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Low-inertia pulsatile flows in highly distensible viscoelastic vessels exist in many
biological and engineering systems. However, many existing works focus on inertial
pulsatile flows in vessels with small deformations. As such, here we study the dynamics
of a viscoelastic tube at large deformation conveying low-Reynolds-number oscillatory
flow using a fully coupled fluid–structure interaction computational model. We focus on
a detailed study of the effect of wall (solid) viscosity and oscillation frequency on tube
deformation, flow rate, phase shift and hysteresis, as well as the underlying flow physics.
We find that the general behaviour is dominated by an elastic flow surge during inflation
and a squeezing effect during deflation. When increasing the oscillation frequency, the
maximum inlet flow rate increases and tube distention decreases, whereas increasing solid
viscosity causes both to decrease. As the oscillation frequency approaches either 0 (quasi-
steady inflation cycle) or ∞ (steady flow), the behaviours of tubes with different solid
viscosities converge. Our results suggest that deformation and flow rate are most affected
in the intermediate range of solid viscosity and oscillation frequency. Phase shifts of
deformation and flow rate with respect to the imposed pressure are analysed. We predict
that the phase shifts vary throughout the oscillation; while the deformation always lags
the imposed pressure, the flow rate may either lead or lag depending on the parameter
values. As such, the flow rate shows hysteresis behaviour that traces either a clockwise
or counterclockwise curve, or a mix of both, in the pressure–flow rate space. This
directional change in hysteresis is fully characterised here in the appropriate parameter
space. Furthermore, the hysteresis direction is shown to be predicted by the signs of the
flow rate phase shifts at the crest and trough of the oscillation. A distinct change in the tube
dynamics is also observed at high solid viscosity which leads to global or ‘whole-tube’
motion that is absent in purely elastic tubes.
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1. Introduction
In both biological and engineering applications, many systems appear in which a
distensible tube conveys pulsatile flow (Berger & Jou 2000; Grotberg & Jensen 2004).
The most common example is the pulsatile flow in major arteries caused by the cardiac
rhythms. Early theoretical works in this area broadly follow one of two approaches, the
first being the use of a lumped-parameter model to predict the relationship between
pressure and flow rate. The earliest such model was the Windkessel model, formulated
by Frank (1899), consisting of a resistor and compliance element in parallel, representing
the characteristic fluid resistance and arterial wall compliance, respectively. Several
improvements over this two-element model have been made, with the three- and four-
element models introducing the effects of wave propagation and inertia (Westerhof,
Lankhaar & Westerhof 2009). Similar lumped parameter models may be derived by the
addition or rearrangement of the elements, analogous to an electrical circuit (Zamir 2016a;
Soni et al. 2022). Such models are useful in describing the averaged pressure–flow rate
relationship, but they are lacking in a detailed flow description and require constants to be
fitted to experimental results.

The second common approach was to construct a quasi-one-dimensional (1-D) wave
propagation model assuming small deformation, relating the fluid velocity to the pulse
wave speed and pressure waveform. The large diameters and high fluid velocities in large
arteries enabled early researchers to neglect fluid viscosity (Pedley 1980; Fung 1997; Fung
1997). The derivation of the wave speed in an elastic tube filled with inviscid fluid is
often attributed to Moens (1878) and Korteweg (1878), though it can be traced back to
Young (1808) (Fung 1997). Further works have also considered inviscid models (Parker
& Jones 1990), while others include viscous friction based on an assumed velocity profile
(San & Staples 2012; Roknujjaman et al. 2023). Roknujjaman et al. (2023) focused on
wave propagation behaviour, finding that increased tube compliance leads to increased
attenuation. The same behaviour was observed by Fancher & Katifori (2022), who applied
a 1-D model to vessel networks to examine wave reflections. They also note that the
amplitude of reflected waves increases with vessel stiffness, leading to large spikes in both
pressure and flow rate. Other works have examined the effects of arterial taper (Anliker,
Rockwell & Ogden 1971), which was found by Abdullateef, Mariscal-Harana & Khir
(2021) to alter the pressure profile due to induced wave reflections.

A description of the flow field can be obtained by solving the governing equations
directly. For this, the linearised Navier–Stokes equations coupled with the motion of the
tube wall have been used, also allowing the consideration of fluid viscosity. The most
well-known model for sinusoidal flow of viscous fluid in an elastic tube was given by
Womersley (1955, 1957a) and Morgan & Kiely (1954). Under the assumption of weakly
deforming tubes, their solution provides a full axisymmetric description of the flow field
and tube motion in response to an oscillatory pressure gradient, along with the wave
speed. One interesting result of their work is that the predicted velocity leads the driving
pressure in phase, even though they both oscillate with the same frequency. Furthermore,
Womersley (1957b) notes that this lead is highest (= π/4) in the case of a rigid tube and
reduces with increasing compliance.

Other theoretical models have been developed that are either built on those of
Womersley (1955, 1957a) and Morgan & Kiely (1954) (see Cox 1969) or use different
approaches. Notable is the numerical work by Ling & Atabek (1972), who considered
large deformation and nonlinear flow effects. Key assumptions of their model are that
the pressure is constant in the radial direction and the pressure–radius relationship is
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known. These allow the wall and fluid motion to be decoupled. Further works have
considered tubes of altered geometries, such as a smoothly expanding conduit considered
by Pedrizzetti et al. (2002) using a perturbation approach with the zeroth-order solution
being that of a rigid tube. Myers & Capper (2001) considered an elastic curved tube using
a perturbation approach with the zeroth-order solution reducing to Womersley’s result.

This problem has also been explored numerically by fully coupled three-dimensional
(3-D) fluid–structure interaction (FSI) simulations, many of which are inspired by arteries
(Wang, Wood & Xu 2015; Kim, Park & Lim 2016; Mu et al. 2019). Chaniotis et al. (2010)
studied pulsatile flows in various geometries, including curved tubes and bifurcations,
seen in coronary arteries. More complex arterial geometries have also been considered,
including a ventricle (Esmaily Moghadam et al. 2013) and the coronary arterial tree
(Eslami et al. 2019). In particular, Eslami et al. (2019) found that the instantaneous wall
shear stress differed between rigid and elastic geometries due to the propagation of flow
and pressure waves. Further work by Bäumler et al. (2020) simulated pulsatile flow in
an aortic dissection, exploring the effect of the elasticity of the dissection flap. They
demonstrated that decreasing the stiffness greatly impacts the flow dynamics, showing
up to a 20 % decrease in flow rate in the true lumen.

Physiological vessel walls are normally viscoelastic in nature which affects the transient
dynamics. A key effect of the solid viscosity is a hysteresis behaviour of the imposed
pressure and tube diameter (and, pressure and flow rate) which arises because of the
different tube response during inflation and relaxation phases. The influence of solid
viscosity was considered by several authors. Womersley (1957a) refers to a modification
made by Morgan & Kiely (1954) in their original work, replacing the elastic moduli and
Poisson ratio with complex variants to represent the internal damping of the tube. It is
shown that the solid viscosity tends to increase the damping of the travelling wave and
decrease its velocity. A quasi-1-D model from Mal, Soni & Nayak (2024) also predicts
pronounced damping of the pulse wave when the tube is treated as a modified Zener
viscoelastic material. Similarly, the quasi-1-D model of Pontrelli (2002) predicts the solid
viscosity attenuates high-frequency oscillations. Dragon & Grotberg (1991) followed a
perturbation approach to model the same problem, although the focus of their work was not
on the effect of viscoelasticity. They found that in a volume-cycled flow, the average flow
rate is maximal at an intermediate value of oscillation frequency. A two-dimensional (2-D)
model was formulated by Čanić et al. (2006a,b) using perturbation and homogenisation
theory, treating the tube as a weakly deforming Kelvin–Voigt viscoelastic material. Full
FSI solutions for viscoelastic tubes from Wang et al. (2015) and Kim et al. (2016) showed
the characteristic pressure–diameter hysteresis behaviour, with Wang et al. (2015) further
noting a reduction in deformation when compared with the purely elastic case.

While the above studies were motivated by flow in large arteries, where inertia
is dominant and deformation is not large, there are many examples of pulsatile or
oscillatory flows in small vessels where the fluid viscous effects are dominant and
deformation is large. Examples include microcirculatory vessels, initial lymphatics and
alveolar ducts (Fung 1997; Denny & Schroter 1999; Fathy El-Amin 2016; Mallik,
Mukherjee & Panchagnula 2020). Many recent studies have shown that blood vessels
in the microcirculation exhibit pulsatile flow following cardiac rhythms (Zweifach 1974;
Lee et al. 1994; Klassen et al. 1997; Kajiya et al. 2008; Rashid et al. 2012; Shih et al.
2015; Aby, Guevara-Torres & Schallek 2019; Bedggood & Metha 2019). These vessels
are known to undergo passive dilation and relaxation in response to flow pulsation and
active vasomotion for blood flow regulation. As discussed by Schmid-Schönbein et al.
(1988; 1989), pulsation causes wave motion and a delayed flow response. However,
these behaviours are not governed by fluid inertia, as is the case in large arteries,
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but by fluid viscosity and the microvessel’s distensibility. Vessel diameter changes are
also significant; Shih et al. (2015) observed 40 % spontaneous change in mice cerebral
microvessel diameter, while Yada et al. (1993) measured 20 %−40 % change in porcine
cardiac microvessels. Lee & Schmid-Schönbein (1995) measured nearly 100 % change in
skeletal capillary diameter under a transmural pressure change of 0–100 cm water. Toyota
et al. (2005) and Kajiya et al. (2008) reported nearly 100 % change in cardiac microvessel
diameter in a beating canine heart. For capillary vessels in the human retina, Neriyanuri
et al. (2023) and Gu et al. (2018) reported the degree of flow pulsatility, defined as the
fractional change of velocity over one cardiac cycle with respect to the mean velocity,
whose average value is approximately 0.8. For lymphatic vessels, multiple pumping
mechanisms exist to drive flow, creating a natural pulsatility (Moore Jr. & Bertram 2018).
The smallest vessels in the lung (bronchioles and alveolar ducts) expand and contract
in response to breathing (Denny & Schroter 1999; Mallik et al. 2020). In microfluidics,
pulsatile flow is often used in deformable channels resulting in complex, transient flow
dynamics (Iyer et al. 2015; Raj, Suthanthiraraj & Sen 2018; Dincau, Dressaire & Sauret
2020; Xia et al. 2021).

Microvessels also exhibit viscoelastic behaviour, which affects the transient dynamics
of the coupled fluid–structure system (Fung 1981; Lee & Schmid-Schönbein 1990). Lee
& Schmid-Schönbein (1990) explored these behaviours assuming a quasilinear standard
solid model for the vessel wall material with a sinusoidally oscillating applied pressure.
They assumed the fluid motion to be unidirectional and the flow rate to be constant for
the whole tube and related to the local pressure gradient by Poiseuille’s formula. They
found that the inlet flow rate exhibits hysteresis with respect to the applied pressure whose
behaviour varied with oscillation frequency, primarily proceeding either clockwise or
counterclockwise. The hysteresis direction was attributed to the balance between the solid
viscosity and fluid viscosity, with the former biasing the hysteresis counterclockwise and
the latter biasing it clockwise. Notably, at low frequencies when the time delays caused by
both viscosities were of similar magnitude, the hysteresis curves crossed over themselves,
forming a twisted figure-of-eight.

The above review suggests that, for pulsatile flows in viscoelastic microvessels
undergoing large deformation, a fully coupled FSI model without any simplification of
the governing equations of the fluid motion (e.g. unidirectionality, linearisation etc.) is
lacking. As such, it is unknown how the consideration of large-deformation complete flow
equations and a full fluid–structure coupling would alter the previous findings described
above. Would the hysteresis transition from clockwise to counterclockwise as predicted
by Lee & Schmid-Schönbein (1990) still exist? How would this behaviour change in the
parameter space defined by solid viscosity and imposed oscillation frequency? How do
tube deformation and flow rate evolve in the parameter space? Also lacking is a systematic
study of the tube dynamics over the parameter space and its physical understanding. To fill
this knowledge gap, in this work, we present a detailed numerical study of the viscoelastic
response of a compliant tube subject to a pulsatile flow undergoing large deformation using
a full FSI model and complete flow equations. We primarily focus on the role of solid
viscosity and pulsation frequency, and limit to small but non-vanishing Reynolds number.
The value of this study lies in the exploration of tubes with large deformations over a
wide parameter space, which is lacking in the current literature. Our results suggest that
the general tube and flow behaviour is dominated by elastic effects, and that deformation
and flow rate are most affected in the intermediate range of solid viscosity and oscillation
frequency. We further find that the phase shifts of both the deformation and flow rate with
respect to the imposed pressure vary throughout the oscillation. Additionally, at high solid
viscosity, there is a distinct change in the tube dynamics.
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Figure 1. (a) Problem set-up. (b) Standard linear solid viscoelastic model (Maxwell form). (c) Tube mesh
close up. Parameters: β = 0.05, De = 50, α = 0.11.

2. Methodology
The problem set-up is given in figure 1(a). The undeformed tube is assumed to have a
circular cross-section with radius and total length denoted by R0 and L . The vessel and
fluid motion have two-way (i.e. strong) coupling; the vessel is deformed naturally (i.e.
without any prescribed displacement) by the fluid motion and the flow, in turn, is affected
by the movement of the vessel wall. The streamwise flow direction is x , and x = 0 and L
are the inlet and outlet, respectively. The radius of the deformed vessel varies both axially
and in time as R(x, t). The vessel is immersed within a rectangular computational domain
with the inlet and outlet coinciding with the left and right boundaries of the domain. The
flow inside the vessel is driven by specifying an oscillatory pressure Pin with frequency
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f at the inlet, while the outlet pressure Pout is held constant. An external pressure Pext
is specified over the left and right boundaries of the computational domain outside the
tube inlet and outlet. The fluids interior and exterior to the tube are assumed to have same
density ρ and viscosity μ. The tube is divided into three streamwise segments: two rigid
segments at the entrance and exit, and a deforming part of length Ldef in between. The
two ends of the deforming segment are thus ‘pinned’, i.e. they are constrained to the ends
of the rigid segments and do not resist bending moments. The current model is capable of
modelling the flow continuously through the transitions between the rigid and deforming
segments. Therefore, no fluid boundary conditions are required at these locations.

2.1. Structural mechanics
The tube wall in the deforming section is materially isotropic and modelled as a standard
linear viscoelastic solid with vanishing thickness. Then, the structural mechanics can
be recast as a 2-D plane stress problem in the tangent plane of the tube surface. The
undeformed and deformed states of the vessel surface are represented by coordinates of a
material point as X and x(X, t), respectively. The surface deformation gradient and Green
strain tensors are then (Barthès-Biesel & Rallison 1981; Barthès-Biesel et al. 2002)

Â = (I − nn) · ∂x
∂X

· (I − N N) (2.1)

and

Ê = 1
2
(ÂT · Â − (I − N N)), (2.2)

where N and n are the reference and deformed surface normal vectors, and I is the identity
tensor. The 2-D Cauchy stress (i.e. surface traction tensor) is expressed as

σ̃ = 1
Js

Â · ∂Ws

∂Ê
· ÂT , (2.3)

where Js = λ1λ2 is the surface area dilation and Ws is the surface strain energy defined per
unit area in the reference configuration (Pozrikidis 2003; Barthès-Biesel & Rallison 1981;
Barthès-Biesel et al. 2002). The left Cauchy–Green surface deformation tensor, ÂT · Â,
has two non-zero eigenvalues, λ2

1 and λ2
2, where λ1 and λ2 are the stretch ratios along the

principal axes on the surface. The corresponding principal strain components are λ
2
i −1
2 ,

i = 1, 2. The principal traction components σ̃1 and σ̃2 can further be written as

σ̃1 = 1
λ2

∂Ws

∂λ1
, σ̃2 = 1

λ1

∂Ws

∂λ2
. (2.4)

Due to material isotropy, the traction tensor can be expressed using the above components
as

σ̃ = σ̃1 e1 ⊗ e1 + σ̃2 e2 ⊗ e2, (2.5)

where e1 and e2 are the unit eigenvectors of ÂT · Â (Barthès-Biesel & Rallison 1981;
Pozrikidis 2003).

The elastic response of the wall material is assumed to follow Hooke’s law, although
the formulation and numerical methodology are applicable to hyperelastic models as well.
The principal elastic tension σ̃1 is then

σ̃1 = Gs

1 − νs
[λ2

1 − 1 + νs(λ
2
2 − 1)], (2.6)
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where Gs is the shear modulus and νs is the Poisson ratio (Barthès-Biesel et al. 2002).
The other component can be found by interchanging the indices.

The formulation for the viscoelastic stress is now briefly presented. The detailed
derivation can be found elsewhere (Simo 1987; ABAQUS 2002; Yazdani & Bagchi
2013; Matteoli, Nicoud & Mendez 2021). The basic equation governing a linear isotropic
viscoelastic material under small strain is given in terms of the Cauchy stress on the surface
expressed by a hereditary integral

σ̃(t)=
∫ t

0
2G(t − s)

de
ds

ds + I
∫ t

0
K (t − s)

dχ
ds

ds, (2.7)

where e and χ are the deviatoric and volumetric strains, and G and K are the small-
strain shear and bulk relaxation moduli. For the most general linear viscoelastic model
(the generalised Maxwell model), these relaxation moduli may be represented as a series
of decaying exponentials (a Prony series) as (Fung 1981; Dill 2006)

G(t)= G∞ +
N∑

i=1

Gi e
−t/tG

i , K (t)= K∞ +
N∑

i=1

Ki e
−t/t K

i , (2.8)

where G∞ and K∞ are the long-term relaxation moduli, N is the number of terms in the
series, and tG

i and t K
i are the relaxation times associated with each term. The instantaneous

shear modulus is introduced as G0 = G∞ + ∑N
i=1 Gi . Neglecting the viscous effect of the

volumetric strain, we also have K (t)= K∞ = K0. Then, (2.7) becomes

σ̃(t)= σ̃d
0(t)+

∫ t

0
2Ġ(t − s)e(t − s)ds + σ̃ v(t)I, (2.9)

where σ̃d
0(t)= 2G0e(t) is the instantaneous deviatoric stress, σ̃ v is the volumetric stress

and Ġ = dG/dt . A generalisation of the above to finite strain is written in terms of the
Kirchhoff stress (τ = σ̃Js) on the surface as

τ(t)= τd
0(t)+ SYM

[∫ t

0

Ġ(s)

G0
Â−1

t (t − s) · τd
0(t − s) · Ât (t − s)ds

]
+ τ v(t)I, (2.10)

where τd
0(t)= σ̃d

0(t)Js , σ̃d
0(t) is the instantaneous deviatoric part of σ̃ in (2.5) and (2.6)

with Gs replaced by G0, τv(t) is the corresponding volumetric stress, Ât (t − s)= ∂x(t −
s)/∂x(t) is the deformation gradient of the configuration at time (t − s) relative to time t ,
and SYM indicates symmetry.

The simplest viscoelastic constitutive models are represented by a single linear spring
and dashpot connected either in series (Maxwell model) or in parallel (Kelvin–Voigt
model) (Dill 2006). These models are commonly used; however, they are somewhat limited
as the Kelvin–Voigt model does not exhibit instantaneous elasticity (Dill 2006) and the
Maxwell model does not show creep behaviour (Mal et al. 2024). As such, the viscoelastic
constitutive model chosen for the wall material is the Maxwell form of the standard linear
solid (SLS) model, also known as the Kelvin or Zener model (Fung 1981; Mal et al. 2024).
This is a special case of the generalised Maxwell model (a parallel arrangement of a single
spring and N Maxwell elements) with a single Maxwell element, as shown in figure 1(b).
The SLS model is capable of adequately describing the creep, relaxation and instantaneous
elastic behaviour of the material with the minimum number of material constants. Both
springs follow Hooke’s law. The single-spring branch represents the wall material shear
elastic modulus Gs , while the dashpot represents the solid viscosity μs . Thus, N = 1,
G∞ = Gs and G(t)= Gs + G1e(−t/tG

1 ), where the relaxation time tG
1 =μs/G1. In the
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limit G1 → ∞, the SLS model becomes the Kelvin–Voigt model, which is represented by
the spring Gs and dashpot μs in parallel.

A finite element method is used to obtain τ (Shrivastava & Tang 1993). The surface of
the vessel is discretised using triangular elements, the vertices (nodes) of which make up
a Lagrangian framework (figure 1c). For each element, a local coordinate system in the
element plane is introduced. Then, Â, λ1, λ2 and τ for each element are computed. The
integral in (2.10) can be evaluated over a small time interval �t assuming τd

0(t) varies
linearly.

For the fluid–structure coupling, it is useful to obtain the 2-D force at each Lagrangian
node. The 2-D force fΔi at the vertex i of an element is obtained as

fΔi = ∂Hi

∂ V̂
· τ · Â−T , (2.11)

where V̂ represents the local coordinate, i = 1, 2, 3 are the three vertices of the element
and Hi is the shape function of vertex i . The local force is then transferred to the global
coordinate using the appropriate transformation matrix. Then, the resultant viscoelastic
force density f ve at any vertex is obtained by the vector resultant of the forces f m
contributed by M surrounding elements which share that vertex:

f ve =
∑

m∈M

f m . (2.12)

2.2. Flow dynamics and fluid–structure coupling
The fluid is assumed to be incompressible, and the fluid motion is governed by the
continuity and Navier–Stokes equations as

∇ · u = 0 and ρ
Du
Dt

= −∇ P +μ∇2u. (2.13)

These equations are solved in the entire computation domain (figure 1a), which is
discretised using an Eulerian rectangular mesh of uniform size.

A hybrid of the sharp and diffuse interface immersed boundary methods is used for the
fluid–structure coupling taking into account the advantages of each method. Details of this
method are given by Krul & Bagchi (2024). For the axial direction (x), no wall motion
is allowed and the zero-velocity condition needs to be enforced on the x-component of
velocity. This is done using the sharp-interface ghost-node immersed boundary method
(Mittal et al. 2008). The velocity constraint is imposed at the Eulerian nodes immediately
neighbouring the vessel exterior, termed the ghost nodes (GN), as

uG N = 2uw − uI P , (2.14)

where u represents the axial velocity component, uw is set to zero for no axial motion and
uI P is the velocity of the image point which mirrors a GN over the vessel wall. Here, uI P
can be obtained by interpolating the surrounding fluid velocity.

For the two normal directions (y and z), the tube is allowed to freely move and the
continuous forcing immersed boundary method is used (Peskin 2002). In this approach,
the force due to wall deformation is introduced in the Navier–Stokes equations as

ρ
Du
Dt

= −∇ P +μ∇2u + F, (2.15)
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where

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0∫
S

fveyδ(x − x′, t)dx′

∫
S

fvezδ(x − x′, t)dx′

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.16)

where fvey and fvez are the y and z components of f ve, x′ is any location on the vessel
surface S ∈R

3, x ∈R
3 is the Eulerian variable, and δ is the 3-D Dirac delta function

(Peskin 2002). A discrete form with a finite spread in R
3 is used to numerically evaluate

delta as (Peskin 2002)

δ(x − x′)≈ D(x − x′)=
⎧⎨
⎩

1
(2�)3

3∏
i=1

[
1 + cos

{
π
�
(xi − x ′

i )
}]

if |xi − x ′
i | ≤ �,

0 otherwise,
(2.17)

where �= 2ΔE and ΔE is the size of the unit Eulerian cell.
The vessel wall is advected in the y and z directions using the v and w components of

the local fluid velocity as
dx′

dt
= uw(x′, t), (2.18)

where

uw =

⎡
⎢⎢⎢⎢⎢⎣

0∫
x

vδ(x − x′, t)dx

∫
x

wδ(x − x′, t)dx

⎤
⎥⎥⎥⎥⎥⎦ . (2.19)

As the vessel wall deforms, some Eulerian mesh points exterior of the vessel may enter
the vessel interior and vice versa. As a result, GNs and IPs must be updated at every step
of the time marching for which a fast and parallelisable algorithm was developed (Krul &
Bagchi 2024).

The flow solver is based on a four-step projection-based method for incompressible
flows. A staggered-grid implementation is considered for the fluid velocity components
and pressure. The diffusion terms are treated using the semi-implicit Crank–Nicolson
scheme, and the nonlinear and force coupling terms are treated explicitly using the
second-order Adams–Bashforth scheme:

Advection-diffusion : ρ
û − un

�t
= −∇ Pn + μ

2
[∇2û + ∇2un] −

[
3
2

Nn − 1
2

Nn−1
]
,

(2.20)
where N = ρu · ∇u − F,

Intermediate velocity : ρ
u∗ − û
�t

= ∇ Pn, (2.21)

Poisson equation : ∇2 Pn+1 = ρ
∇ · u∗

�t
, (2.22)

Pressure correction : ρ
un+1 − u∗

�t
= −∇ Pn+1. (2.23)
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Tube geometry Dimensionless parameters

R∗
0 L∗ L∗

in L∗
de f L∗

out Re α β De
1 4π 1.18 11.01 0.38 0.1 0.06–1.06 0.005–0.1 0–100

Table 1. Geometric and dimensionless parameter values.

The spatial derivatives in the advection–diffusion equation are treated using second-
order discretisation. An alternating direction implicit (ADI) scheme is used to solve this
equation.

2.3. Dimensionless parameters
The undeformed vessel radius R0 is taken as the length scale and the centreline velocity
Uc of the Poiseuille flow in the undeformed vessel as the velocity scale. The pressure is
scaled by ρU 2

c . Dimensionless variables are indicated by a ∗. We introduce the ‘baseline’
pressure drop �P0 in the undeformed tube such that U∗

c = 1. The corresponding flow rate
is denoted by q0. Also, we use a ∼ to denote normalised variables. Then,

P̃ = P

�P0
, q̃ = q

q0
, (2.24)

where P = P(x, t) and q = q(x, t) are the pressure and flow rate in the deforming tube,
respectively.

The oscillatory inlet pressure is prescribed as

P̃in = Pin

�P0
= 1

2
− 1

2
cos(2π f ∗t∗), (2.25)

where f ∗ = f (R0/Uc) is the dimensionless oscillation frequency, T is the period and
t∗ = t (Uc/R0). The outlet and external pressures are both kept at 0.

The relevant dimensionless parameters are

Reynolds number Re = ρUc R0
μ

Womersley number α = R0

√
2π fρ
μ

Dimensionless wall elasticity (or deformability parameter) β = μUc
Gs

Deborah number De = μsUc
Gs R0

The Reynolds number is the ratio of the inertial to viscous forces in the fluid, and
the Womersley number represents the ratio of the fluid viscous and applied oscillation
time scales. The deformability parameter is the ratio of the fluid viscous forces to the
elastic forces and is a measure of tube compliance. The Deborah number is the ratio of
the viscoelastic relaxation time τR =μs/Gs to the inertial time scale τI = R0/Uc. It is
generally used for viscoelastic fluids, but in this case, it represents the strength of the wall
viscosity, where De = 0 corresponds to an elastic tube. The ranges of these parameters are
shown in table 1 along with the tube geometry.
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2.4. Additional numerical details
The computational domain has dimensions 4π × 1.48π × 1.48π and consists of 280 ×
104 × 104 grid points. The tube surface is discretised by 55 224 triangular elements and
the time step chosen is �t∗ = 5 × 10−4.

A detailed convergence study of the mesh and domain size is presented by Krul &
Bagchi (2024), which showed that the chosen mesh yields converged results. As an
illustration of the robustness of the method, the tube surface mesh is shown in figure 1(c)
for an extreme case for which high-wavenumber folds appear on the surface as the tube
inflates to maximum. The folds are well resolved, and the mesh remains stable even after
this and throughout multiple oscillation cycles.

Furthermore, the numerical results for a steady inflation of an elastic tube under a
constant pressure were compared by Krul & Bagchi (2024) against the small deformation
analytical models of Fung (1997), which are based on the law of Laplace, and
Anand & Christov (2021), as well as a second-order analytical model accounting for
large deformation. Excellent agreement between the numerical results and the second-
order analytical model is observed for inflation as large as 75 % of the undeformed
radius.

Additional validation for oscillatory pressure is given in § 3.1.

3. Results
The interest of this study is in the effect of wall viscosity and external oscillation at weak
fluid inertia. As such, we restrict to Re = 0.1 and vary β, De and α. We also set G1 =
100Gs in the following, except in § 3.3.6, where the effect of G1 is presented.

Deformation of the tube is characterised by the circumferential strain defined as

ε(x, t)= R(x, t)− R0

R0
, (3.1)

which varies both in time and in the axial direction. The maximum strain at a given
time instance t , denoted as εmax (t), is also used to characterise the tube deformation.
The operators Max {·}, Min {·} and Avg {·} are the maximum, minimum and average
values, respectively, with respect to time over one oscillation cycle. We further define
an ‘amplitude’ as Amp {·} = Max {·} − Min {·}. To quantify the deformation and flow rate,
we introduce the following notation:

Maximum ε over one period Ξmax = Max {εmax }
Amplitude of ε �Ξ = Amp {εmax }
Maximum inlet flow rate over one period Qmax = Max{q̃in}
Amplitude of inlet flow rate �Q = Amp{q̃in}

The model is first tested against small deformation theory in § 3.1, then the effects of
varying α and β are explored in § 3.2. The tube is purely elastic (De = 0) in both sections.
This is followed by varying De, α and G1 in viscoelastic tubes in § 3.3.

3.1. Comparison with small deformation theory
Figure 2 shows our simulation results compared against Womersley’s linearised analytical
solution for an elastic tube (Womersley 1957a; Zamir 2016a). Here, we define U = ucen −
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Figure 2. Comparison against Womersley’s theory for an elastic tube. (a) Centreline velocity over time taken
halfway through the tube. (b) Centreline velocity along the tube length at different time instances. The solid
and dashed lines are the numerical and theoretical solutions, respectively. The different colours correspond to
different time instances throughout the oscillation. Parameter: β = 5 × 10−3.

ūcen as the oscillatory component of the axial centreline velocity, where ūcen is the time-
averaged centreline velocity. As per Womersley’s solution,

U (x, t)= Re
{

B

ρc

[
1 − G

1
J0(Λ)

]
eiω(t−x/c)

}
, (3.2)

where

G = 2 + z(2νs − 1)
z(2νs − g)

, g = 2J1(Λ)

ΛJ0(Λ)
, (3.3)

Λ=
(

i − 1√
2

)
α, (3.4)

B is the amplitude of the pressure oscillation, Jn are the Bessel functions of the first kind
and Re{·} indicates the real part. We obtain z by finding the roots of the equation

[(g − 1)(ν2
s − 1)]z2 +

[
ρwh

ρR0
(g − 1)+

(
2νs − 1

2

)
g − 2

]
z + 2ρwh

ρR0
+ g = 0, (3.5)

from which the wave speed c can be calculated as

c =
√

2
(1 − ν2

s )z
c0, (3.6)

c2
0 = (1 + νs)Gs

ρR0
, (3.7)

where ρw is the wall material density, h is the wall thickness and c0 is the Moens–
Korteweg wave speed in an inviscid fluid. The larger of the two z roots is used. We
select β = 5 × 10−3 in our simulations so that deformation remains small (∼5 % change
in tube radius). Figure 2(a) shows the predicted oscillatory velocity waveform taken at
the midpoint of the tube. A good agreement with the theory is evident. Figure 2(b) plots
the centreline velocity along the tube axis at different time instances. These show decent
agreement with some discrepancies that can be attributed to differences in the problem
set-up. Our simulation uses a short tube with rigid inlet and outlet lengths, whereas
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(a) (e)

(b) ( f )

(c) (g)

(d) (h)

2.2 2.6 3.0 0 50 100 150 200 250 300 350 400 450

Figure 3. General tube behaviour. (a)–(d) Axial velocity contours and streamlines over one period. (e)–(h)
Pressure contours at the same time instances. Parameters: De = 0, α = 0.22.

Womersley’s solution assumes a long, fully elastic tube and linearised flow equations with
the no-slip condition applied on the undeformed tube surface.

3.2. Elastic tube
The time-periodic motion of an elastic tube under pulsatile flow is shown in figure 3 for
one oscillation period. Note that there is an initial transience during the simulations, but
all results are taken after the tube has settled into a time-periodic motion. During inflation,
the increasing inlet pressure drives the fluid into the tube, creating a net flow and causing
it to distend. Initially, the undeformed tube offers little resistance to the deformation and
it therefore expands rapidly near the inlet. The flow rushes in to compensate, creating
a flow surge at the inlet seen in figure 3(b). The surge causes the tube to over-inflate,
creating a large restoring elastic force at its maximum inflation. As the external pressure
decreases, this elastic force causes the tube to deflate rapidly, squeezing fluid out of the
outlet (figure 3c) and increasing the pressure inside the deforming section (figure 3h).
This pressure drives the fluid out of both ends of the tube once the applied pressure has
decreased enough, causing a negative flow rate at the inlet (figure 3d).

Note that the predicted flow is not unidirectional and pressure varies in the radial
direction.

Figure 4(a) shows the ε(x, t) profiles at several time instances. The maximum inflation
occurs near the inlet of the tube experiencing higher pressure. The rate of inflation in
this part is also more rapid than the rest of the tube, causing a relatively sharp peak.
Downstream of this peak, the profile has concave curvature. This is not the case during
deflation, where the profile has a more consistent curvature that is convex everywhere.
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Figure 4. Elastic tube. (a) Circumferential strain over one period of oscillation. The inset indicates the time
instances when the profiles were taken, with each point corresponding to the line of the same colour. The filled
and empty circles correspond to the solid and dashed lines, respectively. Solid lines are during inflation; dashed
lines are during deflation. Parameter: β = 0.09. (b),(c) Transient waveforms of (b) εmax and (c) inlet flow rate
over one period for different β. (d) Ξmax , �Ξ and maximum radius phase shifts (in radians) plotted against β.
(e) Maximum, amplitude and phase shifts (in radians) of the inlet flow rate versus β. Parameter: α = 0.5.
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The location of the maximum deformation gradually moves downstream during deflation,
then rapidly jumps to the upstream end as the next inflation phase begins. Also, large
deformation of the tube is evident as εmax is approximately 0.5.

In figure 4(b), εmax (t) is plotted for different β along with the P̃in(t) waveform. The
corresponding waveforms of q̃in(t) are shown in figure 4(c). As seen, deformation and flow
rate increase with increasing β. Figures 4(d) and 4(e) show Ξmax , �Ξ , Qmax and �Q as
functions of β (left axis in the figures). The average deformation increases rapidly, while
the amplitude of deformation saturates at relatively smaller β (approximately β = 0.04).
This behaviour is seen because the inflation is controlled by the volume flow rate. At a
higher average deformation, the volume required to inflate by the same amplitude is larger.
Thus, the flow rate would need to increase significantly to accommodate that inflation
within the oscillation period. The maximum and amplitude of the flow rate similarly
increase with β and tend to plateau for more compliant tubes, as seen in figure 4(e).

Figure 4(b) also indicates that there is a phase lag between the applied pressure and
deformation. This is a consequence of the response time of the tube, as the tube and fluid
flow take time to adjust to an equilibrium. This lag is represented by an apparent rightward
shift of the εmax (t) waveform with respect to P̃in(t). Unlike the deformation, however, the
flow rate leads the applied pressure, as seen by a leftward shift in figure 4(c), even though
the pressure is driving the flow. This is because the maximum flow corresponds to the
maximum pressure gradient (Pedley 1980), which is not, in general, coincident with the
maximum applied pressure.

To quantify the phase lag or lead, we write both the strain and flow rates as functions
similar to the applied pressure, but with an added variable phase shift, φ(t∗) and ψ(t∗), as

q̃in = �Q

2

[
1 − cos

(
2π f ∗t∗ + φ(t∗)

)] + Min{q̃in}, (3.8)

εmax = �Ξ

2

[
1 − cos

(
2π f ∗t∗ +ψ(t∗)

)] + Min{εmax }, (3.9)

where −π < φ(t∗), ψ(t∗)≤ π and are measured in radians. We do this by noting that
both the strain and flow rate are periodic with the same frequency as the pressure.
By this construction, the signs of φ(t∗) and ψ(t∗) indicate whether the flow rate and
deformation are leading (> 0) or lagging behind (< 0) the applied pressure at time t∗.
The time dependence of the phase shifts allows for deviations from simple harmonic
motion, which makes (3.8) and (3.9) valid for any arbitrary periodic strain or flow rate
waveform. As seen in figures 4(b) and 4(c), the phase shifts are varying in time. To
concisely present the results, we select the phase shifts at the time instances corresponding
to the maximum (crest) and minimum (trough) applied pressure and denote them as ψc
and ψt for deformation, and φc and φt for flow rate. As seen in figure 4(d), both ψc and
ψt are negative, and their magnitudes increase with increasing β. Thus, the phase lag
of deformation increases with more compliant vessels, given the higher deformability
contributes to a longer response time. In contrast, φc and φt are positive, as seen in
figure 4(e), and they decrease with increasing β. As discussed by Womersley (1957b),
the maximum flow lead of π/4 occurs in the limiting case of a rigid tube, which is
close to φc = 0.554 and φt = 0.612 for the lowest β = 0.005 considered in the figure. The
increasing deformability acts to reduce this lead.

It should be noted that the uniform leading of the flow rate for varying β as predicted
here (and by Womersley (1957b)) does not always occur, as the phase shift changes with
the tube’s deformability, viscosity and oscillation frequency as discussed later.

The phase shift manifests a hysteresis in the time periodic motion. This is shown
in figure 5(a) by plotting ε(xR, t) versus P(xR, t), where xR is a fixed location near

1007 A82-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.150


O. Krul and P. Bagchi

0.2

0.1

0.4

0.5

0.3

ε 
(x

R)

–2

–1

0

1

2

3

4

qin˜

0.3 0.5 0.2 0.4 0.6 0.8 1.000.2 0.4 0.60.1

P(xR) Pin
˜˜

β = 0.005
β = 0.02
β = 0.05
β = 0.1

(a) (b)

Figure 5. Hysteresis in elastic tubes for different β. (a) Hysteresis of the radius in an elastic tube with respect
to the local centreline pressure, xR = 3.36. (b) Hysteresis of the flow rate. The legend for each plot is in panel
(b). Parameter: α = 0.5.

the maximum radius when the tube is fully inflated. The curves are traced out in the
counterclockwise direction, as indicated by the arrows on the figure, indicating the
deformation lags behind the applied pressure. The hysteresis curves get wider with
increasing β, indicating both the increasing amplitude of deformation and phase lag.

Note that it is generally expected that no hysteresis would occur in a purely elastic tube
(Kim et al. 2016; Čanić et al. 2006a). In the linearised analytical theory, the pressure varies
only along the axial direction and the inflation at any x depends on the local centreline
pressure. Indeed, for the lowest β = 0.005 considered, hysteresis is nearly absent. However,
at large deformation, pressure varies radially, as was shown in figure 3, instead of being
a function of axial distance alone. This effect increases with the deformability, creating a
hysteresis even for elastic tubes.

Figure 5(b) presents the hysteresis in terms of the inlet flow rate and pressure. Here, the
direction is clockwise because of the phase lead. Also, unlike the deformation, the flow
rate hysteresis loop becomes thinner with increasing β, due to the decreasing lead as noted
earlier in figure 4(e).

Next, we consider the effect of changing the Womersley number while keeping β

constant (figure 6). Here, Ξmax , �Ξ , ψc and ψt all decrease with increasing α, as plotted
in figure 6(a). This is because the tube motion cannot keep up with the faster variation of
the applied pressure. In the limit of α→ ∞, the tube would behave as if it were steadily
inflated by the mean pressure (P̃in = 0.5). Therefore, we should expect the amplitude of
oscillation to decay to zero with increasing α, as observed. In contrast to the radius, the
maximum volume flow rate at the inlet increases with α, as seen in figure 6(b). This is
due to the flow surge during inflation, whose strength increases with α. The more rapidly
increasing pressure means that a higher pressure is applied at lower deformation, and thus,
low opposition from the elastic force. Further increasing α approaches the limit of the
tube’s response time, causing both the maximum and amplitude of the inlet flow rate to
plateau. Here, φc and φt initially increase at low α, after which they both decrease. In the
quasi-steady limit, when both phase shifts are 0, a higher applied pressure corresponds to
a higher inlet pressure gradient and, therefore, flow rate. This changes when increasing
α as the tube’s rapid distention lowers the downstream pressure, moving the maximum
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Figure 6. Elastic tube. (a)Ξmax ,�Ξ and deformation phase shifts plotted against α. (b) Maximum, amplitude
and phase shifts of the inlet flow rate versus α. (c) Hysteresis of the radius in an elastic tube with respect to the
local centreline pressure, xR = 3.36. (d) Hysteresis of the flow rate. The legend for both panels (c) and (d) is in
panel (d). Parameter: β = 0.05.

pressure gradient earlier in the cycle. Increasing α increases the strength of the effect,
further increasing the phase lead. However, increasing α also increases the response lag.
This takes precedence at higher α and the phase shifts begin to decrease. This eventually
causes a uniform lag when the phase shifts drop below zero. Additionally, both φc and φt
trend towards each other, suggesting the phase shift φ(t∗) approaches a constant value for
high α.

The deformation shows very weak hysteresis for different α, as seen in figure 6(c).
In contrast, the flow rate hysteresis is noticeable in figure 6(d). The vertical tilt of the
hysteresis curves increases with α as the strength of the flow surge increases. This also
causes the curves to initially widen. Beyond a certain point, as α increases, the lag in the
tube’s response causes the curves to start to narrow. In most cases, the hysteresis curves
are either ellipses or narrow ovals; however, at very low α, the curve takes on a banana-like
shape. This is because it is converging to the quasi-steady inflation curve for inlet flow rate
versus applied pressure, for which the trend is nonlinear, as was shown in previous studies
(Fung 1997; Anand & Christov 2021; Krul & Bagchi 2024).
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Figure 7. Viscoelastic tube. Time-varying tube profiles for (a) De = 5 and (b) De = 25. The profiles are taken
at the time instances indicated by the inset in panel (a). (c)Ξmax ,�Ξ and maximum radius phase shifts plotted
against De. (d) Maximum, amplitude and phase shifts of the inlet flow rate versus De. Parameter: α = 0.16.

3.3. Viscoelastic tube
In this section, we set β = 0.05 throughout, and focus on the effect of De and α. We
first investigate the tube deformation and phase lag in § 3.3.1, then the flow rate and
deformation hysteresis in § 3.3.2. The pressure propagation is explored in § 3.3.3, followed
by the effect of oscillation frequency in § 3.3.4. Finally, we consider the interaction of
viscoelasticity and oscillation frequency in § 3.3.5, and the effect of G1 in § 3.3.6.

3.3.1. Deformation and phase lag
The qualitative behaviour of a purely elastic tube, as seen in figure 3, remains similar for
a viscoelastic tube. However, a viscoelastic tube resists rapid motion, such as the sudden
expansion during inflation and the rapid contraction during deflation. As such, the wall
viscous forces will, in general, mitigate the effects of both the flow surge and the squeezing.

Figure 7 shows ε(x, t) profiles for different De. At higher De, the profile downstream of
the maximum deformation tends towards linear during both inflation and deflation. This is
unlike the elastic case (figure 4a), whose downstream curvature is concave during inflation
and convex during deflation. The wall viscosity causes the motion to change from very
localised to more global, where the entire tube tends to move simultaneously. This type
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of motion is the most favourable for the highly viscous wall, as it allows for the slowest
changes in local deformation.

At higher De, both the variation in radius and the maximum radius decrease, agreeing
with the observations made by Wang et al. (2015). Both Ξmax and �Ξ are shown in
figure 7(c) against De, which shows this decaying trend. The strain amplitude trends
towards zero, while the maximum strain approaches some non-zero constant value. This is
consistent with the limit of De → ∞, when the tube would act as rigid with some constant
deformed configuration.

Furthermore, at higher values of De, such as in figure 7(b), folds appear on the vessel
wall near the maximum radius during the inflation (also in figure 1c). These are most
pronounced in the middle of the inflation phase. This is when the tube deforms the fastest
and the wall viscous forces are the highest. This behaviour is characteristic of the fluid-
driven motion of a viscous membrane (Yazdani & Bagchi 2013).

One of the main consequences of increasing the wall viscosity is increasing the tube’s
response time, causing the deformation to lag more behind the applied pressure (Čanić
et al. 2006b). The phase lag increases drastically at low De before levelling out near De ≈
50, as seen by the decreasing ψc and ψt in figure 7(c).

As De increases, the emergence of folds on the tube wall affects the apparent phase shift
at the crest and trough, leading to the sudden jump in ψc and increase in ψt .

Corresponding to the variation in tube wall motion, the inlet volume flow rate similarly
varies with De. The maximum flow rate and amplitude decrease with increasing De, as
shown in figure 7(d). The viscous resistance mitigates both the flow surge during inflation
and the squeezing during deflation, lowering both the maximum and amplitude of the flow
rate. The maximum and amplitude trend towards each other at high De. This is because in
the limit of infinite De, the tube would behave as rigid, and q̃in would oscillate between
zero and its maximum value, hence, the maximum and amplitude would be identical. Also
plotted in figure 7(d) are φc and φt with both showing decaying trends. They are both
positive for De ≤ 15, indicating the flow rate leads the pressure. For De> 25, φt remains
positive but φc attains a small negative value. This indicates that, for a high enough De,
q̃in lags behind P̃in at or near the maximum inflation, as the high wall viscosity delays the
tube motion.

3.3.2. Hysteresis
Figure 8(a) shows the deformation hysteresis at varying De, which is characteristic of
the viscoelastic tube (Čanić et al. 2006b). When increasing De, the upward tilt of the
curves decreases, signifying a decrease in the amplitude of oscillation, agreeing with the
previously presented results. Also, the curves initially widen and then narrow. One can
postulate that at infinite De, the curve will become a horizontal line, as there is no tube
motion.

Figure 8(b) shows the flow rate hysteresis for various De. Unlike the deformation
hysteresis, these curves proceed clockwise. When increasing De, the tube motion is
delayed and the curves become narrower. Their vertical tilt also decreases due to the
mitigated flow surge, decreasing the amplitude of q̃in . Interestingly, at De = 25, the
hysteresis curve creates a sharp point at the high-pressure end and further increasing the
viscosity causes the curve to cross over itself. The inset in figure 8(b) shows a zoomed-in
view of this cross-over with arrows indicating the direction in which the curve is traced
out. Note that this transition corresponds to φc first dropping below zero.

This directional change of hysteresis curves was also observed by Lee & Schmid-
Schönbein (1990). As such, the hysteresis may proceed clockwise, counterclockwise or
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Figure 8. (a) Deformation and (b) flow rate hysteresis for varying De. Inset shows zoomed-in cross-over
behaviour. For both panels (a) and (b), the legend is in panel (a). Parameter: α = 0.16.

a combination in which the curve crosses over itself, creating a figure-of-eight. Figure 9
gives an example of each type of hysteresis as predicted by our study. The direction of
hysteresis depends on the strength of the viscous (lagging) effects relative to the inherent
flow lead, which depends on both De and α. The figure-of-eight cross-over occurs when
the influence of both the lagging and leading effects are similar in strength.

One notable feature is that the direction of hysteresis can be predicted using the phase
shifts φc and φt . Figures 9(d)–9(f ) show the variable phase shifts plotted alongside the
waveforms of applied pressure and inlet flow rate. The inlet flow rate has been shifted
and normalised to more clearly represent the phase shift. If both φc and φt are positive,
the corresponding hysteresis curve proceeds clockwise and vice versa. The cross-over
hysteresis in figure 9(b) corresponds to a negative φc and positive φt . The above can be
summarised in the following compact form:

φc > 0, φt > 0 =⇒ Clockwise hysteresis, (3.10)
φc < 0, φt > 0 =⇒ Cross-over hysteresis, (3.11)
φc < 0, φt < 0 =⇒ Counterclockwise hysteresis. (3.12)

This holds true for the entire parameter space considered.

3.3.3. Pressure propagation
Another feature that is altered by De is the propagation of the pressure through the tube. To
illustrate this effect, figure 10 shows the centreline pressure and velocity for two different
tubes: one that is purely elastic and another that is highly viscous. The black dashed lines
are the upper and lower bounds of the centreline velocity and pressure over the course of
the cycle. Together, they create an envelope that encloses all possible values throughout the
oscillation. The height of this envelope at any axial location is indicative of the strength of
the velocity or pressure oscillation. In the elastic tube in figure 10(a), the rapid distention
near the inlet damps the applied oscillations and prevents them from travelling further
downstream. This leads to rapid inflation and deflation in only a localised region near
the inlet of the tube. This behaviour is evident from the rapidly decreasing size of the
pressure envelope near the inlet; the large applied pressure oscillations are completely
damped halfway through the tube. In contrast, in the high viscosity tube, in figure 10(b),
the pressure envelope reduces in size much more gradually, maintaining a non-zero height
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Figure 10. Axial velocity and pressure variation along the tube centreline. (a),(b) Centerline pressures for
(a) De = 0 and (b) De = 50. (c),(d) Corresponding centreline velocities. The dashed black lines show the upper
and lower bounds of the dependent variable over the full oscillation cycle. The lines proceed in time in the order
solid blue, red, green, dash-dotted blue, red and green, at times t/T = 3/12, 4/12, 5/12, 9/12, 10/12, 11/12,
respectively. Parameter: α = 0.75.

until the end of the tube is reached. This behaviour shows that the changing upstream
pressure quickly propagates downstream and is felt over the entire length of the tube.

Another way to express this effect is that flow pulsatility propagates more effectively in
tubes with higher viscosity. This applies to not only the pressure, but also the axial velocity.
In figure 10(c), it is apparent that the purely elastic tube has large fluctuations in the flow
near the inlet, but these quickly dissipate when moving downstream. The viscoelastic tube
in figure 10(d) shows moderate oscillations near the inlet. There is some decay in the
envelope, but, in contrast to the elastic tube, the oscillations persist along the entire length
of the tube. Prior studies in stiffer tubes show that increased solid viscosity attenuates the
pulse wave, especially at higher frequencies (Pontrelli 2002; Mal et al. 2024), suggesting
that this increased pulsatility transmission appears only in highly deformable vessels. This
may be due to the lowered wave speed and increased elastic damping associated with
increased compliance (Zamir 2016b; Roknujjaman et al. 2023).

3.3.4. Effect of oscillation frequency
The effect of varying α at a given De is qualitatively similar to that seen earlier for De = 0
in figure 6. Two notable behaviours exist when increasing α for the viscoelastic tube at a
constant De. First, increasing α causes the downstream portion of the tube to move less
than the rest of the tube. This can be seen in figure 11(a) at α = 0.5, where all of the
profiles converge for x∗ ≥ 10. The higher frequency oscillations are more readily damped
by the elastic tube motion, as the pressure cannot build appreciably within each cycle. Note
that this effect will change with the tube’s viscosity, as seen above in figure 10. Second,
hysteresis of the viscoelastic tube at varying α, as shown in figure 11(b), is stronger than
the elastic tube seen earlier in figure 6(c). Also, as α becomes large, the curve will become
a horizontal line, as there is no tube motion.
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Figure 11. (a) Time-varying tube profiles for α = 0.5. The profiles advance in time in the order solid
black, blue, red, green, dashed black, blue, red and green. These occur at time instances t/T =
0, 2/12, 4/12, 5/12, 6/12, 8/12, 10/12, 11/12, respectively. De = 0.5. (b) Deformation hysteresis for varying
α. De = 5.

3.3.5. Interaction of viscoelasticity and oscillation frequency
The interaction between the wall viscosity and enforced oscillation frequency creates
different phenomena in the parameter space that are presented below.

In figures 12(a) and 12(b), we can see the combined effects of both De and α on Ξmax
and�Ξ . The curves are plotted against α and separated by De. At both very low and very
high values of α, they appear to approach constant values. Additionally, the curves for all
different De converge in these limits. In the limit as α→ 0, the motion is quasi-steady,
implying that the motion is slow enough for the viscous resistance to be negligible. As
such, we would expect that the tube motion is the same, regardless of De. The maximum
radius is that of the steady tube inflated by the maximum applied pressure, P̃in = 1.
Likewise, �Ξ approaches the same low α limit, given the quasi-steady cycle oscillates
between maximum and zero inflation. Both Ξmax and �Ξ quickly decay with increasing
α and the amplitude converges to zero. This decrease in motion means that the viscous
effects become less relevant at higher α, hence why the different curves converge. Here,
Ξmax converges to its value for the steady tube inflated by the mean pressure, P̃in = 0.5.
The relevant limits are marked in figures 12(a) and 12(b) as dashed black horizontal lines,
showing the data match the convergence behaviour. From this, we can conclude that the
wall viscosity has minimal effect on the maximum distention for both very low and very
high α, but it has a large impact in the range 0.05 � α � 1.

Figures 12(c) and 12(d) show the combined effect of De and α on Qmax and �Q.
For low De, the volume flow rate initially increases with α due to the strengthening
flow surge effect. Eventually, the oscillating pressure changes too quickly for the whole
tube to respond and the full extent of the flow surge is no longer felt, causing Qmax to
plateau. The peak flow rate decreases for higher De, as the flow surge is mitigated by the
wall viscosity. Interestingly, when the wall viscosity is high enough, the flow rate initially
decreases with α. In these cases, the tube viscosity is high enough to completely negate
the elastic flow surge effect at lower α. The tube’s resistance to motion prevents it from
fully deforming to experience the same Qmax it had during quasi-steady inflation, thereby
causing the decrease. Another important feature of figure 12(c) is that, at high De, the inlet
flow rate continues to increase over a large range of α. This counterintuitive behaviour is
related to the pressure propagation increasing at higher viscosity (see figure 10). At higher

1007 A82-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.150


O. Krul and P. Bagchi

0.45

(a) (b)

0.40

0.35Ξ m
ax

0.30

0.25
0.2 0.4 0.2 0.8 1.0

0.4
De = 0
De = 0.5
De = 5
De = 15
De = 500.3

0.2
�Ξ

0.1

0 0.2 0.4 0.6 0.8 1.0

3.5

3.0

Q
m

ax

2.5

2.0
0.2

α
0.4 0.6 0.8 1.0

6

5

4�Q

3

0.2
α

α α

0.4 0.6 0.8 1.0

(c) (d)

Figure 12. Ξmax , �Ξ , Qmax and �Q for different De and α. The dashed black lines show the asymptotic
limits for α→ 0 and α→ ∞. For all panels, the legend is in panel (b).

values of viscosity, the instantaneous response approaches that of a rigid tube and the
pressure builds throughout the tube before any changes in motion occur. When the viscous
resistance subsides and the tube begins to move, the whole tube adjusts to the internal
pressure simultaneously, as opposed to only the inlet section moving independently. This
whole-tube motion causes a flow surge at the inlet. While the previous flow surge effect
was attributed to purely elastic behaviour, this flow surge is due to the tube’s viscosity.
Increasing α increases the strength of this effect, as a faster increasing pressure allows a
higher pressure to build before the instantaneous viscous response gives way to motion.
The bulk inflation of the tube therefore increases with α, causing the observed gradual
increase in maximum inlet flow rate.

Here, �Q largely follows the same trends as Qmax , as seen in figure 12(d). The main
difference is that at higher De, there is no large initial decrease with increasing α. This
implies that, during deflation, the viscous wall forces do not counter the squeezing effect
entirely, in contrast to the flow surge mitigation during inflation. This is because the flow
surge is resisted by both the elastic and viscous wall forces, whereas the squeezing is driven
by the elastic forces.

In some applications, the average flow rate is of interest. Here, we introduce the
parameter q∞, which is the average flow rate as α→ ∞; it is the flow rate through the
deforming tube with the steady applied pressure of P̃in = 0.5. In figure 13, the average
flow rate normalised by q∞ is plotted against α for various values of De. The normalised
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Figure 13. Average flow rate through tube over one period of oscillation. The orange box represents a
quasi-steady inflation cycle (α→ 0). The legend is in figure 12(b).
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Figure 14. Direction of flow rate hysteresis due to the interaction of viscoelastic response time and enforced
oscillation. The shapes indicate the direction that the hysteresis curve is drawn out in time, with circles, deltas
and squares being clockwise, cross-over and counterclockwise, respectively.

value obtained from our simulations tends towards 1 as α increases for all values of De.
Additionally, the value at α= 0 is also shown, which is the average flow rate of the quasi-
steady inflation cycle. It can also be seen that the curves for all De approach this value
as α becomes small. The figure further supports that the effect of viscoelasticity on the
normalised flow rate is most pronounced at moderate values of oscillation frequency.

The interaction of viscoelastic response time and enforced oscillation affects the
direction of the flow rate hysteresis curves, as shown in figure 14, with circles as clockwise,
squares as counterclockwise and deltas as cross-over. In most cases, the hysteresis is
clockwise at low α. When De ≤ 5, upon increasing α, the curves eventually begin to
cross-over over a small range of α near α≈ 0.8. This crossing over behaviour serves
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Figure 15. (a) Ξmax , �Ξ and deformation phase shifts plotted against G1/Gs . (b) Qmax , �Q and flow rate
phase shifts versus G1/Gs . Parameters: De = 50, α = 0.56.

as a transition between the hysteresis directions, such that further increasing α leads
to counterclockwise hysteresis. Cross-over indicates that α is high enough that the
viscoelastic response lag of the tube is on par with the inherent phase lead of the flow.
It therefore occurs at lower α when De increases, because the increased tube viscosity
increases the response time. This pattern continues until De = 5, where the cross-over
point suddenly shifts to a higher α. At this De, the flow surge effect from viscous bulk tube
motion begins to occur, biasing the hysteresis clockwise (leading). With increasing De, the
effect is strong enough that there is no cross-over hysteresis for De ≥ 10 in the range of α
tested. Interestingly, at high enough De, the hysteresis curve crosses over itself at very low
α, changing to clockwise as α increases. These cases correspond to the maximum flow rate
initially decreasing as α increases. This follows from the strong viscous forces countering
the flow surge effect during inflation, causing a net lag during the inflation stage.

3.3.6. Effect of G1
So far, we have fixed G1/Gs = 100, where G1 is the shear modulus of the spring-dashpot
branch of the SLS model. Next, we consider the effect G1. In figure 15, we show the
behaviour of the tube for different values of G1/Gs . Given the spring represented by
G1 is in series with the dashpot representing the solid viscosity, it is as if the value of
G1 determines the strength of the contribution of viscosity to the instantaneous motion.
Even with non-zero viscosity, the construction of the standard linear solid model allows
for a jump change in deformation due to the presence of a spring in both of the parallel
elements. When G1 is large, the jump change is not possible, as the dashpot prevents such
motion. For this reason, the effect of changing G1 is similar to that of increasing De.
As G1 increases, Qmax , �Q, Ξmax and �Ξ decrease and approach some constant value
(figure 15). Both φc and φt first increase at low G1 and then begin to decrease. Initially,
the increased elasticity amplifies the flow surge and squeezing effects, increasing the flow
rate’s lead of the applied pressure. However, beyond a certain stiffness, the strength of
the viscosity increases. This increases the tube response time, therefore causing a lag
that decreases the phase shifts. It can be seen that this point occurs near G1/Gs = 50,
which is roughly where Qmax and�Q begin to converge. As noted earlier, the SLS model
approaches the Kelvin–Voigt model as G1 → ∞. This convergence behaviour is implied
in figure 15.

1007 A82-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.150


Journal of Fluid Mechanics

4. Conclusion
Using a fully coupled 3-D FSI model, we present a detailed numerical study of pulsatile
flow in a thin-walled viscoelastic microvessel at large deformation, which was lacking in
the literature. Our primary focus was to study the effect of solid viscosity and oscillation
frequency at small but non-vanishing inertia on the tube deformation, flow rate, phase shift
and hysteresis.

We found that the general behaviour is dominated by an elastic flow surge during
inflation and squeezing effects during deflation. At lower De, the flow surge strengthens
with increasing oscillation frequency and weakens with increasing viscosity. As such,
increasing the oscillation frequency causes the maximum inlet flow rate to increase,
whereas increasing De causes it to decrease. This changes when the solid viscosity is
strong enough to fully counter the flow surge at low α. Two notable limits are approached
at both low and high α for all values of De. Here, α→ 0 represents the limit of a quasi-
steady inflation cycle. Conversely, as α→ ∞, the behaviour approaches the steady-state
inflation of a tube by the mean pressure P̃in = 0.5. The tube motion changes with De
and α in accordance with these limits. When varying the oscillation frequency, both the
maximum and amplitude of the maximum radius properly approach their corresponding
quasi-steady inflation (low α) and steady flow (high α) values for all De. The average
flow rate similarly approaches the proper values in these limits. In both of these limits,
all values of De converge. Additionally, as De → ∞, one can expect the tube to behave
as rigid in some deformed configuration due to an infinite tube response time. Our results
suggest that deformation and flow rate are most affected in the intermediate range of De
and α.

The phase lead of the flow rate over the pressure noted by Womersley (1957b) has also
been expanded upon here and our model predicts that the phase shift is not constant
but varies throughout the oscillation. Additionally, the flow rate does not uniformly
lead the pressure, but lags under certain conditions. In fact, this variable phase shift
reliably predicts the different flow rate hysteresis behaviours discussed by Lee & Schmid-
Schönbein (1990). The direction in which the hysteresis proceeds is represented by the
signs of the phase shift at the crest and trough (φc and φt ); two positive signs indicate
clockwise, two negative signs indicate counterclockwise and differing signs indicate cross-
over. This behaviour is highly dependent on both the tube’s viscosity and the oscillation
frequency. At lower De, the hysteresis direction transitions from clockwise at low α to
counterclockwise at high α, with a small range of cross-over in between. In contrast, at
moderate De, the hysteresis remains clockwise for all α tested. At very high De, the
hysteresis crosses over at very low α, while it is clockwise elsewhere. This directional
change in hysteresis is fully characterised here in the Qmax , α and De parameter space.

Additionally, a distinct change in the flow physics was predicted at high values of De.
At high De, the maximum inlet flow rate increases over a large range of α after an initial
decrease, with such behaviour strengthening at higher De. This is due to a change in the
tube dynamics wherein the instantaneous response is akin to that of a rigid tube, allowing
the pressure to build appreciably throughout its length. This leads to global or ‘whole-tube’
motion, as opposed to the elastic case in which the region near the inlet inflates somewhat
independently. Another interpretation is that the more elastic tube does not allow the effect
of higher frequency oscillations to penetrate far into the tube, while the more viscous tube
does.

The main limitation of the current model is that it does not allow solid motion in
the axial direction. Therefore, problems with large axial deformation, such as extremely
large, balloon-like deformations or axial buckling, cannot be achieved. However, such
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deformations are unlikely to appear in the biological and microfluidic applications
discussed. In the future, this model can be readily applied to study tubes with nonlinear
constitutive models, higher inertial flows and flows with suspended capsules.
Acknowledgement. Computational resources at ACCESS sites and Rutgers University are acknowledged.

Funding. This work was supported by the US National Science Foundation (grant number CBET 1922839)
and National Institute of Health (grant number EY033003).

Declaration of interests. The authors declare none.

Data availability statement. All data are available upon request to the authors.

REFERENCES

ABAQUS 2002 Abaqus Theory Manual. version 6.3 edn. Hibbitt, Karlsson & Sorensen, Inc.
ABDULLATEEF, S., MARISCAL-HARANA, J. & KHIR, A.W. 2021 Impact of tapering of arterial vessels

on blood pressure, pulse wave velocity, and wave intensity analysis using one-dimensional computational
model. Intl J. Numer. Meth. Biol. 37 (11), e3312.

ABY, J., GUEVARA-TORRES, A. & SCHALLEK, J. 2019 Imaging single-cell blood flow in the smallest to
largest vessels in the living retina. eLife 8, e45077.

ANAND, V. & CHRISTOV, I.C. 2021 Revisiting steady viscous flow of a generalized Newtonian fluid through
a slender elastic tube using shell theory. ZAMM - J. Appl. Math. Mech. 101 (2), e2019003.

ANLIKER, M., ROCKWELL, R.L. & OGDEN, E. 1971 Nonlinear analysis of flow pulses and shock waves in
arteries: part I: derivation and properties of mathematical model. Zeitschrift für Angewandte Mathematik
Und Physik ZAMP 22 (2), 217–246.

BARTHÈS-BIESEL, D., DIAZ, A. & DHENIN, E. 2002 Emmanuelle 2002 effect of constitutive laws for two-
dimensional membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211–222.

BARTHÈS-BIESEL, D. & RALLISON, J.M. 1981 The time-dependent deformation of a capsule freely
suspended in a linear shear flow. J. Fluid Mech. 113, 251.

BÄUMLER, K., VEDULA, V., SAILER, A.M., SEO, J., CHIU, P., MISTELBAUER, GABRIEL, CHAN, F.P.,
FISCHBEIN, M.P., MARSDEN, A.L. & FLEISCHMANN, D. 2020 Fluid–structure interaction simulations
of patient-specific aortic dissection. Biomech. Model. Mechanobiol. 19 (5), 1607–1628.

BEDGGOOD, P. & METHA, A. 2019 Imaging relative stasis of the blood column in human retinal capillaries.
Biomed. Opt. Express 10 (11), 6009–6028.

BERGER, S.A. & JOU, L.-D. 2000 Flows in stenotic vessels. Annu. Rev. Fluid Mech. 32 (2000), 347–382.
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