation of the
compressor rotor angular region [11, 12]. Cheng et al. investigated the influence of various rotor blade
machining deviations on the compressor performance using orthogonal experiments [13]. The results
indicated that compressor efficiency and flow rate changes are linear with the comprehensive effect of
various machining deviations. Eric and Wang presented a computational framework for a simultaneous
robust and tolerance design of compressor blades under manufacturing variability and evaluated the
statistical performance of the compressor system via MCS [14]. David et al. studied the influence of
machining deviations on compressor performance using the principal component analysis (PCA) based
on actual measurement data from various blades [15, 16].

It is impossible to accurately study the influence of small geometric deviations experimentally due to
limitations in the machining accuracy and processing costs. Therefore, most current research considers
the influence of blade geometric deviations on compressor performance using numerical simulations
[17]. The MCS method is the most straightforward approach to quantify uncertainty in parameter prop-
agation, which readily provides the probability distribution of the response through random sampling.
However, when dealing with multi-dimensional uncertainty problems, the MCS method requires sig-
nificant random sampling to obtain accurate statistical results, significantly increasing the calculation
time and requiring greater research costs [18]. The PCA method can greatly reduce the variable dimen-
sions [19], which transforms geometric deviations into control point position deviations. However, these
deviations cannot be used in machining processes to determine whether the measured blade is qualified.
Thus, the output of the PCA cannot directly apply to machining processes.

In the past decade, the non-intrusive polynomial chaos (NIPC) method has been widely used in com-
putational fluid dynamics (CFD) uncertainty analyses due to its ability to study the influence of different
factors quantitatively [20–23]. The NIPC method generates samples based on the probability distribution
of the variables and selects corresponding orthogonal polynomials to establish a mathematical model
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Table 1. Compressor design parameters

Parameter 100% speed 71% speed
Design mass flow rate 5.6 kg/s 4.5kg/s
Inlet tip relative Mach number 0.78 0.7
Total pressure ratio 1.249 1.12
Adiabatic efficiency 0.905 0.92
Blade number 30 30
Rotation speed 15,200 r/min 10,765 r/min
Hub/tip ratio 0.61 0.61
Blade tip clearance 0.35 mm 0.35 mm

between the input and output variables. However, the number of samples required by the NIPC method
increases exponentially with the dimensions of the input variable. This method also has the disadvan-
tage of having too many samples when dealing with high-dimensional uncertainty problems. Therefore,
a technique that combines the Halton sequence and NIPC is adopted to perform uncertainty quantitative
(UQ) analysis. This approach not only retains the high efficiency of the NIPC method in dealing with
uncertain problems but also solves the problem of having too many samples with high-dimensional data.

A subsonic compressor rotor stage was considered to quantify the uncertainty and analyse the sen-
sitivity of the blade geometric deviations on the compressor performance. A total of 180 samples were
uniformly generated using the Halton sequence based on the tolerance band of rotor blade geometric
parameters specified in Refs. [24, 25]. The NIPC method quantified the uncertain impacts of devia-
tions in the blade suction surface thickness, pressure surface thickness, leading-edge radius, trailing
edge radius, chord length, stagger angle and tip clearance on the aerodynamic performance and stabil-
ity of the compressor. Correlation and sensitivity analyses provide the geometric parameters that most
influence compressor performance. The research conclusions provide reference value to the design and
processing of compressor rotor blades.

2.0 Numerical methods
2.1 Research objective
This work utilised an isolated rotor from a single-stage, high-speed, axial compressor test rig, and the
test facility is described in detail in Ref. [26]. Table 1 shows the relevant performance and design param-
eters of the rotor. Due to vibration of the test bench, experiments are rarely conducted at 100% design
speed. A large number of experiments have been conducted at 71% design speed, and the detailed exper-
imental data of the rotor at the 71% design speed are found in Ref. [27]. Therefore, this work chooses
to investigate the impact of blade geometric deviations on the compressor performance at 71% design
speed.

2.2 Numerical method verification
The computational domain grid was generated by the NUMECA/Autogrid5 module. The computational
domain and the grid topology of the rotor are shown in Fig. 1, and the grid details are given in Table 2. In
Fig. 1, LE and TE represent the leading edge and trailing edge of the blade, respectively. The rotor blade
and Hub2 are rotating parts, while the rest are stationary. A single passage with periodic boundary
conditions is used rather than full-annulus calculations to reduce the required computing resources.
According to the conclusion of grid independence verification by Chi et al. [28] when the number of
grids for the compressor rotor exceeds 0.97 million, the influence of grid density on the calculation
results becomes negligible. Therefore, in this study, a grid number of 1.02 million is sufficient to ensure
the accuracy of numerical calculation results.
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Table 2. Grid characteristics

Property Value
Grid structure O-4H
Cells in radial direction 85
Cells in axial direction 177
Cells in tangential direction 53
Cell layers in the tip clearance 17
Total number of cells (millions) 1.02
Wall-normal size of the grid at the wall (m) 2 × 10−6

y + <2

Table 3. Calculation settings and boundary conditions

Property Value
Turbulent model Spalart-Allmaras model
Time-discrete format Second-order upwind difference format
Rotation speed 17,188 r/min
Initial total temperature 288 K
Initial total pressure 101,325 Pa
Initial airflow direction Radial direction
Wall surface Adiabatic and non-slip boundary

Figure 1. Passage grid topology of the rotor.

The commercial CFD solver NUMECA was used for the numerical simulations, and the flow field
solution was obtained by calculating the three-dimensional Reynolds time-averaged Navier-Stokes equa-
tion. The calculation settings and boundary conditions of the numerical method are shown in Table 3.
The computation is steady and compressible, and the multi-grid procedure is adopted to improve the con-
vergence rate. In the stable working range of the compressor, the outlet interface provides the mass flow.
The average static pressure at the outlet interface is enforced when approaching the near-stall boundary.
The final numerical convergence point is regarded as the near-stall condition point after continuously
increasing the static outlet pressure (�P=50 Pa) until a stable convergent solution is no longer obtained.
The convergence criterion of the numerical calculations is that the mass flow rate (ma), isentropic effi-
ciency (η), and total pressure ratio (π ) remain constant and the global residual is less than 10−6.

Figure 2 compares the compressor performance curves between the numerical simulations and exper-
imental data under the 71% design speed (10,765 r/min). The subscripts Sim and Exp represent the
numerical simulation results and experimental data, respectively. The total pressure ratio performance
curve obtained from the numerical calculations agrees well with the experimental data, with a maximum
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Figure 2. Compressor rotor characteristics.

Figure 3. Spanwise distribution of the total pressure ratio at the near-stall condition.

relative error of 0.78%. In contrast, the numerical results of the isentropic efficiency performance are
slightly larger than the experimental data, but the two have the same trend with the flow rate. The aver-
age relative error is less than 3%, which is consistent with the numerical simulation results by other
researchers [29]. Further, the relative error between the blocked mass flow obtained by the numerical
calculations and the experimental data is less than 1.4%, and the relative error of the near-stall mass flow
is less than 2.1%. The lower efficiency from the experimental data may be due to partial energy dissipa-
tion caused by the inability to achieve adiabatic conditions and the significant influence of temperature
measurements on the efficiency of the low-pressure specific compressor. Furthermore, limitations in
the accuracy of turbulence models used in numerical simulations can also contribute to discrepancies
between experimental data and numerical simulations.

Figure 3 compares the circumferential average total pressure ratio distributed along the radial direc-
tion between the numerical simulations and experimental data at the near-stall condition. The numerical
simulations agree well with the experimental data, with the best agreement in the mid-leaf region. The
numerical calculations also simulate a “C” shape distribution of the total pressure ratio in the blade root
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area. The trend of the total pressure ratio along the radial direction is consistent with the experimental
data.

Although there are errors between the numerical results and the experiment data, the numerical
approach provides credible predictions. The benchmark in the comparative study is the numerical results
rather than the experimental data. The minor calculation errors in the numerical results can be elimi-
nated in the comparative analysis due to the consistency of the benchmark [30]. Therefore, the numerical
method is used in the following research.

3.0 Uncertainty quantification method
3.1 Non-intrusive polynomial chaos
Due to randomness in the geometric deviations during machining [31], it is important to quantify the
associated uncertainty in the compressor performance. The NIPC approach is used as the UQ method
due to its high efficiency in dealing with uncertainty problems [32]. The NIPC method estimates the
characteristics of random output variables based on deterministic solutions from specific samples. The
NIPC method performs a series expansion on the random variables using orthogonal polynomials and
uses the polynomial coefficients to reflect the random characteristics of output variables as:

F(θ ) = c0	0 +
∞∑

i1=1

ci1	1(ξi1 (θ )) +
∞∑

i1=1

i1∑
i2=1

ci1 i2	2(ξi1 (θ ), ξi2 (θ )) + . . . (1)

where ξ (θ ) represents the input random variable and 	represents the orthogonal polynomial basis. The
above equation can be abbreviated to the standard format:

F(ξ ) =
P∑

j=0

ĉj	j(ξ ) (2)

When the rth-order NIPC method is used to handle m-dimensional uncertainty problems, the upper
limit of the summation P is calculated as:

P = (m + r)!
m!r! − 1 (3)

After obtaining the output response F(ξ ) and orthonormal basis response 	i(ξ ) of each sample, the
following matrix form is constructed:

⎡
⎢⎣

	0(ξ0) · · · 	P(ξ0)
...

. . .
...

	0(ξn) · · · 	P(ξn)

⎤
⎥⎦

⎡
⎢⎣

ĉ0

...

ĉP

⎤
⎥⎦ =

⎡
⎢⎣

F(ξ0)
...

F(ξn)

⎤
⎥⎦ (4)

This can be written in vector form as:

	c = F (5)

Then, the polynomial coefficients can be obtained by the least square method as:

c = (	T	)−1	TF (6)

Based on the orthogonality of the chaotic polynomial, the mean (μ) and variance (σ 2) of the random
output variable F(ξ ) can be obtained by:

μ = ĉ0 (7)

σ 2=
P∑

j=1

[
ĉ2

j

〈
	2

j

〉]
(8)
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Figure 4. Fitting effect of the Sec. 3 profile.

3.2 Sample point selection
The traditional rth-order NIPC method obtains the sample points by solving the (r+1)-order polynomial.
Thus, for the one-dimensional uncertainty problem, the number of sample points required for the rth-
order NIPC method is (r+1). When dealing with m-dimensional uncertainty problems, the number
of sample points of the rth-order NIPC method increases to (r+1)m. The number of sample points is
far more than the number of polynomial chaos expansion coefficients, which results in unnecessary
simulations. Therefore, the traditional method of obtaining sample points is unsuitable for the NIPC
method when dealing with high-dimensional uncertainty problems.

In this work, a 180×7 matrix is generated by the Halton sequence, with 180 sample points and seven
types of geometric deviations. These deviations include the blade suction surface thickness deviation
(STD), pressure surface thickness deviation (PTD), leading-edge radius deviation (LRD), trailing-edge
radius deviation (TRD), chord length deviation (CLD), stagger angle deviation (SAD) and tip clearance
deviation (TCD). The Halton sequence is a set of pseudo-random sequences whose sample points are
fixed and evenly distributed in space, which effectively avoids the phenomenon of “sample overlap”
and “space hole”. Further increasing the number of sample points on a Halton sequence only encrypts
the original sample space without forming the “clustering phenomenon” of the sample points. The cor-
responding geometric deviations of each sample can be obtained from the constructed 180x7 matrix.
Finally, a total of 180 blade samples are developed after reconstructing the blade model, described as
follows.

4.0 Blade model reconstruction method
4.1 Parameterisation of the rotor blade model
The rotor blade geometry model is first parameterised to study the influence of geometric uncertainty
on the combustor performance. This work uses the NUMECA/Autoblade module to realise rotor param-
eterisation. Six spanwise sections at 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 are parameterised from the root to
the tip, which are denoted as Sec. 1 to Sec. 6. The Bezier curves are selected to fit the profile of each
section. The section outlines are decomposed into their camber and thickness distributions. The fitting
results and the nominal blade section of Sec. 3 are compared in Fig. 4 as an example, and the local square
figures are enlarged 25 times. The comparison results in Fig. 4 indicate that the fitting results are almost
entirely coincident with the suction surface (SS) and pressure surface (PS) of the section, and the fitting
errors at the leading edge (LE) and trailing edge (TE) do not exceed 0.005 mm. Errors from curve fitting
the geometric deviations of the blade are relatively small. Thus, the parameterisation of the blade model
can accurately obtain the geometric parameters of the rotor. Therein, the blade samples with geometric
deviations are reconstructed based on the parameterisation results.
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Table 4. Blade parameter tolerance band

Geometric Probability Blade Relative
deviation type Deviation range distribution parameter deviation range
Leading edge

radius deviation
(LRD)

[−0.10 mm, 0.10 mm] N(0, 0.03332) 0.72 mm [−13.89%, 13.89%]

Trailing edge radius
deviation (TRD)

[−0.06 mm, 0.06 mm] N(0, 0.022) 0.12 mm [−50%, 50%]

Suction surface
thickness
deviation (STD)

[−0.13 mm, 0.13 mm] N(0, 0.04332) 2.01 mm [−6.47%, 6.47%]

Pressure surface
thickness
deviation (PTD)

[−0.13 mm, 0.13 mm] N(0, 0.04332) 2.01 mm [−6.47%, 6.47%]

Chord length
deviation (CLD)

[−0.52 mm, 0.52 mm] N(0, 0.17332) 30 mm [−1.73%, 1.73%]

Tip clearance
deviation (TCD)

[−0.025 mm, 0.025 mm] N(0, 0.008332) 0.3 mm [−8.33%, 8.33%]

Stagger angle
deviation (SAD)

[−0.5◦, 0.5◦] N(0, 0.16782) 29◦ [−1.72%, 1.72%]

4.2 Geometric deviation and probability distribution
Based on the relevant content in Refs. [24] and [25]. Table 4 gives the maximum deviation range of the
blade geometry, and the corresponding probability distribution of each geometric deviation is assumed.
When the total number of workpieces is sufficiently large, the geometric deviation distribution based
on the Gaussian process agrees well with the machining deviation measurement data [33]. Therefore,
the blade geometric deviations are considered a Gaussian distribution, and the standard deviation of
the probability distribution is determined from the 3σ criterion. Based on the parameterisation of the
rotor, the blade model with geometry deviation is reconstructed by changing the value of each geometric
parameter on the six sections. The geometric deviation distributions on each section are considered the
same to simplify the model reconstruction process and save computing resources.

4.3 Blade samples
The corresponding geometric deviations of each sample are obtained from the 180x7 matrix generated
by the Halton sequence. Changing the geometric parameters of the blade provides samples with different
geometric deviations. Taking Sec. 3 as an example, the blade profiles of the 180 samples are shown in
Fig. 5 and are compared with the nominal blade. The local square figures are enlarged by 25 times. The
grid number and structure are the same for all samples, and the numerical methods are the same. The
influence of blade geometric deviations on the compressor performance is analysed using the numerical
simulations of the 180 samples and the uncertainty quantification of the calculation results. In order to
reduce the mesh discretisation error between different blade samples during numerical calculations, the
mesh structure and computational setting of each blade sample are the same as the nominal blade.

5.0 Results analysis
5.1 Accuracy verification of UQ method
The NIPC method is a response surface method. When using it for UQ analyses, one must first determine
its order and verify the response accuracy. First, the total pressure ratio of the 180 samples at a mass
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Figure 5. Profile of the Sec. 3 samples compared with the nominal blade.

Figure 6. Comparison of the UQ results for different orders of the NIPC method.

flow rate of 4 kg/s is calculated, and the NIPC response models with different orders are constructed. In
Fig. 6, the mean values of the total pressure ratios calculated from different orders are compared. The
leave-one-out cross-validation error (εLoo) is introduced to quantify the response accuracy of each NIPC
model. The εLoo is given by [34]:

εLoo =

N∑
i=1

(
M(ξi)−MNIPC (ξi)

1−hi

)2

N∑
i=1

(M(ξi) − μ)
2

(9)

where M(ξi) is the real functional value at the ith sample point, MNIPC(ξi) is the response value of the
NIPC model at the ith sample point, N is the total number of samples, μ is the mean from Equation (7),
and hi is the ith component of the vector given by:

h = diag
(
	(	T	)

−1
	T

)
(10)

The 	 is the experimental matrix in Eq. (4). The εLoois evaluated from previously performed numer-
ical experiments; that is, no additional model evaluation is required. A comparative study indicates that
this technique performs well regarding estimation bias and mean-square error [35].
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Figure 7. Quantitative results of the NIPC method for different numbers of samples.

As seen from Fig. 6, the mean value of the total pressure ratio, as quantified by NIPC methods with
different orders, fluctuates over a small range. Thus, the calculation accuracy of the compressor per-
formance statistical parameters from the 5th to 12th-order NIPC method do not differ much. However,
when the NIPC method with an order less than 7 is used, the value of εLoo gradually decreases as the
order increases, indicating that the accuracy of the NIPC model increases. When the NIPC method has
an order greater than 7, the value of εLoo is significantly larger, meaning that the higher-order NIPC
methods have overfitting problems. Therein, the fitting error of the space edge region increases and the
accuracy of the NIPC model decreases. Therefore, the 7th-order NIPC method is used to conduct the
UQ analyses for the influence of the blade geometric deviations on the compressor performance.

Figure 7 quantifies the results of the mean and standard deviation of the total pressure ratio as a func-
tion of the number of samples using the 7th-order NIPC method. As the number of samples increases,
the statistical result of the total pressure ratio gradually converges, indicating that the 180 samples used
in this work are sufficient to ensure that the NIPC method has sufficient convergence. In addition, 20
blade samples are randomly constructed within the tolerance band as the test group. The NIPC model
built using the 180 samples predicts the total pressure ratio of the test group samples. Figure 8 com-
pares the response values with the results from the numerical simulations. The abscissa is the response
value of the NIPC model, and the ordinate is the numerical simulation results. The response values of
the NIPC model are nearly identical to the numerical simulation results. Therefore, the 7th-order NIPC
response model constructed using 180 samples has sufficient accuracy for the UQ analyses.

5.2 Performance curve variation
The UQ analyses of the compressor performance at six mass flow rates (5.46, 5.15, 4.84, 4.53, 4.22 and
3.91 kg/s) are performed, denoted as OP1-OP6. The OP1 condition is close to the plugging point of the
nominal blade, the OP4 condition is close to the peak efficiency and the OP6 condition is close to the
near-stall point. The mean value of the compressor performance at each condition is shown in Fig. 9,
and the standard deviation is marked with error bars. The mean performance is also compared with the
performance curve of the nominal blade in Fig. 9.

The comparison between the mean and nominal blade performance curves shows that the blade geo-
metric deviation leads to an average compressor performance that is lower than the design performance
parameter. However, differences between the mean and design performances are relatively small and
only obvious in the OP1 condition, which has the largest mass flow rate. Comparing the distributions of
the compressor performance standard deviation under different conditions indicates that the fluctuation
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Figure 8. Comparison of the NIPC model predictions and numerical simulations.

Figure 9. UQ results of the performance curves.

amplitude of the total pressure ratio and isentropic efficiency decreases for lower mass flow rates. The
isentropic efficiency standard deviation decreases faster than the total pressure ratio standard deviation
under the same conditions. This indicates that the sensitivity of the isentropic efficiency to blade geomet-
ric deviations increases significantly with the mass flow rate. In contrast, the mass flow rate minimises
the sensitivity of the total pressure ratio on the blade geometric deviations.

5.3 Sensitivity and correlation analyses
The Sobol’ index and Spearman correlation coefficient are used to analyse the sensitivity and correlation
between the compressor performance and blade geometric deviation, respectively. The Sobol’ sensitivity
analysis method is a global approach introduced by Sobol [36]. The core idea is to decompose the
objective function f (x) into a combination of single- and multi-parameter functions and use the ratio of
the variance for the corresponding function value of each input to the total variance of the model as the
sensitivity evaluation standard of the corresponding input. The firstst-order and higher-order sensitivity
coefficients corresponding to each input are calculated using the ratio of variance [37]. The index with
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Figure 10. Sobol’ index for the total pressure ratio under different conditions.

respect to one input variable xi is called the first-order Sobol’ index and represents the effect of xi alone,
which is denoted Si. The total Sobol’ index of input variable xi, denoted ST

i , is the sum of all Sobol’
indices involving this variable. The calculation process of Si and ST

i is described in detail in Ref. [38].
The Spearman rank correlation coefficient (ρ) refers to a nonparametric index that measures the

dependence of two variables [39]. It evaluates the correlation between two statistical variables using a
monotone equation:

ρ= 1 −
6

n∑
i=1

(xi − yi)
2

n(n2 − 1)
(11)

where n is the size of the variable dataset, and xi and yi represent the ranks of the ith element in the
variable datasets x and y, respectively. The closer ρ is to 0, the smaller the monotonic correlation is
between the two variables. When ρ is 1 or −1, the two variables are entirely monotonic and positively
or negatively correlated.

A total of 105 samples are selected as the statistical group within the tolerance band based on the geo-
metric deviation probability distribution The corresponding response values of each sample are obtained
from the constructed NIPC response model. The calculated Si and Si

T for the compressor total pres-
sure ratio and isentropic efficiency under the six operating conditions are shown in Figs. 10 and 11.
Comparing Figs. 10(a) and (b) shows that differences between Si and Si

T for the same geometric devi-
ation are relatively small under the same working conditions. This indicates that the effects of various
blade geometric deviations on the compressor total pressure ratio are independent and linearly super-
imposed. The combined effects of different geometric deviations on the total pressure ratio are small.

The Sobol’ index for various geometric deviations in different conditions suggests that in the OP1
condition, the total pressure ratio of the compressor has the greatest sensitivity to the SAD and STD with
minimal sensitivity to the other geometric deviations. As the state approaches near-stall, the sensitivities
of the compressor total pressure ratio to the PTD gradually increase. The influence of the PTD on the
total pressure ratio is the largest in OP2. At the same time, the sensitivities of the compressor total
pressure ratio to the SAD and the STD gradually decrease. In OP4, the sensitivity of the total pressure
ratio to the STD becomes relatively small. The sensitivities of the total pressure ratio to the LRD, TRD,
CLD and TCD are relatively low under all conditions.

Figure 11 shows that the influences of various blade geometrical deviations on the compressor isen-
tropic efficiency can be considered as independent and linearly superimposed. The blade STD has the
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Figure 11. Sobol’ index for the isentropic efficiency under different conditions.

Figure 12. Correlations between the compressor performance and blade geometric deviations under
different conditions.

greatest influence on the compressor isentropic efficiency under the OP1-OP5 conditions, and the isen-
tropic efficiency is most sensitive to the TCD in the OP6 condition. The trend of the Sobol’ index for
various geometric deviations in different conditions indicates that the sensitivities of the compressor
isentropic efficiency to the STD and SAD gradually decrease as the state approaches near-stall. The
sensitivities of the isentropic efficiency to both STD and SAD become very small in the OP6 condition.
The sensitivities of the compressor isentropic efficiency to the CLD and the TCD gradually increase,
and their influence on the isentropic efficiency is the greatest in OP6. The Sobol’ index of the PTD
fluctuates over a wide range and always significantly affects the isentropic efficiency. The sensitivities
of the isentropic efficiency to the LRD and TRD are relatively low in all conditions.

Figure 12 shows the Spearman correlation coefficient between the compressor performance and blade
geometric deviation under the six conditions. The figure compares the influence of various geometric
deviations on the compressor performance while showing the associated correlations. The compressor
total pressure ratio has strong monotone correlations with the PTD in the OP1-OP6 conditions and the
SAD in the OP1-OP5 conditions. This indicates a stronger influence of these two geometric deviations.
There are strong monotonic correlations between the compressor isentropic efficiency and the STD in the
OP1-OP4 conditions, SAD in the OP1-OP3 conditions, CLD in the OP5-OP6 conditions and TCD in the
OP5-OP6 conditions. Thus, these geometric deviations have greater effects on the isentropic efficiency
in the corresponding conditions.
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Figure 13. Spanwise distribution of δ(r) and its standard deviation.

Figure 12 shows that the PTD and the STD are significantly negatively correlated with the compressor
total pressure ratio and isentropic efficiency under most conditions. The SAD is significantly positively
correlated with the compressor performance in most conditions. Therefore, the machining accuracy of
the blade geometric parameters should be ensured as much as possible. Suppose the machining accuracy
cannot be improved. In this case, the tolerance range of the blade thickness and stagger angle can be
adjusted appropriately to ensure the regular use of the compressor by sacrificing other design parameters
and guaranteeing that the design parameters with higher priorities meet the requirements.

5.4 Analysis of the influence of flow field structure
The circumferential average total pressure loss coefficient (δ(r)) characterises the radial distribution of
the flow loss as:

δ(r) = pt(r)1,avg − pt(r)2,avg

pt(r)1,avg − p(r)1,avg

(12)

where pt is the relative total pressure, and p is the static pressure. The subscript avg represents the
circumferential average, and 1 and 2 represent plane 1 and plane 2, respectively. Figure 13 shows the
spanwise distribution of δ(r) in the OP1, OP4, and OP6 conditions. The standard deviations of δ(r) at
different spans are marked with error bars.
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Figure 14. Relative Mach number distribution at the 5% span and 95% span.

Figure 13(a) indicates large flow losses in both the blade root and tip regions in OP1. In OP4, the flow
loss in the blade root region is significantly reduced, and the flow loss change in the blade tip region
is weak. Therefore, the compressor isentropic efficiency in OP4 is greater than that in OP1. In OP6,
although the flow loss in the blade root region is further reduced, flow loss in the blade tip region is
significantly increased. So, the compressor isentropic efficiency in OP6 is less than that in OP4.

The fluctuation amplitude of δ(r) in different working conditions indicates that the flow loss in the
range of the 0–5% span and 40–90% span in OP1 fluctuates significantly. In OP4, fluctuations in the
flow loss in the 40–80% span range become marginal, and the fluctuation amplitudes of flow in the root
region are lower than those in OP1. Therefore, in Fig. 13(b), the fluctuation amplitude of the compressor
isentropic efficiency in OP4 is significantly smaller than in OP1. Compared with OP4, the fluctuation
amplitude of flow loss in the blade root region is reduced considerably in OP6, but the fluctuation ampli-
tude of the flow loss in the 90–95% span range increases. Therefore, fluctuations of the compressor
isentropic efficiency in OP6 are slightly weaker than in OP4.

The relative Mach number distributions of the 5% span and 95% span of the nominal blade are given
in Fig. 14. There is a point at the leading edge where the relative Mach number is 0; that is, the airflow
is stagnant. The airflow is divided into two parts at the stagnation point: toward the blade pressure
surface and suction surface. The airflow attack angle is negative (positive) if the stagnation point is
biased towards the suction (pressure) surface. In OP1, both the root and tip regions have negative attack
angles. In OP6, the airflow in the tip region changes to a positive attack angle, and the airflow attack
angle in the root region is nearly 0. Figure 15 compares the streamline distributions near the 5% span
leading edge of the nominal blade in OP1 and OP6, and changes in the airflow attack angle are more
intuitive.

Figures 16 and 17 show the distributions of the relative Mach number standard deviation at the 5%
span and 95% span in OP1, OP4 and OP6. The figures analyse the flow field regions that are signif-
icantly affected by blade geometric deviations. It is noted that blade geometric deviations cause the
absolute position of the grid nodes for each sample to change, but the grid structure of each sample is
the same. Thus, the relative position of each grid node relative to the blade surface remains the same.
After calculating the relative Mach number standard deviation on each grid node, the calculation results
are combined with the grid nodes of the nominal blade.

Figure 16 shows that in the OP1 condition, the attack angle of the airflow in the blade root region
is negative, which results in large flow field fluctuations near the pressure surface side of the leading
edge (region 1). Then, the flow field fluctuations on the blade pressure surface side gradually spread to
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Figure 15. Variations in airflow attack angle near the leading edge at the 5% span.

Figure 16. Distributions of the relative Mach number standard deviation at the 5% span.

the suction surface, causing flow field fluctuations over the entire blade passage. The absolute value of
the negative attack angle in the blade root region is smaller in OP4 than in OP1. Therefore, in OP4, the
fluctuation amplitude of the flow field in region 1 decreases, which further reduces the amplitude and
range of fluctuations over the entire blade passage and leads to fluctuations in the flow loss of the blade
root region to be smaller than OP1. In OP6, the attack angle in the blade root region is nearly 0, and the
strong flow field fluctuations only exist near the leading edge (region 1), suction surface boundary layer
(region 2) and wake area (region 3). Therefore, the fluctuation amplitude of the flow loss in the blade
root region is the smallest in OP6.

Figure 17 indicates that in OP1, the airflow attack angle in the blade tip region is negative, and the
flow field fluctuations in region 1 are relatively strong. In addition, a region with significant flow field
fluctuations appears in the middle and downstream of the blade passage (region 4), which corresponds
to the low-speed area created by the tip clearance leakage flow. In OP4, the airflow attack angle in the
blade tip region is nearly 0. The flow field fluctuation amplitude in region 1 of OP4 decreases relative to
OP1, but the fluctuation amplitude of the flow field in region 4 increases, and its influence range extends
to the upstream of the blade passage. In OP6, the airflow attack angle in the tip region is positive, the
flow field fluctuations in region 1 are further weakened, and the flow field fluctuations in region 2 are
more robust. At the same time, the influence range of region 4 increases, and the fluctuations of the flow
field are enhanced. This indicates that the tip clearance leakage flow is more sensitive to blade geometric
deviations at small mass flow rates. Therefore, the fluctuation amplitude of the flow loss in the blade tip
region is the largest in OP6.
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Figure 17. Distributions of relative Mach number standard deviation at the 95% span.

6.0 Conclusion
Blade geometrical deviations significantly influence the compressor performance. Relevant numerical
calculations are performed to investigate the influence of the geometric uncertainty on the performance
and determine the critical geometric variables. The uncertainty quantitative and sensitivity analyses give
the following conclusions:

1. Blade geometric deviations cause the average compressor performance to be lower than the
designed value, and the fluctuation ranges of the total pressure ratio and isentropic efficiency
decrease for lower mass flow rates. The blade geometrical deviations significantly influence the
flow field structure in the blade root and tip regions, and the influence on the blade root (tip)
region decreases (increases) for lower flow rates.

2. In high flow conditions, the compressor total pressure ratio is most sensitive to the stagger angle
and suction surface thickness deviations. At lower flow rates, the sensitivity of the compres-
sor total pressure ratio to the pressure surface thickness deviation gradually increases, and the
sensitivity to the stagger angle and suction surface thickness deviations gradually decreases.

3. The compressor isentropic efficiency has the greatest sensitivity to the suction surface thickness
deviations in high flow conditions. However, at lower flow rates, the sensitivity of the compres-
sor isentropic efficiency to the suction surface thickness and stagger angle deviations gradually
decreases. The sensitivity of the compressor isentropic efficiency to the chord length and tip
clearance deviations gradually increases, and these two deviations have the greatest influence on
the compressor isentropic efficiency in low flow conditions.

4. The effects of various blade geometric deviations on the compressor performance are indepen-
dent and linearly superimposed, and the combined effects of different geometric deviations are
small. The impact of various geometric deviations on compressor performance varies under
different operating conditions. When determining the tolerance band for blade machining, the
tolerance band of geometric parameters that affects the main performance indicators of the com-
pressor should be reduced appropriately. To reduce manufacturing costs, the tolerance band
of geometric parameters that have less impact on compressor performance can be relaxed
appropriately.
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