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Abstract

Our main result establishes Andrews’ conjecture for the asymptotic of the generating function for
the number of integer partitions of n without k consecutive parts. The methods we develop are
applicable in obtaining asymptotics for stochastic processes that avoid patterns; as a result they
yield asymptotics for the number of partitions that avoid patterns.

Holroyd, Liggett, and Romik, in connection with certain bootstrap percolation models,
introduced the study of partitions without k consecutive parts. Andrews showed that when
k = 2, the generating function for these partitions is a mixed-mock modular form and, thus, has
modularity properties which can be utilized in the study of this generating function. For k > 2,
the asymptotic properties of the generating functions have proved more difficult to obtain. Using
q-series identities and the k = 2 case as evidence, Andrews stated a conjecture for the asymptotic
behavior. Extensive computational evidence for the conjecture in the case k = 3 was given by
Zagier.

This paper improved upon early approaches to this problem by identifying and overcoming two
sources of error. Since the writing of this paper, a more precise asymptotic result was established
by Bringmann, Kane, Parry, and Rhoades. That approach uses very different methods.

2010 Mathematics Subject Classification: 05A17, 11P82, 60C05

1. Introduction and statement of results

Studying a generalization of bootstrap percolation (see [1, 4, 14, 16] for
examples), Holroyd, Liggett, and Romik [17] introduced the following probability
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models: let 0 < s < 1 and C1,C2, . . . be independent events with probabilities

Ps(Cn) := 1− e−ns

under a probability measure Ps . Let Ak be the event

Ak =

∞⋂
i=1

(Ci ∪ Ci+1 ∪ · · · ∪ Ci+k−1)

that there is no sequence of k consecutive Ci values that do not occur. The relevant
question in [17] is to understand the behavior as s ↓ 0. Theorem 2 of Holroyd,
Liggett, and Romik [17] gives

log(Ps(Ak)) ∼ −
Lk

s

where

Lk :=
π 2

3k(k + 1)
. (1.1)

Obtaining an estimate for Ps(Ak) with polynomial relative error has proven
to be a challenging problem. Bringmann and Mahlburg [9] refined the result of
Holroyd, Liggett, and Romik by proving nonlogarithmic lower and upper bounds
that differed by a polynomial factor of s−1/k . Precisely, they give [9, Theorem 1.2]

exp
(
−

Lk

s

)
�k Ps(Ak)�k s−(2k−1)/2k exp

(
−

Lk

s

)
.

With Mellit, Bringmann and Malburg [10] developed a general method for
establishing similar bounds for natural families of pattern-avoiding sequences.
Underlying all of the above results are estimates for the eigenvalues of an
associated (Markov-type) stochastic process.

Prior to the asymptotic results of Bringmann, Mahlburg, and Mellit, Andrews
[3] established a surprising connection between Ps(A2) and one of Ramanujan’s
mock theta functions. Precisely, he showed

Ps(A2) =

∞∏
n=1

1+ q3n

1+ qn
· χ(q), (1.2)

where q := e−s and χ(q) =
∑
∞

n=0 qn2 ∏n
m=1 ((1+ qm)/(1+ q3m)) is a mock

theta function. Zwegers’ Ph.D. thesis [24] yields the modular properties of
Ramanujan’s mock theta functions (see [22] or [21] for details). Consequentially,
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Andrews [3], using (1.2) and additional identities for Ramanujan’s mock theta
functions proved that

Ps(A2) ∼

√
π

2
s−1/2 exp

(
−
π 2

18s

)
as s ↓ 0.

Using additional q-series identities when k > 2, he made the following
conjecture.

CONJECTURE 1.1 (Andrews [3]). For each k > 2, there exists a positive constant
Dk such that

Ps(Ak) ∼ Dks−1/2 exp
(
−
λk

s

)
as s ↓ 0.

We prove the following precise version of Andrews’ conjecture.

THEOREM 1.2. Andrews’ conjecture is true with Dk =
√

2π/k. More specifically,
we have

Ps(Ak) =

√
2π
k

s−1/2 exp
(
−

π 2

3k(k + 1)s
+ Ok(s1/(2k+3))

)
.

REMARK 1.3. We expect that our techniques can be improved to give a full
asymptotic expansion for Ps(Ak) with relative error O(s N ), for any N . Since
the writing of this paper, such an asymptotic expansion was established by
Bringamnn, Kane, Parry, and Rhoades [7]. The methods are very different relying
on asymptotic expansions of Wright’s generalization of the Bessel function.

1.1. More on partitions and additional applications. There is an unexpected
and beautiful connection between bootstrap percolation models and partitions,
Ramanujan’s mock theta functions, and the Rogers–Ramanujan identities.

A partition µ of n has a k-sequence if there are k parts of consecutive sizes. Let
pk(n) denote the number of partitions of n with no k-sequences and Gk(q) :=∑
∞

n=0 pk(n)qn the generating function. Set pk(0) = 1. In [17, Section 4] it is
shown that

Ps(Ak) =
Gk(q)
P(q)

(1.3)

where q := e−s and P(q) =
∑
∞

n=0 p(n)qn
=
∏
∞

n=1 (1/(1− qn)), is the generating
function for p(n), the number of partitions of n.
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Asymptotics for P(q) are well known, namely

P(q) =
1
√

2π
s1/2 exp

(
π 2

6s
−

s
24
+ O(s N )

)
for any N . Thus, by (1.3), determination of the asymptotics of Gk(q) is equivalent
to the determination of the asymptotic of Ps(Ak). We prove the following theorem,
which is equivalent to Theorem 1.2.

THEOREM 1.4. For each k > 2 we have

Gk(e−s) =
1
k

exp
(
π 2

6s

(
1−

2
k(k + 1)

)
+ Ok(s1/(2k+3))

)
as s ↓ 0.

REMARK 1.5. A slight modification of the arguments presented establish
Theorem 1.4 with a relative error that is o(1) for nonreal s satisfying
|=(s)| = o(<(s)).

Exploiting the connection between Gk(e−s) and Ps(Ak), a more refined version
of Conjecture 1.1 is the following.

CONJECTURE 1.6. For s real and s ↓ 0

Gk(e−s) =
1
k

exp
(
π 2

6s

(
1−

2
k(k + 1)

)
+ αks1/k

+ O(s2/k)

)
for some constant αk .

Classical results on the mock theta functions [3] gives this conjecture for
k = 2 with α2 =

√
2/9π . Using a numerical technique, Zagier [23] calculated that

α3 ≈ 0.26627104041 . . . , which he conjectured was 31/3/4Γ (2/3). As previously
mentioned, this stronger conjecture was established in [7].

REMARK 1.7. This conjecture implies that for k > 2, the generating function
Gk(q) is not a usual modular form. Indeed, if Gk(q) is a half integral weight
modular form or mixed-mock modular form, we would expect an asymptotic
expansion that contains only powers of s1/2.

It is well known that the asymptotic behavior of generating functions leads
to asymptotics for the coefficients. We obtain the following theorem for the
asymptotic of pk(n).
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THEOREM 1.8. As n→∞ we have

pk(n) ∼
1

2k

(
1
6

(
1−

2
k(k + 1)

))1/4 1
n3/4

exp

(
π

√
2
3

(
1−

2
k(k + 1)

)
n

)
.

REMARK 1.9. Bringmann and Mahlburg [8] use the connection with
Ramanujan’s mock theta function and an extension of the circle method to
prove a nearly exact formula for p2(n).

While the study of partitions without k-sequences for k > 2 is relatively new,
there are several classical results on partitions without 2-sequences. The Rogers–
Ramanujan identities state that

∞∑
n=0

qn2

(1− q) · · · (1− qn)
=

∞∏
n=1

1
(1− q5n−4)(1− q5n−1)

, (1.4)

∞∑
n=0

qn2
+n

(1− q) · · · (1− qn)
=

∞∏
n=1

1
(1− q5n−3)(1− q5n−2)

. (1.5)

MacMahon [20] found a combinatorial interpretation of the Rogers–Ramanujan
identities as a way of counting partitions without 2-sequences with some
particular constraints. In particular, he shows that they imply:

(1.4)* The partitions of n into distinct parts with no parts of consecutive size are
equinumerous with the number of partitions of n into parts of the form
5n − 4 and 5n − 1.

(1.5)* The partitions of n into distinct parts with no parts of consecutive size and
no parts of size 1 are equinumerous with the number of partitions of n into
parts of the form 5n − 3 and 5n − 2.

This combinatorial interpretation is important in the hard hexagon model studied
by Baxter [6]. Another use of these identities is that the product expansions reveal
that these series in question are essentially modular forms and, thus, their analytic
nature is well understood. For example, with q = e−s , for any N , the series in
(1.4) satisfies

∞∑
n=0

qn2

(1− q) · · · (1− qn)
=

√
2

5−
√

5
exp

(
π 2

15s
−

s
60

)
+ O(s N ) as s ↓ 0.

It is surprising that the generating functions for partitions without
consecutive parts occasionally have product expansions resembling those of the
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Rogers–Ramanujan identities. Let pk,r,>B(n) be the number of partitions of n
with no k parts of consecutive sizes, no part occurring more than r times, and
no parts of size 6 B. Then (1.4) and (1.5) are identities for the generating
functions

∑
∞

n=0 p2,1,>0(n)qn and
∑
∞

n=0 p2,1,>1(n)qn . We have the following
partition identities:

∞∑
n=0

p2,2,>1(n)qn
=

∞∏
n=1

1
(1− q6n−2)(1− q6n−3)(1− q6n−4)

∞∑
n=0

p2,2,>0(n)qn
=

∞∏
n=1

(1− q6n−3)2(1− q6n)

(1− qn)

∞∑
n=0

p2,∞,>1(n)qn
=

∞∏
n=1

1
(1− q6n)(1− q6n−2)(1− q6n−3)(1− q6n−4)

.

The first and second identities are due to Andrews [2] and the final identity is
due to MacMahon [20]; see also Andrews and Lewis [5]. The above identities
along with modular form techniques allow for very precise asymptotics for the
generating functions of partitions that avoid 2-sequences in addition to satisfying
some additional constraints. Asymptotics also exist in some cases where there is
no modular relationship. For instance, the case of pk,1,>0(n) are studied in [11].

Due to (1.3) studying Gk(q) is equivalent to studying Ps(Ak) when q = e−s .
This equivalence provides two equivalent languages in which to discuss our
results, that of partitions and that of probability. Throughout most of this paper we
will use the former language to discuss our techniques. There are three reasons
for this somewhat arbitrary choice. First, the discussion of the behavior of the
small parts of the partition (or equivalently the Ci for small i) fits slightly more
naturally into this language. Second, our own backgrounds are in combinatorics.
Finally, numerical calculations suggest the asymptotics of the function Gk(e−s) is
given purely in powers of s1/k , whereas the asymptotics of Ps(Ak) will have an
extra s1/2 multiplying all terms.

1.2. The approach. In this section, we sketch the proof of Andrews’
conjecture. The fundamental idea is to compute Gk(q) as the limiting value
of a recurrence relation. In particular, one can imagine building a partition by
adding parts of one size at a time: first determining the number of parts of size
one, then the number of parts of size two and so on. In order to ensure that the
partition constructed has no k-sequences, one would need to keep track of how
many of the recent part sizes have been used and ensure that no k sizes in a
row are employed. In order to keep track of the necessary generating functions,
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we define
ṽk

i (N , q) :=
∑

µ a partition with parts 6N
µ has no k parts with consecutive sizes

µ has parts of size N , N − 1, . . . , N − i + 1
µ has no part of size N − i

q |µ|. (1.6)

In particular, we note that for N = 0 we have that

ṽk
i (0, q) =

{
1 if i = 0,
0 otherwise.

We have the following recursion
ṽk

0(N , q)
ṽk

1(N , q)
...

ṽk
k−1(N , q)

 =


1 1 · · · 1
z(q N ) 0 · · · 0

0 z(q N ) · · · 0

0
... 0

0 · · · z(q N ) 0



ṽk

0(N − 1, q)
ṽk

1(N − 1, q)
...

ṽk
k−1(N − 1, q)


where z(x) := x/(1− x). For convenience set

m(x) :=


1 1 · · · 1

z(x) 0 · · · 0
0 z(x) · · · 0

0
... 0

0 · · · z(x) 0

 , (1.7)

and

vk(N , q) :=


ṽk

0(N , q)
ṽk

1(N , q)
...

ṽk
k−1(N , q)

 . (1.8)

Thus, we have the recursion

vk(N , q) = m(q N )vk(N − 1, q).

Furthermore, it is not hard to see that

Gk(q) = lim
N→∞

ṽk
0(N , q).

It should also be noted that the truncated generating function Gk(N , q) for
partitions with parts of size at most N and no k-sequences can be obtained as

Gk(N , q) = (1, 1, . . . , 1) · vk(N , q).
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Thus, we have a linear, homogeneous recurrence relation with nonconstant
coefficients whose limiting value yields Gk(q). The main idea for evaluating
this quantity is as follows. If the matrices, m(q N ), were constant (or even merely
simultaneously diagonalizable), the product would be easy to evaluate and Gk(q)
would be approximately equal to the product of the largest eigenvalues. This is not
the case, but fortunately, the matrices m(qn) vary slowly with n. The difficulty in
approximating Gk(q) comes in figuring out how to take advantage of this.

This basic approach is not new to this problem. Holroyd, Liggett, and Romik
[17] implicitly employ a similar recurrence relation to obtain Ps(Ak). Since the
m(qn) are slowly varying in n, they approximate products of roughly s−1/2 of
these matrices by making the approximation that all of the matrices in the block
are the same. Within each of these blocks, standard eigenvalue techniques are
used to evaluate the product. This technique allows for asymptotic approximation
of log(Ps(Ak)), yielding a term coming from the product of the largest eigenvalues
of m(qn), but has two major sources of error. The first of these errors comes from
the approximation that each of the m(qn) within a block are constant. This is
especially problematic for the early blocks, for which m(qn) is rapidly varying
with n. The second source of error comes from having poor control over the
transitions between blocks. Our technique avoids these difficulties, but requires
new ideas to approximate this product of noncommuting matrices.

Our main idea is to write the vectors vk(N , q) in terms of the slowly varying
eigenbasis of the matrices m(qn). In particular, we may diagonalize each matrix
as

m(qn) = A(qn)D(qn)A(qn)−1,

where D(qn) is the diagonal matrix with λ1(qn), the primary eigenvalue of
m(qn), in the upper-left-hand corner of the matrix. Thus, in the appropriate
basis, multiplying by m, corresponds to multiplication by the diagonal matrix D.
Unfortunately, in order to rewrite vk(n, q) in terms of the appropriate eigenbasis
for m(qn+1), we must also multiply by the transition matrix

T (n, q) := A(qn+1)−1 A(qn).

Since the coefficients of A(qn) are slowly varying, T (n, q) ≈ Ik , where Ik is
the k × k identity matrix. In particular, with q = e−s we establish T (n, q) =
Ik + O(n−1

+ s). As n becomes large, the primary eigenvalue becomes much
larger than the others and so multiplying by D(qn) decreases the sizes of the other
coordinates relative to the first coordinate. Consequentially, the vector of interest
is well approximated by the first coordinate. Ignoring the off-diagonal entries of
the T (n, q), we find that G(q) is roughly∏

n

λ1(qn)
∏

n

T (n, q)1,1,
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where T (n, q)1,1 is the upper-left-hand entry of T (n, q). The product
∏

n λ1(qn) is
handled through an analysis of the characteristic polynomial of m(qn) by Holroyd,
Liggett, and Romik [17]. However, we require a refinement of their calculations
to obtain sufficient errors (see Theorem 5.1). The product of the transition matrix
entries is similar to, but more delicate than, the analysis used to compute

∏
λ1(qn)

(see Theorem 4.4).
A second new idea is needed to deal with the contribution of matrices with n

small. For small n the main eigenvector of m(qn) is not a good approximation for
the contribution to the generating function. In fact, the nonprimary eigenvalues
contribute to the asymptotic approximation. To overcome this difficulty we use a
direct combinatorial analysis to approximate vk(n, q) for small n. This analysis
appears in Section 3.

We note some similarities between this technique and the adiabatic
approximation in quantum mechanics (see, for example, [15, Ch. 10]). In
each case, we are sequentially applying a sequence of slowly varying matrices to
a given initial vector (though in the adiabatic process, this is done continuously
rather than discretely). In each case, we write our vectors in terms of the (slowly
changing) eigenbasis. The final outcome is approximated by taking the product
(or integral) of the eigenvalues, with a correction term due to the change of basis
(known as Berry’s phase in the case of quantum mechanics). The justifications
for this approximation are different in the two cases, for while the adiabatic
approximation holds due to cancelation of cross terms due to rapid oscillation, in
our case the approximation holds because the contribution from the nonprimary
eigenvectors may be safely neglected.

It should be noted that our underlying ideas have far more general applicability
than simply to the problem at hand. In particular, we expect that they can be
used to calculate the asymptotics of the number of partitions that locally ‘avoid
patterns’ of various types (for example, not having any k parts of consecutive
sizes). For example, we believe that our techniques should be able to prove
asymptotics for pk,r,>B(n) for all k, r, B. As an additional example, Knopfmacher
and Munagi [19] consider the problem of counting the number of partitions
λ = (λ1, . . . , λ`) of n such that there is no j with λ j − λ j+1 = p for any fixed
p > 0. The methods in this paper should also be sufficient to approximate the
number of partitions of these types, although the constants showing up in the
asymptotic formulas may well not have closed forms.

Bringmann, Mahlburg, and Mellit introduced a family of directed, multistate
bootstrap percolation models [10]. Their study led to the following: let {E j }

n
j=1

be a sequence of random variables taking values in {A, B,C, D} such that

Ps(E j = A) = (1− e− js)2, Ps(E j = B) = Ps(E j = C) = e− js(1− e− js),
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Ps(E j = D) = e−2 js .

They are interested in the behavior of

Ps({E j }
n
j=1 has no D,C B, or C k),

where C k denotes a sequence of k consecutive Cs, as s ↓ 0. Surprisingly, similar
to Andrews’ identity (1.2), they found a connection with a mock theta function in
the case k = 2. Again, our methods should yield an asymptotic for this probability
as s ↓ 0 with a relative error which is polynomial in s1/k .

1.3. Structure of the paper. As discussed above, our argument splits into two
main pieces. On the one hand, we need a direct way of computing vk(n, q) for
small values of n. Then, once we have gotten to the point where vk(n, q) is well
approximated by the primary eigenvector of m(qn), we can use the recurrence
relation described above.

In Section 2, we perform some preliminary calculations involving the m(qn)

and their eigenvalues that will be used throughout. Section 3 gives a direct
computation for the generating functions vk(N , q) for N of size s−1/(k+1)−ε . In
Section 4, we analyze the recurrence relation in order to compute Gk(q). Section 5
contains an estimate for the product over the largest eigenvalues. Section 6 gives
the proof of Theorem 1.4 and thus Theorem 1.2. Section 7 gives the proof of
Theorem 1.8.

1.4. A brief note on asymptotic notation. Throughout, we will treat k as
constant and suppress the dependence on k in our asymptotic notation. Thus,
O(X) will denote a quantity whose absolute value is bounded by |X | times some
function depending only on k. Similar meanings are assigned toΩ(X) andΘ(X).
In particular, we will generally be interested in how these quantities behave as
s → 0, rather than how they behave in terms of k.

2. Calculations on the diagonalization of m(qn)

In this section, we collect some results on the eigenvalues and diagonalization
of the matrices m(qn). In this section, k is fixed and s is assumed to be small.
Errors are often written in big-O notation. In almost all cases the constants depend
on k. We often suppress this dependence inside of the proofs.

Observe that the characteristic polynomial of (1/z(qn))m(qn) is

λk
− z(qn)−1(λk−1

+ · · · + λ+ 1).
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We begin by proving some basic results about the sizes of the eigenvalues of this
polynomial when z(qn) is either very large or very small.

REMARK 2.1. Recall that z(qn) := e−ns/(1− e−ns) is small when ns is large and
large when ns is small.

LEMMA 2.2. For z ∈ R, let λi(z) be the roots of λk
− z−1(λk−1

+· · ·+λ+1) = 0.
Then for z large,

λi(z) = ωi z−1/k
(

1+
ωi

k
z−1/k

+ O(z−2/k)
)

where the ωi are the distinct kth roots of unity. Furthermore, for z small one root
satisfies

λ1 = z−1(1+ O(z)),

and all other roots satisfy

λi = ωi(1+ Ok(z)),

where the ωi here are distinct kth roots of unity other than 1.

Proof. In order to prove the existence of roots, we will make use of Rouché
theorem. In particular, we note that if there is a polynomial q(z) = a0 + a1z +
· · · + anzn and a positive real value R so that for some m, Rm

|am | >
∑

i 6=m Ri
|ai |,

then q has exactly m roots (with multiplicity) in the ball of radius R about 0. We
will be applying this theorem with m = 1 and q(z) = p(z+ z0). In particular, this
implies that if R|p′(z0)| > |p(z0)| +

∑k
`=2 R`

|p(`)(z0)|, then p has a root within
R of z0.

For the first statement, note that we only need to show this for z � 1. We claim
that p(λ) = λk

−z−1(λk−1
+· · ·+1) has a root within O(z−2/k) of z−1/kω for every

kth root of unity ω. This follows easily noting that p(z−1/kω) = O(z−(k+1)/k),
|p′(z−1/kω)| = Θ(z−(k−1)/k) and that |p(`)(z−1/kω)| = O(z−(k−`)/k). Applying
Roche’s theorem with R a sufficiently large multiple of z−2/k yields our result.
This gives λi = ωi z−1/k(1+ O(z−1/k)). The stronger claim follows from

λk
i = z−1(1+ λi + O(z2/k)).

For the later two claims, we note that it suffices to consider z � 1. For
the second claim we note that |p(z−1)| = O(z−k+1), |p′(z−1)| = Θ(z−k+1) and
|p(`)(z−1)| = O(z−k+`). We then apply Roche’s theorem with R a sufficiently
large constant. For the final claim, note that if ω is a root of x k−1

+ · · · + 1 that
|p(ω)| = O(1), |p′(ω)| = Θ(z−1) and |p(`)(ω)| = O(z−1), and apply Roche’s
theorem with R a sufficiently large multiple of z.
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LEMMA 2.3. For every positive real z, the polynomial p(λ) = λk
− z−1(λk−1

+

· · · + λ+ 1) has no repeated roots.

Proof. Note that if λ is a double root of p then it is a double root of p(x)(x−1) =
x k+1
− (1+ z−1)x k

+ z−1
= 0 and therefore a root of the derivative of this, namely,

((k + 1)x − (1+ z−1)k)x k−1. Since x = 0 is clearly not a root of p, we have that
the double root must be x = k(1+ z−1)/(k + 1). On the other hand, by Descartes
Rule of Signs, p has a unique, nonrepeated, real root.

DEFINITION 2.4. By Lemma 2.3, the roots of λk
−z(qn)−1(λk−1

+· · ·+λ+1) are
distinct for any n and s. Therefore, the eigenvalues can be analytically continued
to functions of n ∈ R+. By Lemma 2.2, as s → 0, the various eigenvalues
are asymptotic to e2π i j/k z−1/k . We let λ j(qn) denote the root whose analytic
continuation is asymptotic to e2π i(( j−1)/k)z(qn)−1/k .

Thus, λ1(qn) is the unique positive real root of this polynomial. We note that
λ j(qn)z(qn) are the eigenvalues of m(qn) and we call λ1(qn)z(qn) the primary
eigenvalue of the matrix m(qn).

REMARK 2.5. This notation differs slightly from that of Section 1.2. It is
convenient for us to separate out the factor of z(qn) from the eigenvalue.

Since there are no repeated roots of the characteristic polynomial of m(qn) for
each eigenvalue z · λ j = z(qn)λ j(qn) of m(qn) we have the eigenvector

V j
n :=


1
λ−1

j
...

λ−k+1
j

 .

So we have

m(qn) = A(qn)D(qn)A(qn)−1 (2.1)

with

D = D(qn) =


zλ1 0 · · · 0
0 zλ2 · · · 0

...

0 0 · · · zλk

 (2.2)

https://doi.org/10.1017/fms.2019.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.8


Partitions with no k-sequence 13

and

A = A(qn) =


1 1 · · · 1
λ−1

1 λ−1
2 · · · λ−1

k
...

...

λ−k+1
1 λ−k+1

2 · · · λ−k+1
k

 . (2.3)

Next we turn to the transition matrices A(qn+1)−1 A(qn).

LEMMA 2.6. Let λi = λi(qn+1) and µi = λi(qn), then A(qn+1) = (λ1−i
j )i, j and

A(qn) = (µ1−i
j )i, j and

T (n, q) = (T (n, q)i, j)i, j := A(qn+1)−1 A(qn)

=

(∏
m 6=i

(
µ j − λm

λi − λm
·
λi

µ j

))
i, j

(2.4)

where i = 1, 2, . . . , k indexes the row and j = 1, 2, . . . , k indexes the column of
T (n, q).

Proof. Note that

(A(qn+1)−1 A(qn))T
= A(qn)T (A(qn+1)−1)T .

Furthermore,

A(qn)T


a0

a1
...

ak−1

 =


p(µ−1
1 )

p(µ−1
2 )
...

p(µ−1
k )


where p(x) = a0 + a1x + · · · + ak−1x k−1. Similarly,

A(qn+1)T


a0

a1
...

ak−1

 =


p(λ−1
1 )

p(λ−1
2 )
...

p(λ−1
k )

 .
Therefore, the (i, j) entry of A(qn+1)−1 A(qn) is

eT
j A(qn)T (A(qn+1)−1)T ei

where ei is the vector with a 1 in the i th position and zeroes in all others.
This, in turn, is the value at µ−1

j of the unique degree-(k − 1) polynomial p(x)
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so that p(λ−1
` ) = δ`,i . Therefore,

p(x) =
∏
m 6=i

x − λ−1
m

λ−1
i − λ

−1
m

.

Thus, the (i, j) entry is

p(µ−1
j ) =

∏
m 6=i

µ−1
j − λ

−1
m

λ−1
i − λ

−1
m

=

∏
m 6=i

((
µ j − λm

λi − λm

)(
λi

µ j

))
.

We will require some lemmas when dealing with transition matrices.

LEMMA 2.7. If λ1, . . . , λk are the roots of λk
− z−1(λk−1

+ · · · + λ+ 1) = 0 and
i 6= j , then we have

|λi − λ j | � |λ j |.

Proof. By Lemma 2.2 for |z| � 1, the λi are proportional to distinct kth roots of
unity, and, thus, the result follows for z > C for some constant C .

By Lemma 2.2 for |z| � 1, all but λ1, are near distinct kth roots of unity, and λ1

is roughly z−1. Thus, if i = 1 or j = 1, then |λi − λ j | � z−1
� |λ j |. Otherwise,

|λi − λ j | � 1� |λ j |. Thus, the result holds for z < c for some constant c.
For c 6 z 6 C , we note that λ j/(λi − λ j) is a continuous function of z and,

thus, has some absolute upper bound. Thus, the lemma holds in this range as
well.

LEMMA 2.8. In the notation of Lemma 2.6, for any i and n we have |µi − λi | =

O(|λi |(s + n−1)). Moreover, we have

∂

∂z
λ1(z)� λ1(z)

(
1+

1
z

)
and

∂2

∂z2
λ1(z)� λ1(z)

(
1+

1
z

)2

.

Proof. The first result follows from the claim that

∂ log(λi(z))
∂z

= O(z−1). (2.5)

From this it follows that

log(λi/µi) = log(λi(z(qn+1)))− log(λi(z(qn)))

=

∫ z(qn+1)

z(qn)

∂ log(λi(z))
∂z

dz
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= O

(∫ z(qn+1)

z(qn)

(z−1) dz

)
= O(log(z(qn)/z(qn+1)))

= O(log(q))+ O(log((1− e−ns)/(1− e(n+1)s)))

= O(s)+ O(s/(1− e−ns))

= O(s + 1/n).

Equation (2.5) follows from the above bounds on λi and the identity

∂

∂z
λi(z) = −

z−2(λk−1
i + · · · + 1)

kλk−1
i − z−1((k − 1)λk−2

i + · · · + 1)
. (2.6)

In particular, the above allows us to check our claim for z� 1 and for z� 1. As in
Lemma 2.7, the claim follows for intermediate z by a compactness argument. The
bound on the second derivative follows similarly. We note that by differentiating
λk+1

1 − λk
1 − z−1(λk

1 − 1) = 0 we have the identity

((k + 1)λk
1 − kλk−1

1 − z−1kλk−1
1 )

∂2λ1

∂z2

= 2z−3(λk
1 − 1)−

∂λ1

∂z
· 2z−2kλk−1

1

−

(
∂λ1

∂z

)2

((k + 1)kλk−1
− k(k − 1)(1+ z−1)λk−2

1 ). (2.7)

LEMMA 2.9. In the notation of Lemma 2.6 for j 6= m∣∣∣∣µi − λm

λ j − λm
·
λ j

µi

∣∣∣∣
is bounded by some constant depending only on k.

Proof. This lemma follows from Lemmas 2.7 and 2.8. In particular, in the case
when j 6= 1 then

|λ j − λm | � |λm | � |µi − λm |.

Thus, |(µi − λm)/(λ j − λm)| is bounded above as is |λ j/µi |.
If i = 1, the quantity in question is

O
(∣∣∣∣ λ j

λ j − λm

∣∣∣∣) = O(1).

Similarly, the result follows for j = 1.
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PROPOSITION 2.10. The transition matrix A(qn+1)−1 A(qn) = Ik + O(s + 1/n)
where Ik is the k × k identity matrix.

Proof. We claim that

T (n, q)i, j
= [A(qn+1)−1 A(qn)]i, j =

∏
m 6=i

µ j − λm

λi − λm
·
λi

µ j
= δi, j + O(s + n−1).

If i 6= j , by Lemma 2.8 the m = j term of the product is

µ j − λ j

λi − λ j
·
λi

µ j
= O(s + n−1) ·

λi

λi − λ j
= O(s + n−1),

and the remaining terms are O(1) by Lemma 2.9. This proves our bound for the
off-diagonal coefficients.

For i = j , by Lemma 2.8 each m-term in the above product equals

λi − λm + O(s + n−1)|λi |

λi − λm
= 1+ O(s + n−1),

where we used that |λi − λm | � |λi |. Taking a product over m yields 1 +
O(s+ n−1), which proves our claim.

We conclude this section with one additional lemma dealing with the ratio of
eigenvalues.

LEMMA 2.11. If i 6= 1 and ns � 1 then

|λi(qn)|

|λ1(qn)|
6 exp(−c(ns)1/k)

for some positive constant c.

Proof. This follows easily from the first case of Lemma 2.2. Namely, for i 6= 1

|λi |

|λ1|
= exp(−Ω(z1/k)) = exp(−Ω((ns)1/k)).

3. Calculations of the early matrices

In this section, we construct an approximation for the vector

vk(N , q) := (̃vk
a(N , q))k−1

a=0 =

N∏
n=1

m(qn)e1
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with s−1/2
� N � s−1/(k+1) log(s−1)k/(k+1), and e1 = (1, 0, 0, . . . , 0) is the

standard basis vector.

THEOREM 3.1. Assume that k | N for some integer N with s−2/(k+2) > N and
N > Cks−1/(k+1) log(s−1)k/(k+1), where Ck is a sufficiently large constant given k.
Then

ṽk
a(N , q) = (s N )−a/k−N ((k−1)/k)eN−N/k 1

k3/2

× exp(s1/k N (k+1)/k(k + 1)−1
+ O(s N 2

+ s2/k N (k+2)/k)).

Before proving Theorem 3.1 we introduce some notation. Each entry of the
vector is the generating function for the number of partitions with no k-sequence,
no parts larger than N , and the largest missing part size is −a (mod k). In this
section, we use the phrase ‘run’ to refer to the gap between missing parts. Given
a partition µ with parts of size at most N and no k-sequence, we let

` = `(µ) =
∑
‘runs’

(k − ‘length of run’).

So for example, if all part sizes are used except for the multiples of k, the runs are
of length k and ` = 0. If we just miss the sizes that are 2 (mod k), the first run
has length 2 and the rest have length k, so ` = k − 2.

It is clear that ` 6 (k − 1)N . Note that the length of each run must be less
than k and that ` ≡ a (mod k). Let n j = n j(µ) be the parts not appearing in µ
satisfying

0 < n1 < n2 < · · · < nb(N+`)/kc.

We have
n j = k j −

∑
‘runs’ before n j

(k − ‘length of run’).

We let {t j } be the shortenings of the runs. Namely, the length of the run before ni

is equal to
k − |{ j : t j = i}|

and we have
ni = ki − |{ j : t j 6 i}|. (3.1)

In other words t1, t2, . . . is the unique weakly increasing sequence with
k − (ni − ni−1) copies of i in it. So we have

0 6 t1 6 t2 6 · · · 6 t` 6
⌊

N + `
k

⌋
.
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Note that a sequence of missing parts {n j } determines the sequence {t j } and vice
versa. We set

M :=
⌊

N + `
k

⌋
=

N
k
+
`− a

k
.

Note that nM = N − a.
So we have

ṽk
a(N , q) :=

N∏
n=1

z(qn) ·
∑

`≡a (mod k)

∑
t16···6t`

∏
i

z(qni )−1, (3.2)

where the sum on ` runs over ` 6 (k − 1)N . For now we ignore the term∏N
n=1 z(qn) as this term can be dealt with separately. The idea for analyzing the

remaining sum is that for N about this size runs are likely to be of size k or k − 1.
One might interpret this as saying that all the smallest parts want to appear subject
to the constraint that every kth part cannot appear. This agrees with Fristedt’s
probabilistic model of random partitions [13].

Next we give a lemma which says we can ignore large ` values.

LEMMA 3.2. In the notation above,∑
`≡a (mod k)

2keN (k+1)/k s1/k<`6(k−1)N

∑
t16···6t`

∏
i

z(qni )−1
= (s N )N/k O(s2).

Proof. We note that∏
i

z(qni )−1 6
∏

i

z(q N )−1

= z(q N )−b(N+`)/kc 6 (s N )(N+`)/k−1q O(N 2) 6 (s N )N/k(s N )`/ks−1.

The number of choices for t’s is 6
(N+`−1

`

)
6
(k N
`

)
. Thus,∑

t16···6t`

∏
i

z(qni )−1
= O

(
s−1

(
k N
`

)
(s N )N/k(Ns)`/k

)
.

Noting that (
k N
`

)
6

(
k Ne
`

)`
,

this is at most

O
(

s−1(s N )N/k
(
keN (k+1)/ks1/k`−1)`) 6 O(s−1)(s N )N/k2−`.
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We note that if N is at least a sufficiently large multiple of s−1/(k+1) log(s−1)k/(k+1),
then 2−` = O(s3). Summing on `, yields the result.

Proof of Theorem 3.1. We apply Lemma 3.2 to the summation in (3.2) and, unless
otherwise stated, in the remainder of this proof we assume the sum on ` is
truncated by ` < 2keN (k+1)/ks1/k at a cost of a negligible error. In particular, this
error is at most

N∏
n=1

z(qn)(s N )N/k O(s2),

which is at most O(s) times ∏
n6N ,n 6≡a (mod k)

z(qn),

which is the contribution coming from partitions with all part sizes not congruent
to a modulo k. Thus, these terms contribute an O(s)-fraction of the total sum
(because it is at most an O(s)-fraction of just the terms without any parts of sizes
a (mod k)), and can be safely ignored.

We will use the following calculations throughout the proof. We have z(qn)−1
=

(1− qn)/qn , but qn
= e−ns , so 1−qn

= ns(1+O(ns)). Moreover,
∏

qni = e−
∑

ni s

but s
∑

ni 6 N 2s � 1 by construction. Therefore, we have∏
i

z(qni )−1
=

∏
i

ni s(1+ O(ni |s|)) = sM
∏

i

ni · (1+ O(s N 2)).

Recall that

ni = ki − |{ j : t j 6 i}| = ki exp
(
−
|{ j : t j 6 i}|

ki
+ O

(
`|{ j : t j 6 i}|

i2

))
.

(3.3)
So the sum becomes∑
`≡a (mod k)

∑
t16···6t`

∏
i

z(qni )−1

=

∑
`≡a (mod k)

(sk)M M !
∑

t16···6t`

∏
j

exp

−∑
i>t j

1
ki
+ O

(
`

i2

) (1+ O(s N 2))

=

∑
`≡a (mod k)

(sk)M M !
`!

∑
t1,...,t`

exp

(
−

1
k

`∑
j=1

log
(

M
t j

)
+ O

(
`

t j

))
×

∏
j

(1+ |{i < j : ti = t j }|)(1+ O(s N 2))
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=

∑
`≡a (mod k)

(sk)M M !M`

`!

(∫ 1

0
t1/keO(`/Mt) dt

)` (
1+ O

(
`2

N
+ s N 2

))

=

∑
`≡a (mod k)

(sk)M M !M`

`!

(∫ 1

0
t1/k

(
1+ O

(
`

Mt

))
dt
)`

×

(
1+ O

(
`2

N
+ s N 2

))
=

∑
`≡a (mod k)

(sk)M M !M`

`!

(
k

k + 1

)`
(1+ Ok(s2/k N (k+2)/k

+ s N 2)),

where we use that δ 6 ((k + 1)/k)ε. The third line is obtained by removing the
ordering on the ti ’s. The product (1/`!)

∏
j(1 + |{i < j : ti = t j }|) accounts for

the introduced overcounting. The fourth line is obtained by approximating the
sum over t j (once ti has been fixed for i < j) of t1/k

j (1 + |{i < j : ti = t j }|)

by M(
∫

t1/k dt)(1 + O(`/N )). Additionally, in the fifth line we note that term
O(`/Mt) is always negative, see (3.3).

Applying Stirling’s approximation to M !, and suppressing the errors, we see
that the above is equal to( s

e
(N − a)

)(N−a)/k
√

2π
N − a

k

∑
`≡a (mod k)

( s
e

)`/k
(

N + `− a
N − a

)(N−a)/k+1/2

× (N + `− a)`((k+1)/k) 1
`!

(
1

k + 1

)`
=

(
s(N − a)

e

)(N−a)/k √
2π

N − a
k

×

∑
`≡a (mod k)

(
1

k + 1
s1/k(N − a)(k+1)/k

(
1+ O

(
`

N

)))` 1
`!

=

(
s(N − a)

e

)(N−a)/k √
2π

N − a
k

×

( ∑
`≡a (mod k)

(
1

k + 1
s1/k(N − a)(k+1)/k

)` 1
`!

)
(1+ O(s2/k N (k+2)/k))

where we have used ((N + `− a)/(N − a))(N−a)/k
= (1 + `/N )(N−a)/k

= e`/k

times a negligible error.
Extending the sum to a sum over all ` rather than those with ` < 2kes1/k N (k+1)/k

introduces a negligible error. The completed sum over ` is the sum over every
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kth term of an exponential. Thus, letting ω be a primitive kth root of unity
suppressing the above error terms, we have∑

`≡a (mod k)

(s1/k(N − a)(k+1)/k(k + 1)−1)`
1
`!

=
1
k

∑
t (mod k)

ωat exp(s1/k(N − a)(k+1)/k(k + 1)−1ω−t)

=
1
k

exp(s1/k(N − a)(k+1)/k(k + 1)−1)

×

(
1+ O

(
exp

(
−Ω

(
s1/k N (k+1)/k

k2(k + 1)

))))
=

1
k

exp(s1/k N (k+1)/k(k + 1)−1)(1+ O((s N )1/k))

where we have approximated N − a by N , and noted that the t 6= 0 terms are
smaller by a factor of exp(−Ω(s1/k N (k+1)/k)), which is O(s3) for N a sufficiently
large multiple of s−1/(k+1) log(s−1)k/(k+1).

To finish the proof of the theorem we use
N∏

n=1

z(qn) =

N∏
n=1

(sn)−1(1+ O(ns)) =
s−N

N !
(1+ O(N 2s))

=
eN

(s N )N
√

2πN
(1+ O(N 2s)).

Before concluding this section we give a comparison between ṽk
0(N , q) and the

eigenvectors of m(q N ). We let V i
n (q) be the eigenvector

(1 λi(qn)−1
· · · λi(qn)−k+1)T

of m(qn) corresponding to the eigenvalue λi(qn)z(qn).

PROPOSITION 3.3. In the notation above, with the assumptions of Theorem 3.1
and

V i
N (q) = (1 λi(q N )−1

· · · λi(q N )−k+1)T

we have

vk(N , q) = (Ns)−N ((k−1)/k)eN−N/k 1
k3/2

exp(s1/k N (k+1)/k(k + 1)−1

+ O(s N 2
+ s2/k N (k+2)/k))V 1

N (q)+
∑
i>1

C i
N (q)V

i
N (q)
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where

C i
N (q)� (Ns)−N ((k−1)/k)eN−N/k exp(s1/k N (k+1)/k(k+1)−1)O(s N 2

+s2/k N (k+2)/k).

Proof. Since the eigenvectors form a basis, there exist C i
N (q) so that vk(N , q) =∑

i>1 C i
N (q)V

i
N (q). Applying Theorem 3.1, we have that

ṽk
a(N , q) = ṽk

0(N , q)(s N )−a/k
(
1+ O

(
s2/k N (k+2)/k

+ s N 2)) .
By Lemma 2.2 we have that

λ j(q N ) = e2π i(( j−1)/k)(s N )1/k(1+ O((s N )2/k)).

Therefore, we have that for 0 6 a 6 k − 1,

ṽk
0(N , q)

(
1+ O

(
s2/k N (k+2)/k

+ s N 2))
=

k∑
j=1

e−2π ia( j−1)/k(1+O(s N )2/k)C j
N (q).

In other words if B is the matrix with (a, j) entry e−2π ia( j−1)/k (with a running
0 to k − 1 and j running 1 to k), then B + O(s N )2/k times the vector of C i

N (q)
equals a vector whose entries are ṽk

0(N , q)
(
1+ O

(
s2/k N (k+2)/k

+ s N 2
))

. Noting
that the inverse of B + O(s N )2/k is B−1

+ O(s N )2/k this implies that

C1
N (q) = ṽ

k
0(N )(1+ O(s2/k N (k+2)/k

+ s N 2)),

and C i
N (q) = ṽk

0(N , q)O
(
s2/k N (k+2)/k

+ s N 2
)

for i > 1. This proves our
proposition.

Finally, the next proposition compares ṽk
0(N , q) to the product of the

eigenvalues.

PROPOSITION 3.4. In the notation above, with the assumptions of Theorem 3.1
we have

ṽk
0(N , q)∏N

n=1 λ1(qn)z(qn)
=

1
k3/2(2π)(1−k)/2k

× exp
(

k − 1
2k

log(N )+ O(s2/k N (k+2)/k
+ s N 2)

)
.
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Proof. By Lemma 2.2 we see that the product of the first N primary eigenvalues
is

N∏
n=1

λ1(qn)z(qn) =

N∏
n=1

(ns)1/k

(
1+

1
k
(ns)1/k

+ O(ns)2/k

)
· (ns)−1(1+ O(ns))

=

N∏
n=1

(ns)−(k−1)/k

(
1+

1
k
(ns)1/k

+ O(ns)2/k

)
= (N !)−(k−1)/ks−((k−1)/k)N exp

(
s1/k

k + 1
N (1+k)/k

+ O((s N )1/k)

)
= (2π)−(k−1)/2k(Ns)−N ((k−1)/k)eN (1−1/k)

× exp
(
−

k − 1
2k

log(N )+
1

k + 1
s1/k N (k+1)/k

+ O((s N )1/k)

)
.

Theorem 3.1 gives the result.

4. After the run-up

In the previous section, we computed Ṽ (N , q) =
∏N

n=1 m(qn)e1. In this section,
we evaluate

Gk(q) = eT
1

∞∏
n=N

m(qn) Ṽ (N , q).

We have the following proposition which shows that we only need to consider the
eigenvalues and the first entry in each of the transition matrices.

THEOREM 4.1. In the notation from Lemma 2.6 for N an integer bigger than a
sufficiently large multiple of s−1/(k+1) log(s−1)k/(k+1) we have

Gk(q) =
∞∏

n=N

λ1(qn)z(qn) ·

∞∏
n=N

T (n, q)1,1

· ṽk
0(N , q) · (1+ O(s + N (−k−1)/ks−1/k)).

In order to prove Theorem 4.1 we will need the following lemma.

LEMMA 4.2. Let w(n, q) := A(qn)−1 ∏n−1
i=1 m(q i)e1. Then for n bigger than a

sufficiently large multiple of s−1/(k+1) log(s−1)k/(k+1), we have that for i 6= 1 that

|w(n, q)i | 6 O(n−(k+1)/ks−1/k
+ s)|w(n, q)1|.
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Proof of Lemma 4.2. The proof is by induction on n. Proposition 3.3 makes this
result clear for n at the lowest end of the permissible range. The basic idea here is
that

w(n + 1, q) = T (n, q)D(qn)w(n, q).

Now since |λ1(qn)| > |λi(qn)|, multiplication by D(qn) increases the ratio of
the first entry relative to the other entries. Since T (n, q) is approximately I ,
multiplication by T (n, q) does not worsen this ratio by too much.

We begin by proving our claim for ns � 1. Letting

u(n, q) := D(qn)w(n, q) (4.1)

and applying Lemma 2.2, we have that

|u(n, q)i |
|u(n, q)1|

=
|w(n, q)i ||λi(qn)|

|w(n, q)1||λ1(qn)|
6
|w(n, q)i |
|w(n, q)1|

(1−Ω((ns)1/k)).

Next, since T (n, q) = Ik + O(n−1), we have that

|w(n + 1, q)i |
|w(n + 1, q)1|

= O(n−1)+

(
|w(n, q)i |
|w(n, q)1|

)
(1−Ω((ns)1/k)).

Induction on n gives

|w(n, q)i | 6 O(n−(k+1)/ks−1/k)|w(n, q)1|

for all n � s−1.
The argument for ns � 1 is similar. It should be noted that in this range that
|λi(qn)|/|λ1(qn)| is bounded above by some constant less than 1 (say by 1 − ε).
Therefore, we have that

|w(n + 1, q)i |
|w(n + 1, q)1|

= O(s)+
(
|w(n, q)i |
|w(n, q)1|

)
(1− ε).

From this, it is easy to conclude by induction that |w(n, q)i | = O(s)|w(n, q)1|.

REMARK 4.3. It should be noted that the bound in Lemma 4.2 is not tight
for small n (a stronger bound is given in Proposition 3.3). The bound of
n−(k+1)/ks−1/k would be tight given our analysis if all we use is that T (n,
q)1,i = O(n−1) and that |λi(qn)/λ1(qn)| = 1 − Ω((ns)1/k). In order to obtain
a tighter analysis, one can note that the T (n, q)1,i are roughly constant in n and
that λi/λ1 is roughly ωi , where ω is a primitive kth root of unity. By our previous
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analysis, wi(n + 1, q)/w1(n + 1, q) is approximately (λi(qn)/λ1(qn))(T (n,
q)1,i + (wi(n, q)/w1(n, q))). Approximating each λi/λ1 by ωi(1 − (ns)1/k) and
each T (n, q)1,i by a constant of order n−1, we note that the resulting recurrence
leads to terms of size O(n−1) due to cancelation that is not captured in our
analysis.

We are now prepared to prove Theorem 4.1.

Proof of Theorem 4.1. We claim that

w(n + 1, q)1 = w(n, q)1λ1(qn)z(qn)T (n, q)1,1

× (1+ O(min(n−(2k+1)/ks−1/k, s2z(qn)))).

Or equivalently (since u(n, q)1 = λ1(qn)z(qn)w(n, q)1) that

w(n + 1, q)1 = u(n, q)1T (n, q)1,1(1+ O(min(n−(2k+1)/ks−1/k, s2z(qn)))).

It is clear that
w(n + 1, q)1 =

∑
j

T (n, q)1, j u(n, q) j .

Hence, we need to show

max
j 6=1

(
T (n, q)1, j

·
|u(n, q) j |

|u(n, q)1|

)
= O(min(n−(2k+1)/ks−1/k

+ s, s2z(qn))).

If ns � 1, this follows since T (n, q)1, j
� n−1 by Proposition 2.10, and

|u(n, q) j |/|u(n, q)1| 6 |w(n, q) j |/|w(n, q)1| = O(n−(k+1)/ks−1) by Lemma 4.2.
Otherwise, this follows from noting that T (n, q)1, j

� s by Proposition 2.10 and

|u(n, q) j |

|u(n, q)1|
=

(
|λ j(qn)|

|λ1(qn)|

)(
|w(n, q) j |

|w(n, q)1|

)
= O(z(qn)s)

by Lemma 2.2. This proves the claim.
Therefore, we have that

lim
n→∞

w(n, q)1 = w(N , q)1
∞∏

n=N+1

λ1(qn)z(qn)T (n, q)1,1

· exp

(
O

(
∞∑

n=N+1

min(n−(2k+1)/ks−1/k, s2z(qn))

))
.

The sum in the error term is at most
bs−1
c∑

n=N+1

n−(2k+1)/ks−1/k
+

∞∑
n=bs−1c

s2z(qn).
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The first term is O(N−(k+1)/ks−1/k) and the latter term is O
(
s2 ∑∞

n=1 e−ns
)
=

O(s). Combining with Proposition 3.3 yields our result.

The following theorem is enough to deduce Theorem 1.4 and, thus,
Theorem 1.2.

THEOREM 4.4. With N as above we have
∞∏

n=N

T (n, q)1,1 = k1/2 exp
(
−

k − 1
2k

log(Ns)+ O((Ns)1/k
+ N−1

+ s)
)
.

Proof. Throughout this proof we use the notation of Lemma 2.6 and often
suppress the dependence on n. We have

T (n − 1, q)1,1 =
∏
m 6=1

µ1 − λm

λ1 − λm
·
λ1

µ1

and
µ1(qn) = λ1(qn−1) = λ1(qn)− λ′1(q

n)+ O(λ′′1(q
n))

where λ′1(q
n) = (∂/∂n)λ1(qn). Therefore,

µ1 − λm

λ1 − λm
·
λ1

µ1
= 1− λ′1

(
1

λ1 − λm
−

1
λ1

)
+ O

((
λ′′1

λ1
+

(
λ′1

λ1

)2
))

.

Hence,

T (n − 1, q)1,1 = exp

(
−λ′1

∑
m 6=1

(
1

λ1 − λm
−

1
λ1

)
+ O

((
λ′′1

λ1
+

(
λ′1

λ1

)2
)))

.

To estimate the big-O term for ns � 1 we use (2.6) and (2.7) and Lemma 2.2 to
obtain

1
λ1

∂λ1

∂n
= −s

1
λ1

∂λ1

∂z
· z(qn)2ens

= O
(

1
n

)
1
λ1

∂2λ1

∂n2
=

s2e2ns

λ1

(
∂2λ1

∂z2
· z(qn)4 +

∂λ1

∂z
· z(qn)3

)
= O

(
1
n2

)
.

For ns � 1 we use Lemma 2.8 to obtain

1
λ1

∂λ1

∂n
= O(s) and

1
λ1

∂2λ1

∂n2
= O(s2).
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Therefore,

bs−3/2
c∏

n=N

T (n − 1, q)1,1 exp

(
λ′1

∑
m 6=1

(
1

λ1 − λm
−

1
λ1

))

= exp

b1/sc∑
n=N

O
(

1
n2

)
+ O

 bs−3/2
c∑

n=b1/sc

s2


= exp

(
O
(

1
N
+ s1/2

))
.

On the other hand for n > s−3/2 (which implies ns � 1), it is easy to see that
both log(T (n, q)1,1) and λ′1

∑
m 6=1(1/(λ1 − λm)−1/λ1) are O(z) = O(e−ns). And

therefore,

∞∏
n=bs−3/2c

T (n − 1, q)1,1 exp

(
λ′1

∑
m 6=1

(
1

λ1 − λm
−

1
λ1

))
= exp(O(es−1/2

/s)).

Let P(λ, z) := λk
− z−1(λk−1

+ · · · + λ+ 1). We have

2
∑
m 6=1

1
λ1 − λm

=
(∂2/∂λ2)P(λ, z)
(∂/∂λ)P(λ, z)

∣∣∣∣
λ=λ1

z=z(N ,q)

=: Rk(λ1(qn)). (4.2)

Therefore,

bs−3/2
c∏

n=N

T (n, q)1,1 =
bs−3/2

c∏
n=N

T (n − 1, q)1,1(1+ O(N−1
+ s))

= exp

− bs−3/2
c∑

n=N

(
1
2
λ′1(q

n)Rk(λ1(qn))− (k − 1)
λ′1(q

n)

λ1(qn)

)

+ O(N−1
+ s1/2)

 .
We apply Euler–MacLaurin to approximate the sum by an integral. The error from
the terms λ′1(q

n)/λ1(qn) introduces an error of size∫
bs−3/2

c

N

(
λ′′1(q

n)

λ1(qn)
+

(
λ′1(q

n)

λ1(qn)

)2
)

dn = O(N−1
+ s1/2)
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as above. Thus, we have
bs−3/2

c∏
n=N

T (n, q)1,1 = exp

(
−

∫
bs−3/2

c

N

(
1
2
λ′1(q

x)Rk(λ1(q x))− (k − 1)
λ′1(q

x)

λ1(q x)

)
dx

+ O(N−1
+ s1/2)

)
.

Note that since the terms in the product are exponentially close to 1 for larger n
and the terms in the integral are exponentially small, we get that

∞∏
n=N

T (n, q)1,1 = exp
(
−

∫
∞

N

(
1
2
λ′1(q

x)Rk(λ1(q x))− (k − 1)
λ′1(q

x)

λ1(q x)

)
dx

+ O(N−1
+ s1/2)

)
= exp

(
−

∫
∞

λ1(q N )

Rk(x)
2
−

k − 1
x

dx + O(N−1
+ s1/2)

)
.

In order to evaluate the integral
∫

Rk(x) dx, we let a(λ) = λk and b(λ) =
λk−1
+ · · · + 1. We then have that z−1

= a(λ1)/b(λ1). Therefore,

Rk(λ) =
a′′(λ)− z−1b′′(λ)
a′(λ)− z−1b′(λ)

=
a′′(λ)b(λ)− a(λ)b′′(λ)
a′(λ)b(λ)− a(λ)b′(λ)

=
∂

∂λ
log(a′(λ)b(λ)− a(λ)b′(λ)).

Letting

Q(λ) := a′(λ)b(λ)− a(λ)b′(λ)

= kλk−1(λk−1
+ · · · + 1)− λk((k − 1)λk−2

+ · · · + 1)

= λ2k−2
+ 2λ2k−3

+ · · · + kλk−1,

we have that∫
∞

λ1(q N )

Rk(x)
2
−

k − 1
x

dx =
1
2

[
log

(
Q(λ)λ−2k+2)]∞

λ1(N )
.

We note that for λ� 1 that Q(λ)λ−2k+2
= 1+ O(λ−1), and therefore,

lim
λ→∞

log
(
Q(λ)λ−2k+2)

= 0.

For λ� 1, we have that Q(λ)λ−2k+2
= kλ−k+1(1+ O(λ)). Therefore,

∞∏
n=N

T (n, q)1,1 = exp
(

1
2

log
(
kλ1(q N )−k+1(1+ O(λ1(q N )))

)
+ O(N−1

+ s1/2)

)
.
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By Lemma 2.2, we have

∞∏
n=N

T (n, q)1,1 = exp
(
−

k − 1
2

log(λ1(q N ))+
1
2

log(k)

+ O((Ns)1/k
+ N−1

+ s)
)

= exp
(
−

k − 1
2k

log(Ns)+
1
2

log(k)

−
k − 1

2k
(Ns)1/k

+ O((Ns)1/k
+ N−1

+ s)
)
.

In the next section, we analyze the product of the primary eigenvalues.

5. The product of the primary eigenvalues

In this section, we estimate

∞∏
n=1

λ1(qn)z(qn) = exp

(
∞∑

n=1

log(λ1(qn))+ log
(

qn

1− qn

))
.

THEOREM 5.1. In the notation above we have
∞∑

n=1

log(λ1(qn)z(qn)) =
π 2

6s

(
1−

2
k(k + 1)

)
+

(
k − 1

2k

)
log(s)

−

(
k − 1

2k

)
log(2π)+ Ok(s1/k).

We start with the following lemma which closely resembles Euler–MacLaurin
summation.

LEMMA 5.2. For suitable functions h and n > 1 we have

h(n) =
∫ n+1/2

n−1/2
h(z) dz −

∫ n+1/2

n−1/2
h′(x)

(
[x] − x +

1
2

)
dx

=

∫ n+1/2

n−1/2
h(z) dz −

1
2

∫ n+1/2

n−1/2
h′′(x)

(
[x] − x +

1
2

)2

dx

where [x] denotes the integer part of x.
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Proof. To see this note that for any function h(z) we have

h(z) = h(n)+ h′(n)(z − n)+
∫ z

n
h′′(x)(z − x) dx .

Integrating from n − 1/2 to n + 1/2 gives the second result. Integration by parts
on each interval [n, n + 1/2] and [n − 1/2, n] gives the first result.

Define the function fk(e−x) to be the increasing function satisfying

fk(e−x)k+1
− fk(e−x)k = e−x(k+1)

− e−xk . (5.1)

Since λ1(qn)k = z(qn)−1(λ1(qn)k−1
+ · · · λ1(qn)+ 1), multiplying by λ1(qn)− 1

we have λ1(qn)k+1
− λ1(qn)k = z(qn)−1(λ1(qn)k − 1) = q−nλk

1 − q−n
− λk

1 + 1.
Therefore fk(e−ns) = λ1(qn)qn .

REMARK 5.3. This function fk(e−x), and certain generalizations, are studied
in [17].

Proof of Theorem 5.1. The modularity of the Dedekind η-function gives

∞∑
n=1

log(1− qn) = −
π 2

6s
−

1
2

log(s)+
1
2

log(2π)−
s

24
+ O(sM) (5.2)

for any M > 0. Additionally, by Lemma 5.2, we have

∞∑
n=1

log(1− qn) =

∫
∞

0
log(1− e−xs) dx −

∫ 1/2

0
log(1− e−xs) dx

− s
∫
∞

1/2

e−xs

1− e−xs

(
[x] − x +

1
2

)
dx .

Noting that
∫
∞

0 log(1 − e−xs) dx = −π 2/6s and
∫ 1/2

0 log(1 − e−xs) dx =
(1/2) log(s)+

∫ 1/2
0 log(x) dx + O(s) we may conclude that

−

∫ 1/2

0
log(x) dx − s

∫
∞

1/2

e−xs

1− e−xs

(
[x] − x +

1
2

)
dx =

1
2

log(2π)+ O(s).

(5.3)
Following the notation of [9, Section 3] we define

gk(xs) = − log( fk(e−xs)). (5.4)
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By the first line of Lemma 5.2,

∞∑
n=1

gk(ns) =
∫
∞

0
gk(xs) dx−

∫ 1/2

0
gk(xs) dx−s

∫
∞

1/2
g′k(xs)

(
[x] − x +

1
2

)
dx .

(5.5)
Theorem 1 of [17] gives

∫
∞

0 gk(xs) dx = (1/s)(π 2/3k(k + 1)). Lemma 2.2 gives
that for sx � 1

gk(xs) = − log( fk(e−xs)) = −
1
k

log(xs)−
1
k
(xs)1/k

+ O((xs)2/k).

Therefore, we have

−

∫ 1/2

0
gk(xs) dx =

1
2k

log(s)−
1
k

∫ 1/2

0
log(x) dx + O(s1/k). (5.6)

Let M = bs−1/k
c. Then we have by the second line of Lemma 5.2 that

s
∫
∞

M+1/2
g′k(xs)

(
[x] − x +

1
2

)
dx =

s2

2

∫
∞

M+1/2
g′′k (xs)

(
[x] − x +

1
2

)2

dx

� s
∫
∞

Ms
g′′k (w) dw � M−1

� s1/k (5.7)

where we use g′(Ms) = Ok(1/Ms) (see, for instance, [9, Lemma 3.1]).
To estimate the integral of g′k from 1/2 to M + 1/2, we take the logarithmic

derivative of fk(e−w)k+1
− fk(e−w)k = e−w(k+1)

− e−wk to obtain

g′k(w) = 1−
1
k

e−w

e−w − 1
+

1
k

e−w
f ′k(e

−w)

1− fk(e−w)
.

Therefore,

s
∫ M+1/2

1/2
g′k(xs)

(
[x] − x +

1
2

)
dx

= −
s
k

∫ M+1/2

1/2

e−xs

1− e−xs

(
[x] − x +

1
2

)
dx

+
s
k

∫ M+1/2

1/2
e−xs f ′k(e

−xs)

1− fk(e−xs)

(
[x] − x +

1
2

)
dx . (5.8)
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Observe that we have∫ M+1/2

1/2

e−xs

1− e−xs

(
[x] − x +

1
2

)
dx

=

∫
∞

1/2

e−xs

1− e−xs

(
[x] − x +

1
2

)
dx −

∫
∞

M+1/2

e−xs

1− e−xs

(
[x] − x +

1
2

)
dx

=

∫
∞

1/2

e−xs

1− e−xs

(
[x] − x +

1
2

)
dx +

s
2

∫
∞

M+1/2

e−xs

(1− e−xs)2

(
[x] − x +

1
2

)2

dx

=

∫
∞

1/2

e−xs

1− e−xs

(
[x] − x +

1
2

)
dx + O(e−Ms). (5.9)

Additionally, integrating by parts, as in Lemma 5.2, gives

s
∫ M+1/2

1/2
e−xs f ′k(e

−xs)

1− fk(e−xs)

(
[x] − x +

1
2

)
dx

� s ·
e−xs f ′k(e

−xs)

1− fk(e−xs)

∣∣∣∣M+1/2

1/2

�k s1/k(1+ M−(k−1)/k) (5.10)

where we have used that monotonicity of log(1− fk(w)) and f ′k(z) = O(z(1−k)/k)

for z near 0. Returning to (5.5) and using (5.3) and (5.7)-(5.10)

−
1
k

∫ 1/2

0
log(x) dx − s

∫
∞

1/2
g′k(xs)

(
[x] − x +

1
2

)
dx

=
1
k

(
−

∫ 1/2

0
log(x) dx − s

∫
∞

1/2

e−xs

1− e−xs

(
[x] − x +

1
2

)
dx
)

+ O(s1/k
+ M−1)

=
1

2k
log(2π)+ O(s1/k).

Finally, this together with (5.5) and (5.6) gives the result.

6. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 and thus Theorem 1.2.

Proof of Theorem 1.4. We have Gk(q) = eT ∏∞
n=N+1 m(qn) ·

∏N
n=1 m(qn)e1. It

follows from Theorem 4.1, Proposition 3.4, and Theorems 4.4 and 5.1 that for
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appropriate N ,

Gk(e−s) =
1
k

exp
(
π 2

6s

(
1−

2
k(k + 1)

)
+ O(N−(k+1)/ks−1/k

+ s N 2
+ s2/k N (k+2)/k

+ N−1)

)
.

Setting N =
⌊

s−3/(2k+3)
⌋

yields the result.

7. Proof of Theorem 1.8

In this section, we apply a result of Ingham [18] to deduce the asymptotics
for pk(n) from the asymptotics of Gk(q) as q → 1. In particular, we have the
following result which is a special case of [18, Theorem 1] and is given as [12,
Theorem 4.1].

THEOREM 7.1 (Ingham). Let f (z) =
∑
∞

n=0 a(n)zn be a power series with real
nonnegative coefficients and radius of convergence equal to 1. If there exists
A > 0, λ, α ∈ R such that

f (z) ∼ λ(− log(z))α exp
(
−

A
log(z)

)
as z→ 1−, then

n∑
m=0

a(m) ∼
λ

2
√
π

Aα/2−1/4

nα/2+1/4
exp(2

√
An)

as n→∞.

Proof of Theorem 1.8. By [17, Lemma 10]

(1− q)Gk(q) =
∞∑

n=0

(pk(n)− pk(n − 1))qn

has nonnegative coefficients. Applying Theorems 1.4 and 7.1 gives the result.

Acknowledgements

The authors thank Stanford University and the National Science Foundation
for support during the preparation of this work. The authors are grateful to the

https://doi.org/10.1017/fms.2019.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.8


D. M. Kane and R. C. Rhoades 34

anonymous referees and Karl Mahlburg for correcting errors in earlier versions of
the manuscript and providing keen insights and useful feedback.

The authors were partially supported by NSF Mathematical Sciences
Postdoctoral Fellowships during the preparation of this work.

References

[1] M. Aizenman and J. Lebowitz, ‘Metastability effects in bootstrap percolation’, J. Phys. (A)
21 (1988), 3801–3813.

[2] G. E. Andrews, ‘Some new partition theorems’, J. Combin. Theory 2 (1967), 431–436.
[3] G. E. Andrews, ‘Partitions with short sequences and mock theta functions’, Proc. Natl. Acad.

Sci. USA 102 (2005), 4666–4671.
[4] G. E. Andrews, H. Eriksson, F. Petrov and D. Romik, ‘Integrals, partitions and MacMahon’s

theorem’, J. Combin. Theory (A) 114 (2007), 545–555.
[5] G. E. Andrews and R. P. Lewis, ‘An algebraic identity of F. H. Jackson and its implications

for partitions’, Discrete Math. 232 (2001), 77–83.
[6] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, (Academic Press, London and

New York, 1982).
[7] K. Bringmann, B. Kane, D. Parry and R. C. Rhoades, ‘On the Andrews–Zagier asymptotics

for partitions without sequences’, Adv. Math. 309 (2017), 436–451.
[8] K. Bringmann and K. Mahlburg, ‘An extension of the Hardy–Ramanujan Circle Method and

applications to partitions without sequences’, Amer. J. Math. 133 (2011), 1151–1178.
[9] K. Bringmann and K. Mahlburg, ‘Improved bounds on metastability thresholds and

probabilities for generalized bootstrap percolation’, Trans. Amer. Math. Soc. 364 (2012),
3829–3859.

[10] K. Bringmann, K. Mahlburg and A. Mellit, ‘Convolution bootstrap percolation models,
Markov-type stochastic processes, and mock theta functions’, Int. Math. Res. Not. (2013),
971–1013.

[11] K. Bringmann, K. Mahlburg and K. Nataraj, ‘Distinct parts partitions without sequences’,
Electronic J. Combin. 22 (2015), Paper 3.3, 13 pp.

[12] K. Bringmann, A. Holroyd, K. Mahlburg and M. Vlasenko, ‘k-run overpartitions and mock
theta functions’, Q. J. Math. 64 (2013), 1009–1021.

[13] B. Fristedt, ‘The structure of random partitions of large integers’, Trans. Amer. Math. Soc.
337(2) 703–735.

[14] J. Gravner and A. Holroyd, ‘Slow convergence in bootstrap percolation’, Ann. Appl. Probab.
18 (2008), 909–928.

[15] D. J. Griffiths, Introduction to Quantum Mechanics, second edition, (Pearson Education Inc.,
Upper Saddle River NJ, 2005).

[16] A. E. Holroyd, ‘Sharp metastability threshold for two-dimensional bootstrap percolation’,
Probab. Theory Related Fields 125 (2003), 195–224.

[17] A. E. Holroyd, T. M. Liggett and D. Romik, ‘Integrals, partitions, and cellular automata’,
Trans. Amer. Math Soc. 356 (2004), 3349–3368.

[18] A. Ingham, ‘A Tauberian theorem for partitions’, Ann. of Math. (2) 42 (1941), 1075–1090.
[19] A. Knopfmacher and A. O. Munagi, ‘Successions in integer partitions’, Ramanujan J. 18

(2009), 239–255.
[20] P. A. MacMahon, Combinatorial Analysis, Vol. 2, (Cambridge University Press, New York,

1916), Reprinted Dover.

https://doi.org/10.1017/fms.2019.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.8


Partitions with no k-sequence 35

[21] K. Ono, ‘Unearthing the visions of a master: harmonic Maass forms and number theory’, in
Current Developments in Mathematics (Int. Press, Somerville, MA, 2009), 347–454.

[22] D. Zagier, ‘Ramanujan’s mock theta functions and their applications [d’aprés Zwegers and
Bringmann-Ono]’, in Sém. Bourbaki (2007/2008), Astérisque, No. 326, Exp. No. 986, vii–viii
(2010), 143–164.

[23] D. Zagier, private communication.
[24] S. Zwegers, ‘Mock theta functions’, PhD Thesis (Advisor: D. Zagier), Universiteit Utrecht,

(2002).

https://doi.org/10.1017/fms.2019.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.8

	Introduction and statement of results
	More on partitions and additional applications
	The approach
	Structure of the paper
	A brief note on asymptotic notation

	Calculations on the diagonalization of m(qn)
	Calculations of the early matrices
	After the run-up
	The product of the primary eigenvalues
	Proof of Theorem 1.4
	Proof of Theorem 1.8
	References

