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Abstract

Zhou et al. [‘On weakly non-decreasable quasiconformal mappings’, J. Math. Anal. Appl. 386 (2012),
842–847] proved that, in a Teichmüller equivalence class, there exists an extremal quasiconformal
mapping with a weakly nondecreasable dilatation. They asked whether a weakly nondecreasable
dilatation is a nondecreasable dilatation. The aim of this paper is to give a negative answer to their
problem. We also construct a Teichmüller class such that it contains an infinite number of weakly
nondecreasable extremal representatives, only one of which is nondecreasable.
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1. Introduction

Let S be a plane domain with at least two boundary points. The Teichmüller space
T (S ) is the space of equivalence classes of quasiconformal maps f from S to a variable
domain f (S ). Two quasiconformal maps f from S to f (S ) and g from S to g(S ) are
said to be equivalent, denoted by f ∼ g, if there is a conformal map c from f (S ) onto
g(S ) and a homotopy through quasiconformal maps ht mapping S onto g(S ) such that
h0 = c ◦ f , h1 = g and ht(p) = c ◦ f (p) = g(p) for every t ∈ [0, 1] and every p in the
boundary of S . Denote by [ f ] the Teichmüller equivalence class of f ; sometimes it is
more convenient to use [µ] to express the equivalence class, where µ is the Beltrami
differential (or the complex dilatation) of f .

Denote by Bel(S ) the Banach space of Beltrami differentials µ = µ(z) dz̄/dz on S
with finite L∞-norm and by M(S ) the open unit ball in Bel(S ).

For µ ∈ M(S ), define

k0([µ]) = inf{‖ν‖∞ : ν ∈ [µ]}.
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[2] Nondecreasable and weakly nondecreasable dilatations 421

We say that µ is extremal in [µ] if ‖µ‖∞ = k0([µ]) (the corresponding quasiconformal
map f is said to be extremal for its boundary values as well) and uniquely extremal if
‖ν‖∞ > k0(µ) for any other ν ∈ [µ].

For any µ, define h∗(µ) to be the infimum over all compact subsets E contained in S
of the essential supremum norm of the Beltrami differential µ(z) as z varies over S \E.
Define h([µ]) to be the infimum of h∗(ν) taken over all representatives ν of the class
[µ]. It is obvious that h([µ]) ≤ k0([µ]). Following [1], [µ] is called a Strebel point if
h([µ]) < k0([µ]); otherwise, [µ] is called a non-Strebel point. It is well known that the
set of Strebel points is open and dense in T (S ) [4].

The cotangent space to T (S ) at the basepoint is the Banach space Q(S ) of integrable
holomorphic quadratic differentials on S with L1-norm

‖ϕ‖ =

"
S
|ϕ(z)| dx dy <∞.

A Beltrami differential µ (not necessarily extremal) is called to be nondecreasable
in its class [µ] if for ν ∈ [µ],

|ν(z)| ≤ |µ(z)| almost everywhere in S

implies that µ = ν; otherwise, µ is called to be decreasable.
The notion of nondecreasable dilatation was first introduced by Reich in [7] when

he studied the unique extremality of quasiconformal mappings. A uniquely extremal
Beltrami differential is obviously nondecreasable. Shen and Chen [11] proved the
following theorem.

Theorem A. Let ∆ denote the unit disk {z ∈ C : |z| < 1}. Let f be a quasiconformal
mapping f from ∆ onto itself. Unless [ f ] contains a conformal mapping, there exist
an infinite number of quasiconformal mapping g in the Teichmüller equivalence class
[ f ] (in the universal Teichmüller space T (∆)), each of which has a nondecreasable
dilatation.

Zhou and Chen [18] studied some special nondecreasable dilatations. The author
[14] proved that a Teichmüller class may contain an infinite number of nondecreasable
extremal dilatations. The existence of a nondecreasable extremal in a class is generally
unknown.

In [19], Zhou et al. defined weakly nondecreasable dilatation as follows. Let
µ ∈ M(S ). µ is called a strongly decreasable dilatation if there exists ν ∈ [µ] satisfying
the following conditions:

(1) |ν(z)| ≤ |µ(z)| for almost all z ∈ S ; and
(2) there exists a domain G ⊂ S and a positive number δ > 0 such that

|ν(z)| ≤ |µ(z)| − δ for almost all z ∈ G.

Otherwise, µ is called weakly nondecreasable. In other words, a Beltrami differential
µ is called weakly nondecreasable if either µ is nondecreasable or if µ is decreasable
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but is not strongly decreasable. In this paper, for the sake of mathematical precision,
we call a Beltrami differential µ a pseudo nondecreasable dilatation if it is a weakly
nondecreasable dilatation but not a nondecreasable dilatation. Hence, if µ is pseudo
nondecreasable, then there is another ν ∈ [µ] and |ν(z)| ≤ |µ(z)| for almost all z ∈ S such
that |ν(z) − µ(z)| > 0 on a subset E ⊂ S of positive measure.

The main result in [19] is the following theorem.

Theorem B. For every extremal quasiconformal mapping f from ∆ onto itself, there
exists an extremal quasiconformal mapping g in the Teichmüller equivalence class [ f ]
with a weakly nondecreasable dilatation.

At the end of the paper [19], they posed the following problem.

Problem. Suppose that µ is a weakly nondecreasable dilatation. Is µ is necessarily a
nondecreasable dilatation?

One might expect that the answer is positive for which the existence of
a nondecreasable extremal dilatation in a Teichmüller class would follow from
Theorem B.

The motivation of this paper is to show that the expectation is wrong. A lot of
pseudo nondecreasable (even extremal) dilatations are constructed in some kinds of
Teichmüller classes and hence the original problem has a negative answer, in general.

Without any loss of generality, we restrict the consideration on the universal
Teichmüller space T (∆). Our main results are the following theorems.

Theorem 1.1. For any given λ > 0, the basepoint [0] contains an infinite number of
pseudo nondecreasable dilatations ν such that ‖ν‖∞ = λ and the support set of each ν
in ∆ has empty interior. However, 0 is the unique nondecreasable dilatation in [0].

Theorem 1.2. There exists an extremal Beltrami differential µ ∈ M(∆) such that µ is
the unique nondecreasable extremal dilatation in [µ], while [µ] contains an infinite
number of pseudo nondecreasable extremal dilatations.

Theorem 1.3. There exists a Beltrami differential µ ∈ M(∆) such that [µ] contains an
infinite number of nondecreasable extremal dilatations and [µ] contains an infinite
number of pseudo nondecreasable extremal dilatations.

Theorem 1.4. There exists a uniquely extremal Beltrami differential µ ∈ M(∆) such that
[µ] is a Strebel point in T (∆) and contains an infinite number of pseudo nondecreasable
dilatations.

Theorem 1.5. There exists a uniquely extremal Beltrami differential µ ∈ M(∆) such
that [µ] is a non-Strebel point in T (∆)\{[0]} and contains an infinite number of pseudo
nondecreasable dilatations.
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By Theorem A, [µ] in Theorem 1.4 or Theorem 1.5 also contains an infinite number
of nondecreasable dilatations. These theorems indicate that there is some distinction
between nondecreasable dilatations and pseudo nondecreasable dilatations. The author
believes that, in every Teichmüller class [µ], there are an infinite number of pseudo
nondecreasable dilatations; moreover, if the extremal in [µ] is not unique, then [µ]
contains an infinite number of pseudo nondecreasable extremal dilatations.

After some preparation in Section 2, we prove Theorems 1.1–1.4, in Section 3. The
proof of Theorem 1.5 is relatively complicated and is given in Section 4 alone.

2. Some preparations
Given µ ∈ M(∆), let f µ be the uniquely determined quasiconformal mapping of ∆

onto itself with Beltrami coefficient µ and normalized to fix 1,−1 and i.

Lemma 2.1. Let A ⊂ ∆ be a compact set such that ∆\A is connected. Let µ and ν be
two equivalent Beltrami coefficients in M(∆). Let µ̃ and ν̃ be the Beltrami coefficients
of the quasiconformal mappings ( f µ)−1 and ( f ν)−1, respectively. In addition, suppose
that µ(z) = ν(z) for almost every z ∈ ∆\A. Then f µ(z) = f ν(z) for all z in ∆\A and hence
µ̃(w) = ν̃(w) for almost all w in f (∆\A).

Proof. For brevity, let f = f µ and g = f ν. Let µg◦ f −1 (w) denote the Beltrami coefficient
of g ◦ f −1. By a simple computation,

µg◦ f −1 ◦ f (z) =
1
τ

µ(z) − ν(z)

1 − µ(z)ν(z)
,

where τ = fz/ fz.
Thus, µg◦ f −1 (w) = 0 for almost all w ∈ f (∆\A) and hence Ψ = g ◦ f −1 is conformal

on ∆\A. Since Ψ|S 1 = g ◦ f −1|S 1 = id, we conclude that Ψ = id in f (∆\A). Thus,
g|∆\A = f |∆\A. In addition, it is evident that µ̃(w) = ν̃(w) for almost all w in f (∆\A). �

For µ ∈ L∞(∆), ϕ ∈ Q(∆), let

λµ[ϕ] = Re
"

∆

µ(z)ϕ(z) dx dy.

The following Construction theorem is essentially due to Reich [8] and is
very useful for the study of (unique) extremality of quasiconformal mappings (see
[8, 13–15]).

Construction Theorem. Let A be a compact subset of ∆ consisting of m (m ∈ N)
connected components and such that ∆\A is connected and each connected component
of A contains at least two points. There exists a function A ∈ L∞(∆) and a sequence
ϕn ∈ Q(∆) (n = 1, 2, . . .) satisfying the conditions (2.1)–(2.4):

|A(z)| =

0 if z ∈ A,
1 for almost all z ∈ ∆\A,

(2.1)

lim
n→∞
{‖ϕn‖ − λA[ϕn]} = 0, (2.2)

lim
n→∞
|ϕn(z)| =∞ almost everywhere in ∆\A, (2.3)
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and, as n→∞,

ϕn(z)→ 0 uniformly on A. (2.4)

Proof. See the proof of the Construction theorem in [15]. �

From the Construction theorem and Lemma 2.1, we get the following lemma.

Lemma 2.2. Let A be as in the Construction theorem and let A(z) be constructed by
the Construction theorem. Let

ν(z) =

kA(z) if z ∈ ∆\A,
B(z) if z ∈ A,

where k < 1 is a positive constant and B(z) ∈ L∞(A) with ‖B‖∞ ≤ k. Then ν(z) is
extremal in [ν] and, for any χ(z) extremal in [ν], χ(z) = ν(z) for almost all z in ∆\A.

Proof. See the proof of [15, Lemma 5]. �

Lemma 2.3. Let Ji ⊂ ∆ (i = 1, 2, . . . ,m) be m Jordan domains such that Ji ⊂ ∆, Ji

(i = 1, 2, . . . ,m) are mutually disjoint and ∆\
⋃m

1 Ji is connected. Put A =
⋃m

1 Ji. Let
A(z) be constructed by the Construction theorem. Let

ν(z) =

kA(z) if z ∈ ∆\A,
B(z) if z ∈ A,

where k < 1 is a positive constant and B(z) ∈ L∞(A) with ‖B‖∞ ≤ k. We regard [ν|Ji ]
as a point in the Teichmüller space T (Ji), i = 1, 2, . . . ,m. Then:

(a) ν is a weakly nondecreasable dilatation in [ν] if and only if every ν|Ji is a weakly
nondecreasable dilatation in [ν|Ji ], i = 1, 2, . . . ,m; and

(b) ν is a nondecreasable dilatation in [ν] if and only if every ν|Ji is a nondecreasable
dilatation in [ν|Ji ], i = 1, 2, . . . ,m.

Proof. It is evident that ν is extremal in [ν], by Lemma 2.2.
(a) Again, the ‘only if’ part is obvious. Now, assume that every ν|Ji is a weakly

nondecreasable dilatation in [ν|Ji ], i = 1, 2, . . . ,m. We show that ν is a weakly
nondecreasable dilatation in [ν]. Suppose to the contrary. Then [ν] is a strongly
decreasable dilatation in [ν]. That is, there exists a Beltrami differential η ∈ [ν] such
that:

(1) |η(z)| ≤ |ν(z)| for almost all z ∈ ∆; and
(2) there exists a domain G ⊂ ∆ and a positive number δ > 0 such that

|η(z)| ≤ |ν(z)| − δ for almost all z ∈ G.

Observe that η is extremal in [ν] and hence η(z) = ν(z) almost everywhere on ∆\A, by
Lemma 2.2. G is forced to be contained in some Ji. Furthermore, by Lemma 2.1, η|Ji ∈

[ν|Ji ]. Thus ν|Ji is a strongly decreasable dilatation in [ν|Ji ], which is a contradiction.
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(b) The ‘only if’ part is also obvious. Assume that every ν|Ji is a nondecreasable
dilatation in [ν|Ji ], i = 1, 2, . . . ,m. We show that ν is a nondecreasable dilatation in
[ν]. Suppose to the contrary. Then [ν] is a decreasable dilatation in [µ]. There
exists a Beltrami differential η ∈ [ν] such that |η(z)| ≤ |ν(z)| for almost all z ∈ ∆, but
η(z) , ν(z) on a subset E ⊂ ∆ with positive measure. It causes no harm in assuming
that E ∩ J1 has positive measure. Since η(z) = ν(z) almost everywhere on ∆\A, it
follows, from Lemma 2.1, that η|J1 ∈ [ν|J1 ]. Thus, ν|J1 is decreasable in [ν|J1 ], which is
a contradiction. �

Lemma 2.4. Let Ji ⊂ ∆ (i = 1, 2, . . . ,m) be m Jordan domains such that Ji ⊂ ∆, Ji
(i = 1, 2, . . . ,m) are mutually disjoint and ∆\

⋃m
1 Ji is connected. Put A =

⋃m
1 Ji.

Let ν ∈ M(∆) whose support set is contained in A. We regard [ν|Ji ] as a point in the
Teichmüller space T (Ji), i = 1, 2, . . . ,m. Then:

(a) ν is a weakly nondecreasable dilatation in [ν] if and only if every ν|Ji is a weakly
nondecreasable dilatation in [ν|Ji ], i = 1, 2, . . . ,m; and

(b) ν is a nondecreasable dilatation in [ν] if and only if every ν|Ji is a nondecreasable
dilatation in [ν|Ji ], i = 1, 2, . . . ,m.

Proof. Since ν(z) = 0 on ∆\A, by Lemma 2.1, the proof follows almost the same
argument as that of Lemma 2.3. �

The following is [14, Lemma 5].

Lemma 2.5. Set ∆s = {z : |z| < s} for s ∈ (0, 1). Let χ(z) be defined as

χ(z) =

0 if z ∈ ∆ − ∆s,

k̃ if z ∈ ∆s,

where k̃ < 1 is a positive constant. Then [χ] contains an infinite number of non-
decreasable Beltrami differentials η with ‖η‖∞ < k̃.

3. Proofs of main results

Proof of Theorem 1.1. Let C ⊂ [0, 1] be a compact set with empty interior and
positive measure. Denote by F[C ] the collection of nonnegative measurable functions
γ in L∞[0, 1] satisfying the following conditions:

(a) γ(x) ≡ 1 for x ∈ [0, 1]\C ;
(b) essinfx∈[0,1] γ(x) = ρ > 0; and

(c)
∫ 1

0 γ(x) dx = 1.

For any given γ ∈ F[C ], define

Γ(x) =

∫ x

0
γ(t) dt, x ∈ [0, 1].

Then Γ(x) is differentiable at almost every x ∈ [0, 1]. In fact, Γ′(x) = γ(x) for almost
all x ∈ [0, 1].
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Let

S = {z = x + iy ∈ C : x ∈ [0, 1], y ∈ R},
D = {z = x + iy ∈ C : x ∈ [0, 1]\C , y ∈ R},

D c = {z = x + iy ∈ C : x ∈ C , y ∈ R},

and define a mapping σ from the strip S onto itself by

σ(z) = Γ(x) + iy, z = x + iy ∈S .

Observe that Γ(x) is a strictly increasing function with respect to x ∈ [0, 1], Γ(0) = 0
and Γ(1) = 1. It is clear that σ is a self-homeomorphism of S and keeps the boundary
points fixed. Moreover, σ(z) is differentiable at almost every z = x + iy ∈S . Precisely,
for almost every x ∈ (0, 1),

∂zσ(x + iy) =
γ(x) + 1

2
,

∂z̄σ(x + iy) =
γ(x) − 1

2
.

(3.1)

Let µσ denote the Beltrami differential of σ. Then

µσ(z) =
∂z̄σ

∂zσ
=
γ(x) − 1
γ(x) + 1

, z = x + iy ∈S .

It is evident that both ∂zσ and ∂z̄σ are locally L2-integrable on S . On the other hand,
the conditions (a)–(c) imply that ‖γ‖∞ ≥ 1 and ρ ≤ 1. It is easy to verify that

‖µσ‖∞ = max
{
‖γ‖∞ − 1
‖γ‖∞ + 1

,
1 − ρ
1 + ρ

}
.

Therefore, the homeomorphismσ is a generalized L2-solution of the Beltrami equation

∂z̄w = µσ(z)∂zw.

By the classical characterization of quasiconformal mappings in the plane [5], we see
that σ is a quasiconformal mapping.

Let Φ : ∆→S be a conformal mapping from ∆ onto S . Then fσ = Φ−1 ◦ σ ◦ Φ

is a quasiconformal mapping from ∆ onto itself. By the analysis above, fσ keeps the
boundary points fixed. Let µ fσ and µσ denote the Beltrami differential of fσ and σ,
respectively. Now µ fσ ∈ [0]. A simple computation shows that

µ fσ(z) = µσ(Φ(z))
Φ′2(z)
|Φ′2(z)|

. (3.2)

By (3.1) and the assumption that γ(x) = 1 on [0, 1]\C ,

µσ(z) = 0, z ∈ D .
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Thus, when z ∈ Φ−1(D), it follows, from (3.2), that µ fσ(z) = 0. Since D c has empty
interior, so does Φ−1(D c).

Claim. µ fσ is a weakly nondecreasable dilatation in [0].
Suppose to the contrary. Then µ fσ is a strongly decreasable dilatation. By the

definition, there exists a Beltrami differential ν ∈ [0] such that:

(1) |ν(z)| ≤ |µ(z)| for almost all z ∈ ∆; and
(2) there exists a domain G ⊂ ∆ and a positive number δ > 0 such that

|ν(z)| ≤ |µ(z)| − δ for almost all z ∈ G.

Observe that the support set of µ fσ in ∆ is contained in Φ−1(D c), which has empty
interior. We find that the condition (2) can not be satisfied. The claim is proved.

When σ varies over F[C ], µ fσ will be mutually different in [0]. So, if we let γ vary
over F[C ] such that

‖µσ‖∞ = max
{
‖γ‖∞ − 1
‖γ‖∞ + 1

,
1 − ρ
1 + ρ

}
= λ,

then we get an infinite number of weakly nondecreasable dilatations ν in [µ] with
‖ν‖∞ = λ. It is clear that the support set of each ν in ∆ has empty interior.

By the definition, it is obvious that 0 is the unique nondecreasable dilatation in [0]
and hence any other µ fσ is a pseudo nondecreasable dilatation. This completes the
proof of Theorem 1.1.

Proof of Theorem 1.2. Choose J = {z ∈ ∆ : |z| < 1
2 } and A = J. Let A(z) be

constructed by the Construction theorem and let µ(z) = kA(z), where k < 1 is a positive
constant. We now show that µ is the unique nondecreasable extremal dilatation in [µ]
while [µ] contains an infinite number of pseudo nondecreasable extremal dilatations.

Note that µ|J ≡ 0 on J. µ|J is obviously the unique nondecreasable dilatation in [0|J]
(in T (J)). Hence, by Lemma 2.3, µ is the unique nondecreasable extremal dilatation
in [µ]. Also, by Lemma 2.3, if ν ∈ [µ] is extremal, then it is a weakly nondecreasable
dilatation if and only if ν|J is a weakly nondecreasable dilatation in [0|J] (in T (J)). If
we get an infinite number of pseudo nondecreasable dilatations in [0|J] with L∞-norm
of at most k, then we can get an infinite number of pseudo nondecreasable extremal
dilatations in [µ]. For this, we transfer Theorem 1.1 from ∆ to J.

Let σ and fσ be as in the proof of Theorem 1.1. Define the conformal mapping
Ψ : J → ∆ by w = 2z, z ∈ J. Then f̃σ = Ψ−1 ◦ fσ ◦ Ψ is a quasiconformal mapping
from J onto itself. By the assumption, f̃σ keeps the boundary points of J fixed. Let µ̃σ
be the Beltrami differential of f̃σ. Then µ̃σ ∈ [0|J]. A simple computation shows that

µ̃σ(z) = µσ(2z)
Ψ′2(z)
|Ψ′2(z)|

= µσ(2z).
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It is clear that µ̃σ is a weakly nondecreasable dilatation in [0|J]. Since ‖µ̃σ‖∞ = ‖µσ‖∞,
by Lemma 2.3, the following Beltrami differential

ν(z) =

µ(z) if z ∈ ∆\J,
µ̃σ(z) if z ∈ J,

(3.3)

is a weakly nondecreasable extremal dilatation in [µ] if ‖µ̃σ‖∞ ≤ k. By Theorem 1.1,
we can find an infinite number of pseudo nondecreasable extremal dilatations µ̃σ
with ‖µ̃σ‖∞ ≤ k. Thus, we get an infinite number of pseudo nondecreasable extremal
dilatations ν, defined by (3.3), in [µ]. The concludes the proof of Theorem 1.2.

Proof of Theorem 1.3. Choose J1 = {z ∈ ∆ : |z| < 1
4 } and J2 = {z ∈ ∆ : |z − 1

2 | <
1
8 }. Let

A = J1 ∪ J2. LetA(z) be constructed by the Construction theorem and let µ(z) = kA(z),
where k < 1 is a positive constant. Let ∆s = {z ∈ ∆ : |z| < s}, where s ∈ (0, 1

4 ) and let
k̃ ∈ (0, k] be a constant. Set

µ(z) =


kA(z) if z ∈ ∆\A,
k̃ if z ∈ ∆s,

0 if z ∈ J1 − ∆s,

0 if z ∈ J2.

By Theorem 1.1, [0|J2 ] contains an infinite number of pseudo nondecreasable
dilatations and 0|J2 is the unique nondecreasable dilatation in [0|J2 ]. Applying
Lemma 2.5 to J1, we see that [0|J1 ] contains an infinite number of nondecreasable
dilatations with L∞-norm of at most k. Thus, by Lemma 2.3, [µ] is the desired
Teichmüller class. The gives Theorem 1.3.

Proof of Theorem 1.4. Let J = {z ∈ ∆ : |z| < 1
2 } and A = J. Choose χ ∈ M(∆) such

that the support set of χ is contained in A. Assume that χ|J is a weakly nondecreasable
dilatation in [χ|J] (in T (J)) and [χ|J] , [0|J], where we do not prescribe χ|J to be
nondecreasable or pseudo nondecreasable. By Lemma 2.1, [χ] , [0] in T (∆) and then
k0([χ]) > 0. Since the boundary dilatation h([χ]) = 0, [χ] is a Strebel point in T (∆). By
Strebel’s frame mapping theorem [12], [χ] can be represented by the uniquely extremal
Beltrami differential µ of the form µ = k0([χ])(ϕ/|ϕ|), where ϕ ∈ Q(∆), ϕ , 0.

Claim. The Strebel point [µ] (= [χ]) satisfies the theorem.
Applying Lemma 2.4, we see that χ is a weakly nondecreasable dilatation in [µ].
Let D = {z ∈ ∆ : |z − 3

4 | <
1
8 }. Regard [0|D] as the basepoint in the Teichmüller space

T (D). Let η be a weakly nondecreasable dilatation in [0|D]. Put

ν(z) =


0 if z ∈ ∆\(J ∪ D),
χ(z) if z ∈ J,
η(z) if z ∈ D.

Then ν ∈ [µ] and, by Lemma 2.4, ν is a weakly nondecreasable dilatation in [µ]. If
either χ|J or η|D is pseudo nondecreasable in their classes [χ|J] or [0|D], then ν is
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pseudo nondecreasable in [µ]. Because [0|D] contains an infinite number of pseudo
nondecreasable dilatations, due to Theorem 1.1, [µ] contains an infinite number of
pseudo nondecreasable dilatations. Now the proof of Theorem 1.4 is complete.

4. Proof of Theorem 1.5
The proof of Theorem 1.5 is somewhat lengthy and complicated. We need some

new lemmas before proving it.
The Reich–Strebel inequality, also called main inequality (see [3, 9, 10]), plays an

important role in the study of Teichmüller theory. To introduce the inequality, we need
some notation. Suppose that f and g are two quasiconformal mappings of ∆ onto itself
with the Beltrami differentials µ, ν, respectively. Let F = f −1,G = g−1 and µ̃, ν̃ denote
the Beltrami differentials of F,G, respectively. Put α = µ̃ ◦ f , β = ν̃ ◦ f . Then

Main inequality. If [µ] = [ν], that is, if f and g are equivalent, then, for any ϕ ∈ Q(∆),"
∆

ϕ dx dy≤
"

∆

|ϕ(z)|
|1 − µ(z)((ϕ(z))/|ϕ(z)|)|2

1 − |µ(z)|2

×
|1 + β(µ/α)((1 − µ((ϕ)/|ϕ|))/(1 − µ((ϕ)/|ϕ|)))|2

1 − |β|2
dx dy,

or, equivalently (see [7]),

Re
"

∆

(β − α)(1 − αβ)τ
(1 − |α|2)(1 − |β|2)

ϕ dx dy ≤
"

∆

|α − β|2

(1 − |α|2)(1 − |β|2)
|ϕ| dx dy,

where τ = ∂z f /∂z f = −µ/α.

Lemma 4.1. Let A be as in the Construction theorem and let A(z) be constructed by
the Construction theorem. Let

µ(z) =

kA(z) if z ∈ ∆\A,
B(z) if z ∈ A,

where k ∈ (0, 1) is a constant and B(z) ∈ L∞(A) with ‖B‖∞ < 1. Suppose that ν ∈ [µ]
and that |ν(z)| ≤ k almost everywhere on ∆\A. Then ν(z) = µ(z) for almost all z in ∆\A.

Proof. Let {ϕn} be the sequence associated with A(z) obtained by the Construction
theorem. Using the above notation and applying the main inequality,

−

"
∆

|α − β|2

(1 − |α|2)(1 − |β|2)
|ϕn| dx dy ≤ −Re

"
∆

(β − α)(1 − αβ)τ
(1 − |α|2)(1 − |β|2)

ϕn dx dy.

Let Λ = ∆\A. By the condition (2.4), we see that

−

"
Λ

|α − β|2

(1 − |α|2)(1 − |β|2)
|ϕn| dx dy

≤ −Re
"

Λ

(β − α)(1 − αβ)τ
(1 − |α|2)(1 − |β|2)

ϕn dx dy + εn, (4.1)

where limn→∞ εn = 0.
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We add

Re
"

Λ

(α − β)(1 − αβ)
(1 − |α|2)(1 − |β|2)

|α|

α
|ϕn| dx dy

to both sides of (4.1) and get

Re
"

Λ

(α − β)(1 − αβ)
(1 − |α|2)(1 − |β|2)

|α|

α
|ϕn| dx dy −

"
Λ

|α − β|2

(1 − |α|2)(1 − |β|2)
|ϕn| dx dy

≤ Re
"

Λ

(α − β)(1 − αβ)
(1 − |α|2)(1 − |β|2)

1
α

(|µ||ϕn| − µϕn) dx dy + εn.

By a deformation,"
Λ

(1 − |α|)|α − β|2 + (1 + |α|)(|α|2 − |β|2)
2|α|(1 + |α|)(1 − |β|2)

|ϕn| dx dy

≤ Re
"

Λ

(α − β)(1 − αβ)
(1 − |α|2)(1 − |β|2)

1
α

(|µ||ϕn| − µϕn) dx dy + εn. (4.2)

Then "
Λ

(1 − |α|)|α − β|2

2|α|(1 + |α|)(1 − |β|2)
|ϕn| dx dy

≤ Re
"

Λ

(α − β)(1 − αβ)
(1 − |α|2)(1 − |β|2)

1
α

(|µ||ϕn| − µϕn) dx dy + εn.

Since |β(z)| ≤ k = |α(z)| almost everywhere on Λ, one finds that a lower bound on the
coefficient of |ϕ| on the left-hand side of (4.2) is

(1 − |α|)|α − β|2

2|α|(1 + |α|)(1 − |β|2)
≥

1 − k
2k(1 + k)

|α − β|2.

An upper bound for the integrand on the right-hand side of (4.2) is

|α − β|
1 + |α|2

(1 − |α|2)(1 − |β|2)
1
|α|
||µ| · |ϕn| − µϕn|

≤
1 + k2

k(1 − k2)2 |α − β| · ||µ| · |ϕn| − µϕn|.

Therefore, by the identity

||w| − w|2 = 2|w|(|w| − Re w),

"
Λ

|α − β|2|ϕ| dx dy ≤
2(1 + k2)

(1 + k)(1 − k)3

"
Λ

|α − β| · ||µ| · |ϕn| − µϕn| dx dy + εn

= C′
"

Λ

|α − β||ϕ|1/2[|µ| · |ϕn| − Re (µϕn)]1/2 dx dy + εn,

where C′ = C′(k) = 2
√

2k(1 + k2)/[(1 + k)(1 − k)3].
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Applying Schwarz’s inequality, we get"
Λ

|α − β|2|ϕn| dx dy

≤ C′
√"

Λ

|α − β|2|ϕn| dx dy ·

√"
Λ

[|µ| · |ϕn| − Re (µϕn)] dx dy + εn.

The condition (2.2) implies that

lim
n→∞

"
Λ

[|µ| · |ϕn| − Re (µϕn)] dx dy = 0.

Hence

lim
n→∞

"
Λ

|α − β|2|ϕn| dx dy = 0.

Furthermore, by the condition (2.3) and Fatou’s Lemma, we obtain α(z) = β(z)
almost everywhere on Λ, that is, µ̃(w) = ν̃(w) almost everywhere on f (Λ). Applying
Lemma 2.1 in an opposite direction, we then get µ(z) = ν(z) almost everywhere on Λ.
The gives the lemma. �

Lemma 4.2. Let Ji ⊂ ∆ (i = 1, 2, . . . ,m) be m Jordan domains such that Ji ⊂ ∆, Ji

(i = 1, 2, . . . ,m) are mutually disjoint and ∆\
⋃m

1 Ji is connected. Put A =
⋃m

1 Ji. Let
A(z) be constructed by the Construction theorem. Let

ν(z) =

kA(z) if z ∈ ∆\A,
B(z) if z ∈ A,

where k < 1 is a positive constant and B(z) ∈ L∞(A) with ‖B‖∞ < 1. We regard [ν|Ji ]
as a point in the Teichmüller space T (Ji), i = 1, 2, . . . ,m. Then:

(a) ν is a weakly nondecreasable dilatation in [ν] if and only if every ν|Ji is a weakly
nondecreasable dilatation in [ν|Ji ], i = 1, 2, . . . ,m; and

(b) ν is a nondecreasable dilatation in [ν] if and only if every ν|Ji is a nondecreasable
dilatation in [ν|Ji ], i = 1, 2, . . . ,m.

Proof. (a) The ‘only if’ part is obvious. Now assume that every ν|Ji is a weakly
nondecreasable dilatation in [ν|Ji ], i = 1, 2, . . . ,m. We show that ν is a weakly
nondecreasable dilatation in [ν]. Suppose to the contrary. Then [ν] is a strongly
decreasable dilatation in [ν]. That is, there exists a Beltrami differential η ∈ [ν] such
that:

(1) |η(z)| ≤ |ν(z)| for almost all z ∈ ∆; and
(2) there exists a domain G ⊂ ∆ and a positive number δ > 0 such that

|η(z)| ≤ |ν(z)| − δ for almost all z ∈ G.
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Observe that |η(z)| ≤ |ν(z)| = k almost everywhere on ∆\A. It holds that η(z) = ν(z)
almost everywhere on ∆\A, by Lemma 4.1. So G is contained in some Ji. Furthermore,
by Lemma 2.1, η|Ji ∈ [ν|Ji ]. Thus ν|Ji is a strongly decreasable dilatation in [ν|Ji ], which
is a contradiction.

(b) With the help of Lemma 4.1, the proof is essentially the same as that of Case (b)
of Lemma 2.3. �

Proof of Theorem 1.5. Let ∆s = {z ∈ ∆ : |z| < s}, s ∈ (0, 1) and A = ∆s. Let A(z) be
constructed by the Construction theorem. By Theorem 1.4, there is a Strebel point
[B] in T (∆s) such that [B] contains an infinite number of pseudo nondecreasable
dilatations. Let k = k0([B]). It is convenient to assume thatB = k(ϕ/|ϕ|) is the uniquely
determined extremal in [B], where ϕ ∈ Q(∆s). Put

µ(z) =


kA(z) if z ∈ ∆\A,

k
ϕ(z)
|ϕ(z)|

if z ∈ A.

By [13, Lemma 4], we see that µ is uniquely extremal in [µ]. Since [B] contains
an infinite number of pseudo nondecreasable dilatations on ∆s, by Lemma 4.2, we
conclude that [µ] contains an infinite number of pseudo nondecreasable dilatations
on ∆. The proof of Theorem 1.5 is complete.

5. Concluding remarks

A Beltrami differential µ (not necessarily extremal) in Bel(S ) is said to be of
landslide type if there exists a nonempty open subset G ⊂ S such that

esssup
z∈G

|µ(z)| < ‖µ‖∞.

Otherwise, µ is said to be of nonlandslide type.
The concept of nonlandslide was first introduced by Li in [6] for extremal Beltrami

differentials. Here, we generalize the definition for general Beltrami differentials. It
was proved by Fan [2] and the author [16] independently that if µ contains more than
one extremal, then it contains an infinite number of extremals of nonlandslide type.

The proofs of Theorems 1.2–1.5 depend extremely on Theorem 1.1. Taking a look
at the pseudo nondecreasable dilatations constructed for Theorems 1.1–1.5. We find
that they vanish on certain subdomains in ∆ and hence all of them are of landslide
type. Recently, the author constructed certain nondecreasable nonuniquely extremal
dilatation of nonlandslide type by use of the main inequality in [17]. Naturally, we ask
the following question.

Question 1. Is there a pseudo nondecreasable extremal dilatation of nonlandslide
type?
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It is an open problem whether there exists [µ] such that the extremal in [µ] is not
unique and each extremal in [µ] is nonlandslide. If such a class [µ] exists, then each
extremal in [µ] is also weakly nondecreasable.

Note that, by definition, a pseudo nondecreasable extremal dilatation is necessarily
nonuniquely extremal. It should also be pointed out that a nondecreasable dilatation is
certainly uniquely extremal if it has a constant modulus, and a pseudo nondecreasable
dilatation is certainly extremal if it has a constant modulus. However, it cannot
be inferred that a pseudo nondecreasable extremal dilatation cannot have a constant
modulus. The author even expects to discover a pseudo nondecreasable extremal
dilatation µ of constant modulus; of course, this will lead to a strongly positive answer
to Question 1. Moreover, if so, every extremal in [µ] will be nonlandslide.

It is surprising that the ‘extremal’ condition in Question 1 is not essential for the
difficulty. With the help of the Construction theorem and Lemma 2.3, one can show
that Question 1 is equivalent to a seemingly weaker question.

Question 2. Is there a pseudo nondecreasable dilatation of nonlandslide type?
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