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ON HERMITE-FEJER INTERPOLATION
WITH EQUIDISTANT NODES
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Abstract

This paper deals with Hermite-Fejer interpolation of functions defined on a semi-infinite interval
but the nodes are equally spaced. It is shown that, under certain conditions, the interpolation
process has poor approximation properties.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 41 A 05.

1. Introduction

Suppose that / is an interval on the real line: / may be open, closed or
semi-open, finite or infinite. Let

be an infinite triangular array such that
x k , n

e I (k = l , 2 , ... , n ; n = l , 2 , . . . )

and, for n = 1, 2, . . . ,

For / : / —> (-oo, oo) we define the Hermite-Fejer interpolation polyno-
mial H2n_y{f, x) to be the unique polynomial of degree 2 n - l or less which
satisfies the 2n conditions

H2n-l(f>Xk,n) = Xxk,n) ( * = 1 , 2 , . . . , « ) ,

< - , ( / > Xk,n) = ° (* = 1 , 2 , .. . , H).
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These polynomials came into prominence in 1916 when L. Fejer [2] consid-
ered the special case where / = [ - 1 , 1] and xk n - cos{(2k-l)n/(2n)) (k =
1, 2, ... , n ; n = 1, 2, ...). In this case we describe M as being the matrix
of Chebyshev nodes because, for each n , the points xk (k — 1, 2 , . . . , « )
are the zeros of the Chebyshev polynomial Tn(x) = cos(«arccosx). For
these nodes, Fejer proved that, if / e C ( [ - l , 1]), then

where | | | | denotes the uniform norm on the space C ( [ - l , 1]). Hence, Fejer
proved Weierstrass' approximation theorem by using interpolation polynomi-
als.

Since 1916, a vast literature has grown up around these polynomials: see
the bibliographies in Gonska and Knoop [3] and Mills [6].

In 1958, D. L. Berman [1] investigated these polynomials where / =
[—1, 1] and the nodes were equidistant: that is

Xk,n = - 1 + W ~ *)/(" - !) (* = 1 , 2, . . . , H).

This choice of nodes is interesting because it is simple, and is the nat-
ural choice of the practical person. However, Berman shows that, in this
case, the interpolation polynomials have poor approximation properties. In
fact, he proves the rather remarkable fact that, if g(t) = t, then the sequence
{H2nl(g, x): n = 1, 2, 3, ...} diverges at all points in [ - 1 , 1 ] \{ -1 , 0, 1} .
As we know that x{ n = -1 and xn n = 1 for all n, the polynomial
H2n_l{g, x) and the function g(x) agree at these two points. We note here
that some interesting convergence results concerning this choice of nodes
have been stated by P. O. Runck [7].

In 1932, Szego ([8]; see also Szego [9, Theorem 14.7]) considered the
Hermite-Fejer interpolation polynomials when the nodes of interpolation
were the zeros of the Laguerre polynomial La

n{x). He proved that if / e
C([0, oo)) and f(x) = O(xm) as x —> oo for some fixed positive number
m , then, as n - t o o , H2n_{(f, x) —• f(x) for any fixed x e (0, oo) and the
convergence is uniform in any fixed interval [a, b] where 0 < a < b < oo.

Since Szego proved a convergence theorem which is similar to that of Fejer
but set in the interval [0, oo), it is natural to ask whether there is a diver-
gence theorem similar to that of Berman, but set in the interval [0, oo).
In this paper, we will prove two such results, one in each of the following
two sections. These results do not follow from applying a linear transforma-
tion to Berman's result. In the final section we will present some examples
which illustrate the applicatiln of these results. Throughout this paper, c
or c,, c2, . . . denote absolute, positive constants. However, repeated use of
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any of these symbols in different expressions does not imply equality of the
constants.

2. A divergence theorem

Before presenting our first divergence theorem, we prove the following
technical lemma.

LEMMA 1. Given sequences {hn: n = 1, 2, 3 , . . . } , {jn: n — 1, 2, 3 , . . . }
and {dn: n = 1, 2, 3, . . . } such that

(2.1) hn>0 (n = l , 2 , 3 , . . . ) ,

(2.2) *%>

(2.3) Jnn

(2.4) 0<cx<dn<c2<\ («

let

(2-5) Kn = AJBn

where

An = 22nh(j - 1 + d)2j-3+W(n -j + 2-

Bn = (n-2j + 2- 2d)n"-\n + 3)"+

h = hH, j = j H , and e = 6n.

Then liin „ Kn = oo.
n—•oo n

PROOF. From (2.1)-(2.3) it follows that

(2.6) lim j = oo, lim (j/n) = 0.
n—>oo n—too

Using (2.6) and

(2.7) lim(l+r1)' = e
t—•OO

we obtain, for n sufficiently large,

(2.8) u -1 + e)2j-3+2e > cj2j-3+2e,

(2.9) (n-j + 2- 8)2n-2j+3+2e > c(n - jf-
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Thus, using (2.8), (2.9), (2.3), and (2.7) several times, we find that for
values of n sufficiently large,

„ c22"hj2J-3+2e(n-j)2n-2j+3-2e

c22n (h\ (n-jY-' (n^Y+2 ( j \
j + 2-26)\j)\ n ) \n + 3j \n - j J

c.22nh2d
> -

(n-2j + 2- 26)
2j+26-2>

Now each of these five factors increases without bound as n increases.
Hence l i m ^ ^ Kn = oo and the lemma is proved. D

We now state the main result of this section.

THEOREM 1. Suppose that, for n = 1 ,2 , 3 , . . . .

where

(2.11) hn>0 (« = 1 , 2 , 3 , . . . ) ,

(2.12) l imA, = 0,
n—•oo

(2.13) lim nhn = oo.
n—•oo

Let x be a positive number such that

(2.14) {{x/hn}: n = 1 , 2 , 3 , . . . } has a limit point in (0, 1)

and let g(t) = t.
Then the sequence {H2n_ l (g, x): n = 1, 2, 3 , . . . } is unbounded.

REMARK. In condition (2.14), {x/hn} = x/hn - [x/hn] denotes the frac-
tional part of x/hn.

PROOF. If we define J2n_{{g, x) to be the unique polynomial of degree
2n - 1 or less such that

then obviously J2n_x{g, x) = g{x). However, by the Hermite interpolation
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formula (see, for example, Szego [9, (14.19)], we also have

k=\

where

(2.15) lk(x) - (o(x)/((x-xk)co'(xk)) (k = 1, 2, . . . , n),

(2.16) co(x) = ( x - Xi)(x - x 2 ) - - - ( x - x n ) .

Hence

n

k=\

Thus, the sequence {H2n_l{g, x): n = 1 , 2 , 3 , . . . } converges (or di-
verges) if and only if the sequence {En(x): n = 1 , 2 , 3 , . . . } converges (or
diverges) where
(2 17) E (x) = V^(x — x )l (x)2

k=l

So we focus our attention on En{x).
Let x e (0, oo) satisfy condition (2.14). Define j > 1 to be the index

such that Xj_ { < x < Xj (taking xQ = 0) and write

where h = hn. Like h, the variables j , 6 are functions of « but we will
not indicate this unless it is necessary.

Using (2.18), we see that the assumption (2.14) is equivalent to assuming
that the sequence {6n: n = 1 , 2 , 3 , . . . } has a limit point in the interval
(0, 1). So there are two constants c{, c2 such that 0 < c, < c2 < 1 and an
infinite sequence of integers nx < n2 < n3 < • • • such that

(2.19) 0 < c , <0n<c2< 1 (n = n l , n 2 , . . . ) .

We shall restrict n to this sequence and thus makes use of (2.19) henceforth.
We now have from (2.10), (2.15)-(2.18) that

and

(2.21) oj\xk) = (-l)"~kh"

where F is the gamma function.
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From (2.

(2.22)

where

(2.23)

(2.24)

Note that

(2.25)

(2.26)

G. B. 1

15)-(2.17), (2.

G-G(n, x)

l/{C/-fc-H

uk>
uk<

Baker, T. M. Mills and P. Vertesi

20)-(2.21) we

En(x) = G

hV(j - 1 •+

T(

- d)r(k)2T(n

0 (fc = 1,

o (* = ./,

: obtain

- 0)2r(« -j + 2-d?
6)2T{1 -6)2

-k + l)2}, k = \

2 7 - 1 ) ,

y + 1 , . . . , « ) .

[6]

From (2.11), (2.12), (2.18) we obtain

(2.27) lim hj = lim hjn = x,
n—>oo n—»oo " "

(2.28)

(2.29) lim (Jin) = 0.
w — • o o

So, for large values of n , j is much smaller than n . Now using (2.22) for
n sufficiently large,

(2.30) En(x) = Gj2uk = Gj2(Uk + Un_k+X) + I G]T Uk
k=\ k=\ \ k=j

= 5, + S2, say

We estimate 5, and S2 separately. Using (2.23), (2.24), (2.29) we find that,
for n sufficiently large and 1 < k < j - 1,

, + Gun_k+i)nefm - ef
hT{j - 1 + 6?Y{n - j + 2-d)2 ( n-2j + 2

- k

Furthermore, it is not difficult to show that, when n is sufficiently large,
for 1 < k < (j — 1) we have

Thus, from (2.30) we obtain

(2.31) 0 < S, < {j - l)(GC/,_, + GUn_j+2).
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By (2.19) we can assume that T(d) = T(6n) and T(l - d) = T(l - dn) are
uniformly bounded above and below for all values of n . To estimate Sx,
we use (2.31), (2.23), (2.24). We apply Stirling's formula [4, (8.327)]

(2.32) r(t) = y/l2n)t'~m)e~'(l + O(l/t)), t-+oo,

and (22.7)-(2.29) to obtain

(2.33) 5, =o{\) as«->-oo.

We now assume S2 . From (2.26), (22.9) we know that if n is sufficiently
large, then j < n/2 < n - j and hence, writing m = [n/2],

(2.34) -S2 > -GUm > 0.

Using (2.23), (2.24), (2.32), and Lemma 1, we have, as n —• oo,

(2.35) -GUmT{d)2Y{\-e)2

hY(j - 1 + d)2T(n -j + 2-d)2

(m-j+l- d)Y(myY(n -m+ly
- i + 0)2r(« - j + 2 - ef

-j+l- 6)Y(nl2)2Y((n + 3)/2)2

= cKn(\ +o(l)), where Kn is denned by (2.5)

—> oo.

From (3.34), (3.35) and (2.19) we have

(2.36) -S2 -> oo as n -> oo.
The conclusion of Theorem 1 now follows from (2.30), (2.33) and (2.36).

Before stating the next result, we need a definition.

DEFINITION. A sequence {tn: n = 1, 2, 3, . . . } of real numbers is uni-
formly distributed modulo 1 if, for every pair a, b of real numbers with 0 <
a < b < 1 , w e h a v e l i m ^ ^ A([a, b ) ; N)/N = b -a w h e r e A([a,b);N)
is the cardinality of the set {tn: n = 1, 2, . . . , N} n [a, b) and {tn} is the
fractional part of tn .

The work by Kuipers and Niederreiter [5] is the standard reference on
uniformly distributed sequences. We will write "u.d. mod 1" for the phrase
"uniformly distributed modulo 1".

COROLLARY 1. Assume (2.10)-(2.13). Let x be a positive number such
that

(2.14a) the sequence {x/hn: n - 1, 2, 3, . . . } is u.d. mod 1

and let g(t) = t.
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Then the sequence {H2n_x{g, x): n = 1, 2, 3, . . . } is unbounded.

PROOF. Since (2.14a) implies (2.14), the proof is immediate.

Theorem 1 prompts the question about what happens when x = 0. If we
consider En(0) in (2.17) and use (2.15), (2.16), (2.20) with x = 0, we find
that

n n

k=\ k=\

where Vk = T{n + \f l{kT(k)2T(n - k + I)2) (k = 1, 2 , . . . , n). So, by
(2.13) we find that

-En(Q) > hVn = nh —> oo, as n -+ oo.

Thus, if conditions (2.10), (2.11), (2.13) hold, then the sequence {H2n_x{g, 0):
« = 1 , 2 , 3 , . . . } is unbounded.

3. Another divergence theorem

The second major result of this paper is the following.

THEOREM 2. Suppose that, for n = 1, 2, 3 , . . .

Xk~ Xk,n~ Knn \K — l ' Z ' J ' • • • > n)

where /r > 0 (n = 1, 2, 3 , . . . ) , lini _ _ h = 0, and limM_^ nhn = oo.
Let g(t) = t.

Then the sequence {H2n_ x(g, x): n — 1, 2, 3, ...} diverges almost every-
where in [0, oo).

PROOF. We begin by outlining the method of the proof. For n — 1, 2, 3,
. . . , we let

1

v z " ) k=l

and

(3.1) B — {x: x e Bn for infinitely many values of «}.

Denoting the Lebesgue measure of a set X by m(X), we note that

n=\

and hence, by the Borel-Cantelli lemma, m(B) = 0.
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We will show that

(3.2) x $ B => limsuplfl^te, x) - g(x)\ = oo
n—KX>

from which the conclusion of the theorem will follow immediately.
Assume that

(3.3) XG[0,OO)\B.

Then, by (3.1) there is an integer n(x) such that if n > n(x) then x £ Bn .
By restricting n to such values, we may assume henceforth that

(3.4) \x-xkn\>rn (k = l,2,...,n)

and that, at any stage, n is sufficiently large for our purposes.
We now follow the argument employed to prove Theorem 1, step by step,

with some minor modifications. The proof is unchanged up to and including
(2.18). To replace (2.19), observe that (3.4) implies that

l/(2n3h) < 0 < {In - l)/(2n3h).

We can use the identity

r ( 0 ) r ( l - 0 ) = 7r/(sin7T0) ( O < 0 < 1 )

[4, formula 8.334(3)] and replace (2.19) by

(3.5) n <T(0)r(l -6)<nih.

The argument from (2.20)-(2.31) can be used without change. To estimate
S{, use the left-hand inequality of (3.5) and obtain (2.33). To estimate S2 ,
use (2.34) and the right-hand inequality in (3.5). We then obtain, instead of
(2.35),

-GUm>Kn(l+o(l))/(n3h), as«-oo.

We now use the proof of Lemma 1 without any change until the last line to
show that, as n -* oo,

KJ(n3h) - oo
and this gives us (2.36). Thus, assuming (3.3) we have

, x) - g(x)\ = oo
n—»oo

and so Theorem 2 is established.

4. Examples

It is interesting to compare Theorem 1 with Theorem 2. Theorem 1 pro-
vides us with a way of determining if the sequence

S(x) = {H2n_l(g,x):n=l,2,3,...}
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diverges for a given value of x but it does not giv us any of how many
such values there may be. Theorem 2 tells us that S(x) diverges almost ev-
erywhere in [0, oo) but it does not tell us for which values x the sequence
diverges. Between the two results, we can often manage to sort out many par-
ticular situations. We now present some examples to show how th theorems
may be used.

EXAMPLE 1. Consider the case when Hn = l/(y/{an + b) where a > 0,
b are constants. It is clear that the only difficult in applying Theorem 1 is
checking (2.14). Often, checking (2.14a) in Corollary 1 is easier: this can be
done by referring to results in Kuipers and Niederreiter [5]. In this example,
we find from [5, Corollary 2.1] that, for all x > 0, (2.14a) is satisfied and
hence S(x) diverges for all x > 0. Thus, by the remarks at the end of Section
2, S(x) diverges for all x > 0 . In passing, we note that in Berman's result,
the divergence did not occur at the point x — 0 in the interval [ - 1 , 1].

EXAMPLE 2. Consider the case when hn — l/(log«), n > 1. From [5,
Theorem 2.6] we find that, for all x > 0, condition (2.14a) is not satisfied. In
this case, while Theorem 2 assures us that S(x) diverges for almost all x > 0,
Corollary 1 does not help us to identify any such value of x . However, by
using another argument from [5, Example 2.5] we can show that for x > 0
the sequence {{jclogfl}: n = 2, 3, . . . } is dense in [0,1] and hence has a
limit point in (0, 1). Thus, S(x) diverges for all x > 0 (and hence all
x>0).

EXAMPLE 3. Consider the case when hn = 1/[%/"] where [t] is the integer
part of t. If m is a natural number, then, for n sufficiently large, we can find
k € {1, 2, . . . , n} such that m = khn and hence H2n_i(g, m) = g{m).
Thus S(x) converges whenever x is a natural number. From this example
we see that in general, the "a.e. divergence" in Theorem 2 cannot be replaced
by "everywhere divergence".

EXAMPLE 4. Consider the case when hn = 1 (« = 1 , 2 , 3 , . . . ) - This
is not covered by any results in this paper, but it is worth mentioning that,
in this case S(x) diverges for all values of x > 0 unless x is a natural
number and hence, ultimately a node of interpolation. Modifying the proof
of Theorem 1 will show this.
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