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Abstract

We prove that a compact orientable Einstein-Thorpe manifold of dimension 8 that satisfies 6x = IP21
must be flat.
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1. Introduction

The local geometry of a manifold provides us with information about its global
topology. For instance, the generalized Gauss-Bonnet theorem [2, 5] states that the
Euler-Poincare characteristic x of a compact oriented Riemannian manifold M4k can
be written as an integral

2 r(2Jfc)'l2 f1 ^ I ^ c e (*R2k * R2k) dV,
2 r(2Jfc)'l2 f

= y 1 ^ - I

where V is the volume of the Euclidean unit 4£-sphere, d V is the volume element of
M, * is the Hodge ^-operator, and R2k is called the 2&th curvature operator. If R2k

commutes with *, that is, R2k* = *R2k, we call this condition a Thorpe condition and
this metric a Thorpe metric and this manifold a Thorpe manifold. If Ricci curvature,
ric, is a constant multiple of the metric, equivalently, traceless Ricci curvature, rico,
vanishes then we call this condition an Einstein condition and this metric an Einstein
metric and this manifold an Einstein manifold. In the 4-dimensional case, the Thorpe
condition is equivalent to the Einstein condition [1]. And so, in 4 dimensions there is
another way of stating the Einstein equation, namely the Thorpe condition. Moreover,
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in case of a compact oriented Einstein manifolds of dimension 4 with 2x =
Hitchin in [3] has classified these manifolds. On the other hand, Thorpe metrics need
not be Einstein in dimensions higher than 4 and the following metrics satisfy the
Thorpe condition but they are not Einstein metrics [4]:

(i) S4k x H4k, product metric of standard metrics;
(ii) CP2 x CH2, product metric of standard metrics.

The following examples also provide us with Einstein manifolds but not Thorpe
manifolds [4]: the canonical quaternion projective space HP" with n > 3.

We say that a Riemannian 4k manifold is Einstein-Thorpe if it is both Einstein and
Thorpe. The purpose of the present note is to see what happens to Hitchin's result if
both conditions are imposed in dimension eight.

THEOREM 1.1. Suppose that (M8, g) is a compact orientable Einstein-Thorpe man-
ifold and that

X =

Then (M8, g) must be aflat manifold.

The crucial ingredient in the proof is Lemma 1.1.

LEMMA 1.1. Let (M, g) be a Riemannian manifold of dimension 8. Then

trace R4 = 1 Q M l-S2 - 4 |rico|
2 + 4 |/?|2 J

where S is the scalar curvature, ric0 is the traceless Ricci curvature and R is the
curvature.

From Lemma 1.1 we can observe that trace R4 is nonnegative when the Riemannian
manifold is Einstein.

2. The pth curvature operator and Thorpe manifolds

Let M be a Riemannian manifold of dimension n and let f\p (M) denote the bundle
of p -vectors of M; /\P(M) is a Riemannian vector bundle, with inner product on the
fiber /\p(x) over the point x [4]. Let R denote the covariant curvature tensor of M.
For each even p > 0, we define the pth curvature tensor Rp of M to be the covariant
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tensor field of order 2p given by

R p { u x , . . . , u p , v u . . . , v p )

• a.fies,

where «,-, Vj e TXM and Sp denotes the group of permutations of ( 1 , . . . , p) and, for
a € Sp, e{a) is the sign of the permutation a.

The tensor Rp has the following properties: it is alternating in the first p variables,
alternating in the last p variables and it is invariant under the operation of interchanging
the first p variables with the last p variables. Hence, at each point x e M, Rp can
be regarded as a symmetric bilinear form on /\p(x). By use of the inner product on
/\p(x), Rp at* may then be identified with a self-adjoint linear operator Rp on /\p(x).
Explicitly, this identification is given by

{ R p ( U i A • • • A U p ) , Vi A • • • A Vp) = R p ( U i , . - , U p , V i , . . . , V p )

with ut, Vj e TXM. From now on, we use the same notations for the pth curvature
operators and the pth curvature tensors. The tensor Rp satisfies the Bianchi identity
which can be expressed in the following way [5]:

Alt Rp = 0 ,

where Alt is the skew symmetrization operator given by

AltRp(vi,... ,v2p) = —— J2 £(r)Rp(vrm,... , vH2p))

with v, € TXM.
When n is a multiple of 4, p = n/2 and M is oriented, the Bianchi identity for Rp

admits another interpretation in terms of the Hodge star operator on /\P(M):

Alt Rp (e , , . . . , en) =
 t-^- trace *RP

and hence for the case p = n/2, the Bianchi identity for Rp reduces to

trace *RP = 0 .

Taking p = n, the space A " ^ ) is o n e dimensional and hence the self-adjoint linear
operator Rn : f\"(x) -*• /\"(x) is a scalar multiple of the identity. More explicitly,
when expressed globally, the line bundle homomorphism Rn : /\"(M) —• /\"(M) is
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where / is the identity automorphism of /\"(M) and K is the Lipschitz-Killing
curvature of M. Furthermore, for x e M,

K(x) = Rn(eu . . . ,en,eu... , e n ) ,

where {e{,... , en] is any orthonormal basis for TXM. The generalized Gauss-Bonnet
theorem [5] expresses the Euler-Poincare characteristic x of a compact oriented Rie-
mannian manifold of even dimension n as an integral

= — I KdV,
Cn JM

where K is the Lipschitz-Killing curvature of M, cn is the volume of Euclidean unit
n-sphere and d V is the volume element of M. Now we show that the Lipschitz-Killing
curvature K of M can be expressed in terms of Rp and the Hodge *-operator. Let M
be an oriented Riemannian manifold of even dimension n, then according to [5], the
Lipschitz-Killing curvature K of M is the function whose value at x € M is

For an oriented Riemannian manifold of dimension n = 4k, we can consider the
middle curvature operator R2k, and if this operator satisfies the condition

then, since *2 = Identity, the trace formula for K reduces to

Next we consider a necessary condition for the existence of a Thorpe metric [5]:

THEOREM 2.1. Let M be a compact orientable Ak-dimensional Riemannian mani-
fold which admits a Thorpe metric. Then

k\k\ , ,
|PI

where x is the Euler characteristic of M and Pk is the kth Pontrjagin number of M.
In particular, x > 0. Furthermore, x — 0 if and only ifR2t = 0.

PROOF. The de Rham representation for the kth Pontrjagin class of M [2] is the
differential 4&-form

\(2k)U3

trace (R2k*R2k)dV.(2kk\)2(2n)2k
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Since R2k commutes with * it also commutes with / ± *, where / denotes the identity
operator on f\2k. Hence R2k(I ± *) is self-adjoint and

0 < trace [R2k(I ± *)]2 = 2 [trace(/?2jt)
2 ± trace (R2k * R2k)],

and so

trace(/?2*)2 > Itrace (R2k * R2k)\.

This means that

k\k\

and since K > 0, we have x = 0 if and only if K is identically zero. K = 0 is
equivalent to R2k = 0 and this completes the proof. D

3. The case of x =

In this section we prove that a compact orientable Einstein-Thorpe manifold of
dimension 8 that satisfies the above topological equality must be flat.

LEMMA 3.1. Let (M, g) be a Riemannian manifold of dimension 8. Then

traceR4 = i (J\ Us2-4|rico|2+ 4|fl|2}

where S is the scalar curvature, rico is the traceless Ricci curvature and R is the
curvature.

PROOF. For 4-forms [ea A eb A ec A ed\ and with the Einstein summation,

trace J?4 = ^llKt = ^ < ^ i

I I I nab ncd i nab ncd i nab ncd » nab ncd t nab ncd t nab ncd\
= 2* \ 6 / *• ab cd KacKdb + KadKbc + Kbc Kad + KbdKca + KcdKab)

where [ ] is a skew symmetrization, and {et}*=1 is an orthonormal frame. We analyze
the terms of this sum individually:

(i) KlKd = 1/252 - 4ric$cric5c +2R%R%\
(ii) K'Ki = ~ r < ric
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Thus we obtain

trace/?4 = — (-) j-52-4ricScricge-4ric*:ricS6+2i?^^+4^*^ + i ? ^ ^

and this completes the proof. •

Now we are ready to prove the main result.

THEOREM 3.1. Suppose that (M8, g) is a compact orientable Einstein-Thorpe man-
ifold and that

Then (A/8, g) must be aflat manifold.

PROOF. By Theorem 2.1, we see that the above topological condition together with
the Thorpe condition can be expressed as

trace R4R4 = | trace R4* R4\.

We consider any orthonormal basis {A,-}", in /\+(Af8), and any orthonormal basis
{£/},=! in A~(M*)> w h e r e A+(MS) and A~(MS) denote the self dual space and the
anti-self-dual space with respect to the Hodge * operator, respectively. Then we have

14 14

</?4(A,), Rt(A,)) = J2 I*4(A,, Aj)\2 + J2 \RMi, Bj)\2,
j=i j=i

14 14

(R4(Bi), RtiB,)) J2
y = l

14

^ ] ?4(A,, Aj)\2 - J2 \R4(Ah Bj)\2,
14

2 J2 \R(A B)\2

j=\ ;= i

14 14

for each i = 1 ,2 , . . . , 14.

If we assume trace R4* R4> 0, then by the given condition

R4(Ah Bj) = R4(Bt, Bj) = 0 for ij = 1, 2 , . . . , 14

and this means that
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Furthermore, by the Bianchi identity,

trace *R4 = 0,

and so we obtain

trace R4 = 0.

However, by Lemma 3.1 the Einstein condition (that means ric0 = 0) implies
trace R4 > 0 and equality holds when its metric is flat and so we conclude that
the given metric is flat.

On the other hand, if we assume

trace R4 * R4 < 0,

then we can repeat the above argument with a different choice of sign and this
completes the proof. •

COROLLARY 3.1. (i) The product manifold of T4 with any compact orientable
hyperbolic manifold of dimension 4 does not admit an Einstein-Thorpe metric.

(ii) The product manifold of T4 with any compact complex hyperbolic manifold of
complex dimension 2 does not admit an Einstein-Thorpe metric.
The manifolds described in (i) and (ii) satisfy x = 0 and P2 = 0.

PROOF. It is easy to see that the manifolds described in part (i) and (ii) satisfy x = 0
and P2 = 0. This implies that any Einstein-Thorpe metric on the manifolds described
in (i) and (ii) must be flat by Theorem 3.1, hence a contradiction. •
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