8-DIMENSIONAL EINSTEIN-THORPE MANIFOLDS

JAEMAN KIM

(Received 21 April 1999; revised 21 September 1999)

Communicated by K. Ecker

Abstract

We prove that a compact orientable Einstein-Thorpe manifold of dimension 8 that satisfies $6\chi = |P_2|$ must be flat.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 53B20, 53B21, 53C25. Keywords and phrases: Einstein-Thorpe manifold, flat.

1. Introduction

The local geometry of a manifold provides us with information about its global topology. For instance, the generalized Gauss-Bonnet theorem [2, 5] states that the Euler-Poincaré characteristic χ of a compact oriented Riemannian manifold M^{4k} can be written as an integral

$$\chi = \frac{2}{V} \frac{[(2k)!]^2}{4k} \int_{\mathcal{U}} \operatorname{trace} (*R_{2k} * R_{2k}) \ dV,$$

where V is the volume of the Euclidean unit 4k-sphere, dV is the volume element of M, * is the Hodge *-operator, and R_{2k} is called the 2kth curvature operator. If R_{2k} commutes with *, that is, $R_{2k}* = *R_{2k}$, we call this condition a *Thorpe condition* and this metric a *Thorpe metric* and this manifold a *Thorpe manifold*. If Ricci curvature, ric, is a constant multiple of the metric, equivalently, traceless Ricci curvature, ric, vanishes then we call this condition an *Einstein condition* and this metric an *Einstein metric* and this manifold an *Einstein manifold*. In the 4-dimensional case, the Thorpe condition is equivalent to the Einstein condition [1]. And so, in 4 dimensions there is another way of stating the Einstein equation, namely the Thorpe condition. Moreover,

^{© 2000} Australian Mathematical Society 0263-6115/2000 \$A2.00 + 0.00

in case of a compact oriented Einstein manifolds of dimension 4 with $2\chi = |P_1|$, Hitchin in [3] has classified these manifolds. On the other hand, Thorpe metrics need not be Einstein in dimensions higher than 4 and the following metrics satisfy the Thorpe condition but they are not Einstein metrics [4]:

- (i) $S^{4k} \times H^{4k}$, product metric of standard metrics;
- (ii) $CP^2 \times CH^2$, product metric of standard metrics.

The following examples also provide us with Einstein manifolds but not Thorpe manifolds [4]: the canonical quaternion projective space HP^n with $n \ge 3$.

We say that a Riemannian 4k manifold is *Einstein-Thorpe* if it is both Einstein and Thorpe. The purpose of the present note is to see what happens to Hitchin's result if both conditions are imposed in dimension eight.

THEOREM 1.1. Suppose that (M^8, g) is a compact orientable Einstein-Thorpe manifold and that

$$\chi = \left(\frac{2!2!}{4!}\right)|P_2|.$$

Then (M^8, g) must be a flat manifold.

The crucial ingredient in the proof is Lemma 1.1.

LEMMA 1.1. Let (M, g) be a Riemannian manifold of dimension 8. Then

trace
$$R_4 = \frac{1}{2^2} \left(\frac{1}{6} \right) \left\{ \frac{1}{2} S^2 - 4 \left| \text{ric}_0 \right|^2 + 4 \left| R \right|^2 \right\}$$

where S is the scalar curvature, ric_0 is the traceless Ricci curvature and R is the curvature.

From Lemma 1.1 we can observe that trace R_4 is nonnegative when the Riemannian manifold is Einstein.

2. The pth curvature operator and Thorpe manifolds

Let M be a Riemannian manifold of dimension n and let $\bigwedge^p(M)$ denote the bundle of p-vectors of M; $\bigwedge^p(M)$ is a Riemannian vector bundle, with inner product on the fiber $\bigwedge^p(x)$ over the point x [4]. Let R denote the covariant curvature tensor of M. For each even p > 0, we define the pth curvature tensor R_p of M to be the covariant

tensor field of order 2p given by

$$R_{p}(u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{p})$$

$$= \frac{1}{2^{p/2} p!} \sum_{\alpha, \beta \in S_{p}} \varepsilon(\alpha) \varepsilon(\beta) R(u_{\alpha(1)}, u_{\alpha(2)}, v_{\beta(1)}, v_{\beta(2)}) \cdots$$

$$R(u_{\alpha(p-1)}, u_{\alpha(p)}, v_{\beta(p-1)}, v_{\beta(p)}),$$

where $u_i, v_j \in T_x M$ and S_p denotes the group of permutations of (1, ..., p) and, for $\alpha \in S_p$, $\varepsilon(\alpha)$ is the sign of the permutation α .

The tensor R_p has the following properties: it is alternating in the first p variables, alternating in the last p variables and it is invariant under the operation of interchanging the first p variables with the last p variables. Hence, at each point $x \in M$, R_p can be regarded as a symmetric bilinear form on $\bigwedge^p(x)$. By use of the inner product on $\bigwedge^p(x)$, R_p at x may then be identified with a self-adjoint linear operator R_p on $\bigwedge^p(x)$. Explicitly, this identification is given by

$$\langle R_p(u_1 \wedge \cdots \wedge u_p), v_1 \wedge \cdots \wedge v_p \rangle \equiv R_p(u_1, \ldots, u_p, v_1, \ldots, v_p)$$

with $u_i, v_j \in T_x M$. From now on, we use the same notations for the *p*th curvature operators and the *p*th curvature tensors. The tensor R_p satisfies the Bianchi identity which can be expressed in the following way [5]:

Alt
$$R_p=0$$
,

where Alt is the skew symmetrization operator given by

Alt
$$R_p(v_1, \ldots, v_{2p}) = \frac{1}{(2p)!} \sum_{r \in S_{2p}} \varepsilon(r) R_p(v_{r(1)}, \ldots, v_{r(2p)})$$

with $v_i \in T_x M$.

When n is a multiple of 4, p = n/2 and M is oriented, the Bianchi identity for R_p admits another interpretation in terms of the Hodge star operator on $\bigwedge^p(M)$:

Alt
$$R_p(e_1, \ldots, e_n) = \frac{p!p!}{n!}$$
 trace $*R_p$

and hence for the case p = n/2, the Bianchi identity for R_p reduces to

trace
$$*R_p = 0$$
.

Taking p = n, the space $\bigwedge^n(x)$ is one dimensional and hence the self-adjoint linear operator $R_n : \bigwedge^n(x) \to \bigwedge^n(x)$ is a scalar multiple of the identity. More explicitly, when expressed globally, the line bundle homomorphism $R_n : \bigwedge^n(M) \to \bigwedge^n(M)$ is

$$R_n = KI$$

where I is the identity automorphism of $\bigwedge^n(M)$ and K is the Lipschitz-Killing curvature of M. Furthermore, for $x \in M$,

$$K(x) = R_n(e_1, \ldots, e_n, e_1, \ldots, e_n),$$

where $\{e_1, \ldots, e_n\}$ is any orthonormal basis for $T_x M$. The generalized Gauss-Bonnet theorem [5] expresses the Euler-Poincaré characteristic χ of a compact oriented Riemannian manifold of even dimension n as an integral

$$\chi = \frac{2}{c_n} \int_M K \, dV,$$

where K is the Lipschitz-Killing curvature of M, c_n is the volume of Euclidean unit n-sphere and dV is the volume element of M. Now we show that the Lipschitz-Killing curvature K of M can be expressed in terms of R_p and the Hodge *-operator. Let M be an oriented Riemannian manifold of even dimension n, then according to [5], the Lipschitz-Killing curvature K of M is the function whose value at $x \in M$ is

$$\frac{p!(n-p)!}{n!}\operatorname{trace}\left(*R_{n-p}*R_{p}\right).$$

For an oriented Riemannian manifold of dimension n = 4k, we can consider the middle curvature operator R_{2k} , and if this operator satisfies the condition

$$R_{2\nu}* = *R_{2\nu}$$

then, since $*^2$ = Identity, the trace formula for K reduces to

$$K = \frac{[(2k)!]^2}{(4k)!} \operatorname{trace} R_{2k}^2 \ge 0.$$

Next we consider a necessary condition for the existence of a Thorpe metric [5]:

THEOREM 2.1. Let M be a compact orientable 4k-dimensional Riemannian manifold which admits a Thorpe metric. Then

$$\chi \geq \frac{k!k!}{(2k)!} |P_k|,$$

where χ is the Euler characteristic of M and P_k is the kth Pontrjagin number of M. In particular, $\chi \geq 0$. Furthermore, $\chi = 0$ if and only if $R_{2k} = 0$.

PROOF. The de Rham representation for the kth Pontrjagin class of M [2] is the differential 4k-form

$$\frac{[(2k)!]^3}{(2^kk!)^2(2\pi)^{2k}}\operatorname{trace}(R_{2k}*R_{2k})\,dV.$$

Since R_{2k} commutes with * it also commutes with $I \pm *$, where I denotes the identity operator on \bigwedge^{2k} . Hence $R_{2k}(I \pm *)$ is self-adjoint and

$$0 \le \operatorname{trace} [R_{2k}(I \pm *)]^2 = 2 [\operatorname{trace}(R_{2k})^2 \pm \operatorname{trace}(R_{2k} * R_{2k})],$$

and so

$$\operatorname{trace}(R_{2k})^2 \ge |\operatorname{trace}(R_{2k} * R_{2k})|.$$

This means that

$$\chi \geq \frac{k!k!}{(2k)!} |P_k|,$$

and since $K \ge 0$, we have $\chi = 0$ if and only if K is identically zero. $K \equiv 0$ is equivalent to $R_{2k} = 0$ and this completes the proof.

3. The case of
$$\chi = ((2!2!)/4!)|P_2|$$

In this section we prove that a compact orientable Einstein-Thorpe manifold of dimension 8 that satisfies the above topological equality must be flat.

LEMMA 3.1. Let (M, g) be a Riemannian manifold of dimension 8. Then

trace
$$R_4 = \frac{1}{2^2} \left(\frac{1}{6} \right) \left\{ \frac{1}{2} S^2 - 4 \left| \operatorname{ric}_0 \right|^2 + 4 \left| R \right|^2 \right\}$$

where S is the scalar curvature, ric₀ is the traceless Ricci curvature and R is the curvature.

PROOF. For 4-forms $\{e_a \wedge e_b \wedge e_c \wedge e_d\}$ and with the Einstein summation,

trace
$$R_4 = \frac{1}{2^2} R_{[ab}^{[ab} R_{cd]}^{cd]} = \frac{1}{2^2} R_{[ab}^{ab} R_{cd]}^{cd}$$

$$= \frac{1}{2^2} \left(\frac{1}{6} \right) \left\{ R_{ab}^{ab} R_{cd}^{cd} + R_{ac}^{ab} R_{db}^{cd} + R_{ad}^{ab} R_{bc}^{cd} + R_{bc}^{ab} R_{ad}^{cd} + R_{bd}^{ab} R_{ca}^{cd} + R_{cd}^{ab} R_{ab}^{cd} \right\}$$

where [] is a skew symmetrization, and $\{e_k\}_{k=1}^8$ is an orthonormal frame. We analyze the terms of this sum individually:

(i)
$$R_{ab}^{ab}R_{cd}^{cd} = 1/2S^2 - 4\operatorname{ric}_{0c}^c\operatorname{ric}_{0c}^c + 2R_{cd}^{cd}R_{cd}^{cd};$$

(ii) $R_{ac}^{ab}R_{cd}^{dd} = -\operatorname{ric}_{0c}^b\operatorname{ric}_{0b}^c + R_{dc}^{db}R_{db}^{dc}.$

(ii)
$$R_{ac}^{ab}R_{db}^{cd} = -\operatorname{ric}_{0c}^{b}\operatorname{ric}_{0b}^{c} + R_{dc}^{db}R_{db}^{dc}$$

Thus we obtain

trace
$$R_4 = \frac{1}{2^2} \left(\frac{1}{6} \right) \left\{ \frac{1}{2} S^2 - 4 \operatorname{ric}_{0c}^c \operatorname{ric}_{0c}^c - 4 \operatorname{ric}_{0c}^b \operatorname{ric}_{0b}^c + 2 R_{cd}^{cd} R_{cd}^{cd} + 4 R_{dc}^{db} R_{db}^{dc} + R_{cd}^{ab} R_{ab}^{cd} \right\}$$

and this completes the proof.

Now we are ready to prove the main result.

THEOREM 3.1. Suppose that (M^8, g) is a compact orientable Einstein-Thorpe manifold and that

$$\chi = \left(\frac{2!2!}{4!}\right)|P_2|.$$

Then (M^8, g) must be a flat manifold.

PROOF. By Theorem 2.1, we see that the above topological condition together with the Thorpe condition can be expressed as

trace
$$R_4R_4 = |\operatorname{trace} R_4 * R_4|$$
.

We consider any orthonormal basis $\{A_i\}_{i=1}^{14}$ in $\bigwedge^+(M^8)$, and any orthonormal basis $\{B_i\}_{i=1}^{14}$ in $\bigwedge^-(M^8)$, where $\bigwedge^+(M^8)$ and $\bigwedge^-(M^8)$ denote the self dual space and the anti-self-dual space with respect to the Hodge * operator, respectively. Then we have

$$\langle R_4(A_i), R_4(A_i) \rangle = \sum_{j=1}^{14} |R_4(A_i, A_j)|^2 + \sum_{j=1}^{14} |R_4(A_i, B_j)|^2,$$

$$\langle R_4(B_i), R_4(B_i) \rangle = \sum_{j=1}^{14} |R_4(B_i, B_j)|^2 + \sum_{j=1}^{14} |R_4(B_i, A_j)|^2,$$

$$\langle *R_4(A_i), R_4(A_i) \rangle = \sum_{j=1}^{14} |R_4(A_i, A_j)|^2 - \sum_{j=1}^{14} |R_4(A_i, B_j)|^2,$$

$$\langle *R_4(B_i), R_4(B_i) \rangle = \sum_{j=1}^{14} |R_4(B_i, A_j)|^2 - \sum_{j=1}^{14} |R_4(B_i, B_j)|^2,$$

for each i = 1, 2, ..., 14.

If we assume trace $R_4 * R_4 \ge 0$, then by the given condition

$$R_4(A_i, B_j) = R_4(B_i, B_j) = 0$$
 for $i, j = 1, 2, ..., 14$

and this means that

$$R_4^- = \frac{R_4 - *R_4}{2} \equiv 0.$$

Furthermore, by the Bianchi identity,

trace
$$*R_4 \equiv 0$$
,

and so we obtain

trace
$$R_4 \equiv 0$$
.

However, by Lemma 3.1 the Einstein condition (that means $ric_0 = 0$) implies trace $R_4 \ge 0$ and equality holds when its metric is flat and so we conclude that the given metric is flat.

On the other hand, if we assume

trace
$$R_4 * R_4 \leq 0$$
,

then we can repeat the above argument with a different choice of sign and this completes the proof.

- COROLLARY 3.1. (i) The product manifold of T^4 with any compact orientable hyperbolic manifold of dimension 4 does not admit an Einstein-Thorpe metric.
- (ii) The product manifold of T^4 with any compact complex hyperbolic manifold of complex dimension 2 does not admit an Einstein-Thorpe metric. The manifolds described in (i) and (ii) satisfy $\chi = 0$ and $P_2 = 0$.

PROOF. It is easy to see that the manifolds described in part (i) and (ii) satisfy $\chi = 0$ and $P_2 = 0$. This implies that any Einstein-Thorpe metric on the manifolds described in (i) and (ii) must be flat by Theorem 3.1, hence a contradiction.

References

- [1] A. Besse, Einstein manifolds (Springer, Berlin, 1986).
- [2] S. S. Chern, 'A simple intrinsic proof of the Gauss-Bonnet theorem for closed Riemannian manifolds', *Ann. of Math.* **45** (1994), 747–752.
- [3] N. J. Hitchin, 'Compact four-dimensional Einstein manifolds', J. Differential Geom. 9 (1974), 435-444.
- [4] J. M. Kim, Einstein-Thorpe manifolds (Ph.D. Thesis, S.U.N.Y at Stony Brook, 1998).
- [5] J. A. Thorpe, 'Some remarks on the Gauss-Bonnet integral', J. Math. Mech. 18 (1969), 779-786.

Department of Mathematics

Yonsei University

Shinchon 134

Seoul

Korea

e-mail: jaeman@math.yonsei.ac.kr