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In [9], Hartshorne extended the concept of ampleness from line bundles
to vector bundles. At that time, he conjectured that the appropriate Chern
classes of an ample vector bundle were positive, and it was hoped that
there would be some criterion for ampleness of vector bundles similar to
Nakai’s criterion for line bundles. In the same paper, Hartshorne also
introduced the notion of p-ample when the ground field had characteristic
p, proved that a p-ample bundle was ample and asked if the converse were
true.

In the first chapter of this paper, we will show that a p-ample bundle
has positive Chern classes when the characteristic of the ground field is
p#0, and that a quotient bundle of a direct sum of ample line bundles
also has positive Chern classes in any characteristic. We also give a series
of polynomials in the Chern classes of a bundle £ which are positive if E
is ample.

The second chapter will be devoted to some criteria for a vector bundle
to be ample. The final chapter gives two examples of ample vector
bundles on P* when the characteristic of k is p 0. The first example will
be ample, but not p-ample. The second bundle E will be p-ample, but
HYP, """ (E)YRQF) will be non-zero if F is a bundle and # is large.

We fix our notation. % will denote an algebraically closed field. A
variety X will be a reduced, irreducible scheme of finite type over k. If
X is non-singular, A(X) will denote the Chow ring modulo numerical
equivalence. If X is n-dimensional and complete, we have A"(X) canonic-
ally identified with Z. We will often call a locally free sheaf over X a
bundle. The bundle E is defined to be ample if for any coherent sheaf F
on X, FRS™E) is generated by global sections for »n large. E is ample if

Received September 17, 1970.

91

https://doi.org/10.1017/50027763000014380 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014380

92 DAVID GIESEKER

and only if the tautological bundle #7(1) on P(E) is ample. For line
bundles, this definition is equivalent to the usual definition. If X is project-
ive, E is ample if and only if for any coherent sheaf F, H(X, SYE)QF) =0
for n large and i >0. Again with X projective, we have that the extension
of two ample bundles is ample and that any quotient bundle of an ample
bundle is ample.

If the characteristic of k is » =0, then we can find a new notion of
p-ample. Let 7 be the Frobenius endomorphism from X to X. Then E”
is defined to be f*E). E?®is (E?)” and so forth. E is defined to be »-
ample if for any coherent sheaf F, FQE?" is generated by global sections
for n large. E is cohomologically p-ample if for any coherent sheaf
F, H'(X,FRE?) =0 for i >0 and = large.

Finally, we have a notion introduced by Griffiths under the name of
ample [5, §4.4].

Derinerion. A bundle E is strongly ample if E is generated by its
global sections and if for every closed point # with sheaf of ideals m, EQm
is generated by global sections.

We will show that a strongly ample sheaf is ample in Chapter IIL
The second condition in this definition was phrased by Griffiths in the
following way: the natural map from E®m to Q%®E/m is surjective.
However, since 2Y®E/m is canonically identified with E@m/m? Nakayama’s
lemma show the two conditions are equivalent.

I wish to thank Professor Robin Hartshorne for his advice and encourage-
ment and Professors David Mumford and Heisuke Hironaka for their
valuable conversations.

CHAPTER 1. Positivity of Bundles and Their Chern Classes

In this chapter, we will be studying the problem of the positivity of
the Chern classes of a bundle E under various assumptions on the positivity
of E. Let X be a nonsingular variety of dimension n. A cycle Z of
dimension 7 on X is said to be positive if Z.Y >0 for every effective cycle
of codimension 7.

We will prove that the appropriate Chern classes of a strongly ample
bundle are positive by showing that these Chern classes are represented by
effective cycles. If E is p-ample, we will see that the Chern classes of E are
positive by applying the previous result to the strongly ample bundle E”,
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where n is some iarge integer. Finally, we establish the positivity of the
Chern classes of a quotient of a direct sum of ample line bundles by a spe-
cialization argument.

Many of the results of this chapter were first established by Griffiths in
characteristic zero by analytic arguments. Thus he proved Lemma 1.1
and Corollary 1.1 using homology theory and Schubert cycles (6, Prop. 4.13).
Also Bloch and Gieseker [4] have established that ¢,(E)>0 when E is an
ample bundle of rank greater than z-1 on a non-singular variety of dimension
n, providing the strong Lefschetz theorem holds for all varieties over the ground
field.

Now let E be a bundle on a variety X and V a finite dimensional
subspace of HX, E). V itself is a variety with the Zariski topology. If YV
is a subscheme of X, we will say the generic section in V vanishes on Y at
a set of dimension [/ if there is an open subset U of V so that if s is a
section in U, then the subset of Y where s vanishes is of dimension [.

LemMa 1.1. Let E be a bundle of rank r on an n-dimensional space Y and
let V be a finite dimensional subspace of HXY, E) so that

i) for every closed point yeY, the stalk of E at y is generated by the sections
nV;
i)  there is some simple closed point xY with sheaf of ideals m so that the
stalk of EQm is generated by the sections in VN HYY, EQm).

Then the generic section in 'V vanishes on a subset of codimension r if r<n
and does not vanish otherwise.

Proof. We have an exact sequence
0O— ] —>Ty—>E—0

where N is the dimension of V and J is locally free. Hence we get a
diagram

J .
P(]"@y) — P(TF) =Y X P

N/

PN-I

Now let [ay, « + -,ay] denote the point in P¥~! with homogeneous coordinates
(ay + * ,ay) and let e, denote the image of the i** canonical section of Z¥
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in H\Y, E). Then (z,[a;, « + +,ay]) is in the image of j if and only if
Naex) =0

Hence for peP¥1, s~Y(p) is identified with the subset of ¥ on which the
section of E corresponding to p vanishes. We compute

dim(P(J")) =dimY +rank J — 1= (N— 1)+ (r — 1),

If » >=n, then ~ cannot be dominating, so the generic section of E does
not vanish anywhere on Y. So we may assume r=<<#n. We can find
Sfi v+, fr in m/m? so that f,, - - -, f, are independent. Now locally about
y, we may assume that E is free and has a basis &y, «:-,%,.. Now in
E®m/m?, we can consider § = 3\h,®f; where k; is the image of h;. Let s
be a global section in V which maps onto §. Then locally about y, s can
be written as 3,®f; where the image of f; is fi.. Now if Z; denotes the
zeros of f,, we have that locally about y, the set Z of zeros of s is just
Z:N---NZ. But

dimzzdimﬂl’,y/(fb b '9f'r) =n—r

Hence Z has a component of dimension # —7. Now let p be the point in
P! corresponding to s. Then ~7(p) has a component of dimension n—r.
Hence ~ must be dominating since if it is mapped onto a set of dimension less
than N—1, the dimension of every component of every fiber of » would
have to be greater than n —». Since ~ is dominating, almost every fiber
has pure dimension # —r. So the zeros of the generic section s on Y have
codimension 7 in X. q.e.d.

Let us introduce some notation. If I=(i,--,i,) is an r-tuple of
non-negative integers and E is a bundle, we define

c(E) = ci(E) - c}(E)- - - cI" (E).
Tet (Il =4,+2ip+ -« +7i,.

THEOREM 1.2. Let E be a strongly ample bundle of rank r on a non-singular
quasi-projective variety of dimension n. Let Y be an effective l-¢ycle. If j<r,
¢,(E) can be represented by an effective cycle Z such that

dim Supp(ZnY)=1—j if [ —j=0
Supp (ZNY) = ¢ if 1—j<0.
Hence c'.Y can be represented by an effective cycle if |1} <r and |I} < 1.
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CoroLLARY 1.1. If X is a projective variety of dimension n and E is a
strongly ample bundle of rank r on X, then ¢*(E) is positive if |I) <r and |I|<n.

Proof of Corollary. If Y is an effective cycle of dimension # — |I}, then
Y.c!(E) can be represented by an effective cycle of points.

Proof of Theorem 1.2, If the rank of E is greater than », we can find
a nowhere zero section of E, so

0—>y—>E—>FE —>0

is exact, where E’ is again strongly ample. Since c¢/(E)= c¢/(E’), we can
reduce to the case in which »<<#n. We now work by induction on ». Now
let V’ be a finite dimensional subspace of H°(X, E) so that the image V of
V' in HYY, E) satisfies conditions i) and ii) of Lemma 1.1 and so that E is
generated by the sections in V at every point x€X. Let s be a section in
V and Z the cycle of zeros of s. By Lemma 1.1, we can choose s so
that
codimy Z = r»
dmzZnY =n—r—1
Now ¢,(E) is represented by Z [7, Corollary to Theorem 2]. Hence
.Y =2Y
is represented by an effective cycle if # —» — /=0. Now consider
X' = X—Supp Z.
Let E’ denote E restricted to X’. Then we have an exact sequence of
locally free sheaves over X',

O'—>ﬂx/'_>El—)F———>O.

So ¢(E’) = ¢/(F). By induction, ¢;(F) is represented by an effective cycle
Z' so that

dim (Supp Z’NnYnX) =1—j

for j<r.

Now if ¥ is a non-singular quasi-projective variety and Zis a subscheme
of codimension 7, then the map from AY) to A%Y — Z) is an isomorphism
if k<r. Now let Z” be the closure of Z’ in X. Then ¢/(E) is represented
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by Z since they both map to Z’ in A(X’). Also
dim (Supp Z”’NY) = I —j.

Lemma 1.3. Let X be quasi-projective. Then there is a strongly ample line
bundle on X.

Proof. Let L be an ample bundle on X. Then p}L®p}L is ample on
XxX, where p, and p, are the projections of XxX onto X. Hence if I is
the ideal sheaf of the diagonal in XxX,

PILE"QpI LRI
is generated by global sections for » large. For each closed point # in X,
we have

PILE"QPILEO"R]| pr1(a) = LE"Qmx

is generatea by global sections.

Lemma 1.4. If E is p-ample on X, then E®" is strongly ample for n large.

Proof. Let M be a strongly‘amf)le bundle on X. Then for n large and
g=7p" M®E" is generated by global sections. - Hence we have a surjection

@®M— E*"—>0.
Since a quotient of a strongly ample bundle is strongly ample, we see E? is
strongly ample.,
LEMMA 1.5. ¢, (E?) = p"ca(E).

Proof. We may assume that E has a filtration by line bundles L; by
the usual trick of passing to the flag manifold of E. Now there is a
homogeneous polynomial @ of degree » so that

Cn(E) = @(cy(Ly), * - '961(Lr))
and
C'n.(Ep) = ¢n(p(cl(l‘1))! A ,p(C‘(L,-))

since L?, -+ .,L2 is a filtration of E?. Hence c,(E?) = p™c,(E).

TreoreEM 1.3, If E'is a p-ample bundle of rank r on a| non-singular pro-
jective variety of dimension n, then c'(E) s positive if |I| is less than n+ 1 and
r+1.
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Proof. E*® is strongly ample for some g of the form p”. Let y be an
effective cycle of dimension |/|. Then

y.ci(E? >0.

Since

y.c(EY = (¢)!Tly.cH(E)
we deduce
y.cI(E)>0.

Next, we can extend our results to the quotient Fof a direct sum of ample
line bundles. In characteristic p, the result follows immediately since F
is then p-ample. We deduce our general result by specialization. We need
a knowledge of the behavior of Chern classes under specialization. If X is
a variety over a field k and E a coherent sheaf on X, then X and E will de-
note the corresponding objects over k.

Lemma 1.6. Let Y —> Z be a smooth projective morphism of noetherian
integral schemes and X. a subscheme of Y which is flat over Z and so that all the
fibers X, of 9: X—> Z are geometrically reduced and k-dimensional. Let E be a
locally free sheaf of rank v on' Y. Then for each z in Z, consider E, on the fiber

over X, over k(z). Then given I so that |I| =n —k,
X..cU(E,)
is an integer independent of z.
Proof. We actually prove that if L,, -+ -, L, are line bundles, then
X,.cE). L+ - -L,

is constant for |I| =n—k— 1. We work by induction on r. If r=1,
then

Xzocx(Ez)-z1’ . 'l:z
can be computed as the coefficient of nm;« « +n,4; In

Py« + oy M) = ULEMR - + - QLPMRQE®®Tx,)

[Kleiman 12]. However, we may omit the bars, since the dimension of
cohomology groups is invariant under field extension. But this Euler
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characteristic is constant. Now if we have proved our claim for » — 1 we can
consider the projection p : P(E)——Y. Then if @ denotes the tautological
bundle on P(E), we have

Xoc!(E) Ly v+ L= Q' p*Ly- « - ! (p*E,) p¥(X,).
However, we have an exact sequence

0—> E'—> p*E—> Q —> 0.

Hence c’(p*E,) is a sum of ¢,(Q).c’(E};) for various (r — 1)-tuples J. Since
rank E' =7 —1, we are done by induction.

THEOREM 1.4. Let X be an n-dimensional projective variety and E a bundle
of rank r which is a quotient of a direct sum of ample line bundles ®L,. Then
cX(E) is positive for |I| less than r + 1 and n + 1.

Proof. Let Z be a subvariety of dimension / in X. Then there is a
subring A of k with the following properties: A is of finite type over Z,
there is a scheme X’ and a subscheme Z’' of X’ and a smooth projective
morphism f : X’—> Spec A so that Z’ is flat over Spec A and all the fibers
Z. are varieties for a in Spec A. Furthermore, there are ample invertible
sheaves L] and a locally free sheaf E’ on X’ so that E’ is a quotient of a
direct sum of the L’;’s. Finally, if we tensor the whole situation with &, X~
becomes X, E’ becomes E, etc. [cf. 8, IV. 8.5, 8.10]. Since intersection
numbers are invariant under field extension,

c{(E).Z = c/(E}). Z,
where g is the generic point of Spec A. But by Lemma 1.5,
¢N(E}).Z} = c{(E)). Z,
where y’ is any point of Spec A. In particular, we may choose y so that
the residue field of y has non-zero characteristic. Then E; is p-ample, so
c!(E}) is positive.
Finally, we introduce a sequence of polynomials in the Chern classes of

E which are positive if E is ample. These were studied by Griffiths in [5],
who proved Theorem 1.5 in characteristic zero by analytic arguments.

LemMA 1.7. Let Yy, -« -,Y, be indeterminates over Z. Let Ly=1. Then
Jor each k there is a unique symmetric polynomial L, in the Y, satisfying

* Ly—silyy+ SeLyp— +++ =0
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where s, is the i-th symmetric polynomial. We have

x* LYy oo+, Ya)= 2 Yite . Yin

&=
Proof. Let L, be defined by *. We show the L, satisfy * by induction
on n. We abbreviate (Y, ++-,Y,._;) to Y.

Sn—-k(Y9 Yn) = Sn—k(Y) + Sn—k—l(Y)-Yn
L{Y,Yn) = Li(Y) + Lyes(Y)Y 5 + L (Y)Y 7+ + -

Hence we get
LY, Ya)sn-iY,Y0) = Li(Y)sn-ilY) + Ai + Apss

where

k
A= D sailY) L Y)Y 770
i=1

So

(VLY Y sn-alV) = 3 LiY)samil¥) = 0.

4

k

Since L, is symmetric, it can be written as a polynomial in the sym-
metric functions:

LYy o, Y,)=@fsy, *+,5,)
For a vector bundle of rank », we set

OLE) = Oci(E), « « +, c(E)).
For instance,

QI(E) =
Qo(E)=ct— ¢,
¢3(E) = c“]’ bl ZC,_CQ + Ca.

c]— C

We have
O(E) — c(EVDr(E)+ ++» =0,

LeMMmA 1.8. Let Z be a non-singular projective variety of dimension n and E
a bundle of rank r. Let & denote the class of (1) in ANP(E)). Then for k<r
and any cycle y of dimension k on Z,

(Y. OUE))z = (a*y. £ Py
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(Note: ANX) = A"""YP(E)=Z; n: PE)y—Z.)

Proof. We work by induction on % and denote z*y by y’. If k=0,
then we can take y to be a point and then it is well known that

L=y’

Now suppose we have proved the theorem for all ¥ <k. Now we have

E =T = e =0,
Hence multiplying by y’.£%!, we get

YT — g e T g e e =0,

We also have

YD — Y€1 @y + ++» =0,
But by our induction hypothesis,

Yo Coo Py = Y€ £FFT7E1
for i >0. Hence we see
YT =y O,

THEOREM 1.5. Let Z be a non-singulay projective n-dimensional variety and
E an ample bundle on Z. Then OLE) is positive for k<n.

Proof. Ui y is a k-cycle,
O(E).y =&y >0

since ¢ is the class of an ample line bundle.

We note that Griffiths has a cone II of “positive” polynomials so that
if Pell, then Plcy, +++,¢)>0 if ¢, +++-,c, are the Chern classes of a
strongly ample bundle. II contains monomials ¢! and the &, [6, Theorem
Di.

CHAPTER II. Ample Bundles on Curves

A major deficiency in the theory of ample vector bundles is the lack of
ah_ adequate test for the ampleness of a bundle E on-a variety X. Barton
[2] has given a test similar to Kleiman’s criterion for ampleness of a line bundle.
If X is a non-singular curve over C, a necessary and sufficient condition
for 2 bundle E on X to be ample is that the degree of every quotient
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bundle be positive [11]. If E has rank two, and X is a non-singular curve
of genus g over a field of characteristic p, then E is ample if every quotient

bundle of E is ample and if degE>—i—(g—— 1) [9].
First we will give a test for a vector bundle £ on any variety to be ample

if E is generated by global sections. We need a lemma.

Lemma 2.1.  Suppose X is a curve, E is a bundle on X, and s a section of
E which does not vanish at any singular point of x. Then E has a sub-bundle L
50 that s is a section of L. If s vanishes at any point, L is ample.

Proof, Let z, -:-,x, be the points at which s vanishes. Now s
determines a section of P(E”) over Y — {2, + « -, %,} and hence a section of
P(E") over all Y since x,-:-,x, are non-singular. Such a section is
equivalent to a sub-line bundle L of E and s is actually a section of L.
If s actually vanishes, then deg L >0, so L is ample.

ProposiTioN 2.1, Suppose Y is proper over k and E is a bundle over Y
generated by its global sections. Then E is ample if and only if every quotient line
bundle of E\; is ample for every curve C in Y.

Proof. First suppose E is a line bundle. Then E gives a map f to
projective space so that E = f¥¢7(1)). But f is a quasi-finite map. For if
f collapsed a curve C to a point, we would have Ei;>~ %, and so Eis
would not be ample. Since f is proper, f is finite and so f*(7 (1)) is
ample.

Now suppose Y is a curve. We work by induction on the rank of E
50 we may suppose every quotient bundle F of E is ample if Fw E. Let
S be the set of singular points of Y. We will establish that E has a section
which does not vanish at any point of S, but which does vanish. By
Lemma 2.1, E will have an ample sub-line bundle L and so will be ample
as the extension of E and E/L.

Let #n be the dimension of I'(E). Then there is a surjective map from
% to E, and we may suppose that E is a quotient of ¢7%. Now the Gras-
smannian G of all # — 7 planes in k" represents the functor which assigns
to any variety Z the set of all locally free quotients of rank » of 3. So
we get a map ¢ from Y to G so that E is the pull back of the universal
bundle U on G. Now ¢(Y) is not a point, since then E would be trivial
as the pull back of U restricted to ¢(Y). So we can pick a closed point
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y€Y so that f(x)& f(S). Now if z and w are two closed points of G, then
the universal mapping property of G shows that z = w if and only if

rU®m,) = FUQn,).

So MU®m»)NT(URmy ) is a proper subspace of I'URmy,) for all seS.
Since k is infinite and S is finite, we can choose a section of U which
vanishes at f(y), but not at any point f(s). Pulling back this section to
E = ¢*U), we get a section of E with the required property.

Now if E has rank greater than one, on an arbitrary complete variety
Y, consider the tautological bundle #7(1) on P(E). We denote the projec-
tion from P(E) to Y by p. Then to show E is ample, we need only show
(1) is ample. Now let C be any curve in P(E). If C is contained in a
fiber of p, then £7(1) is ample on C. If C is not contained in a fiber, the
map from C to p(C) is finite. Hence p*E is ample on C. Since (1) is a
quotient of p*E, we see ¢7(1) is ample on C. Since ¢7(1) is generated by
global sections, it is ample.

Before proceeding to our discussion of curves, we prove a strongly ample
bundle is ample. See the introduction for the definition of strongly ample.
This was proved by Griffiths [6] in characteristic zero.

TuEOREM 2.1. A strongly ample bundle E on a proper variety Y is ample.

Progf. We need only show that £ is ample on each curve C in Y.
Let # be a non-singular point of C with sheaf of ideals /7. Then EQI
is generated by global sections, so E|¢ can be written as a quotient of a
direct sum of line bundles I*. Hence E|s is ample.

The following proposition gives a class of bundles on a curve so that
all quotients have positive degree.

ProrosiTiON 2.2. Let X be a non-singular curve and suppose F an ample
bundle on X and that we have a non-trivial extension

0—> 7x—>E—>F—0
Then every quotient bundle G of E has positive degree.

Proof. We have a map s from & to G which factors through E. s
factors through a sub-line bundle L of G. If s is zero, G is a quotient of
Fand so has positive degree. If s+ 0, then deg L=0 since L has a section.

Now if G is a line bundle, L =G. In this case deg L must be greater than
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zero, since if it were zero, L would be isomorphic to ¢x and ¢ would
be a direct factor of £. If rankG >1, then G/L is ample as a quotient of
F and so

deg G = deg G/L + deg L > 0.
The following lemma is sometimes useful as a test for ampleness.

Lemma 2.2, Let X be a non-singular curve of genus g and E a bundle of
rank r. Suppose deg E >rg and that every quotient bundle F of E is ample if
F+E. Then E is ample.

Proof. Let I, be the ideal sheaf of a point zX. Then by Riemann-
Roch,

dimIMNE®I,)=degE—7r+7(1—g)>0

Hence E has a section which vanishes at some point, and hence an ample
sub-line bundle L. Hence E is ample as the extension of L and E/L.

We will now study bundles £ on the curve X which are non-trivial
extensions of the form

0—> Ty —> E—> F—>0

where F is ample. We will show E is ample if the characteristic of % is
zero and give an example of Serre which shows E need not be ample even
if Fis a line bundle when char £ = 3.

LemMa 2.3 (char k=0). Let f be a finite, flat map from a variety X o a
variety Y, and let E be a vector bundle on Y. Then the natural map from H'(Y, E)
to HY(X, fXE)) is injective.

Proof. We have a natural map from &% to f.7x and the trace map
gives an (Jy-linear map from f.7x to . Since the characteristic of % is
zero, it follows that % 1is a direct summand of f.7%. So E is a direct
summand of fJZx)RE. But HYX, f%E)) is canonically isomorphic to
HYY, f«(fE)) and fu(f*(E)) is isomorphic to E® fu«7x). So the map from
HYY,E) to H{X, f4E)) is injective,.

THEOREM 2.2 (char k= 0). Suppose that X is a complete non-singular curve,
that F is an ample bundle on X, and that we have a non-trivial extension

0—>x—>E—>F—0
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Then E is ample.

Proof. We must show £7(1) is ample on P(E). We may regard P(F)
as a subvariety of P(E). Let s be the section of E given by the map from
Oy to E. Then s gives a section of p*(E) and hence a section s’ of (1)
on P(E). The divisor consisting of the zeros of s’ is just P(F). Further,
COrp(l) restricted to P(F) is just Zppm(l). Now to prove that Zpu(l) is
ample, it suffices to prove that if ¥ is any sub-variety of P(E), then ‘there
is a section of ?(n) for some »n which vanishes at some point of Y, but
does not vanish identically [Theorem 1, Chapter III, 12]. If ¥ is contained
in P(F), this condition certainly obtains, since 7¥(l) is lample and if Y
meets P(F'), and is not contained in P(F), the condition also obtains since
s’ does not vanish identically, but does vanish on YNP(F). So it suffices
to prove that every ¥ on P(E) meets P(F). Supposé it does not. Clearly
we may assume Y is a curve. IfY is contained in a fiber of the map from
P(E) to X, it certainly meets . If Y is not contained in a fiber, we have
a finite map f from Y to X and f*E) has % as a quotient, since (1)
has a nowhere zero section. So by Lemma 2.3, the extension

O—> Tx)—> [*E—> f*F—>0

would be trivial. But then the map from H!(X,F~) to H(X, f*F™) would
not be injective. So Y must meet P(F) and 7 (1) is ample. '

The following is a special case of a recent result of Hartshorne’s [11],
who used the theory of semi-stable bundles and unitary representations.

CoROLLARY 2.1 (char k=0). Let E be a bundle on a comﬂete non-singular
curve X and suppose every quotient bundle F of E is ample if F# E. Then E is
ample if I'(E)+ 0.

Proof. The section s of E factors through a subline bundle L of E.
If s vanishes at some point of X, L is ample and E is ample as the ex-
tension of E/L and L. If s vanishes nowhere, E is ample since it is a non-
trivial extension

0—> 7Py —>E—>E|7y —>0.

The following example of Serre shows that a bundle £ may not be
ample even though the degree of every quotient is positive and the rank of
E is two.
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Suppose the characteristic of k is three and let C be the non-singular
curve of genus 3 in P? given by

0=f(XY,Z2)=X'—=-YZ—Z%.
LemMmA 2.4.  The Frobenius endomorphism p* of HYC, ;) is identically zero.

Proof. U,={(X,Y,2)|Y #+ 0} and U, = {(X,Y,Z)|Z # 0} will denote affine
subvarieties of P2, which has homogeneous coordinates (X,Y,Z). Then
CcUu,NU,., Now let acsH ;). Since CNU, and CNU, are an affine
covering of C, we can realize « as a function h on CNU,NU,. This func-
tion extends to a function & on U,NU, i.e., in the ring k[é, %, MYZ*]
Now 73 represents p*(a), so we wish to show h* is a coboundary. Since
h is the sum of monomials X'/(Y'Z'-’)=g,;, we need only show each
monomial is a coboundary, that is, that there are functions 4,, and ¢,

X Y

: X Z .
in k[—l—/—, ?] and Ic[—Z—, - respectively so that

0i,; = hs,y— i,; (mod f)
Now if i =4, we can write

X7/ . Xi—4 Xi—4
9,5 = Yig—d Yz + VARV AR (mod f)

So to show g}, is a coboundary, we assume i < 4. Clearly, we may also
assume 0< j<<i. So the only cases are X?/YZ, X3Y2Z and X3%/Z?%. But

X X
Yiz2 22

X2

+ -3

(mod f)

and

]

X® X 2XZ XZ¢
G =5 + (5 +35) mod N
and by the symmetry of ¥ and Z, X*/Y3Z¢ is also a coboundary. So p* is
zero. q.e.d.

Now let P be a point on C. Then the Frobenius map f from H(Z7(—P))
to HY(¢7(—3P)) cannot be injective. For we have an exact diagram

H\(Z(—P))—> H\&)
% |
0—> HY)—> HAK)—> H{&(=3P))—> H\)
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where K is the cokernel of the map & (—3P)—> ¢7. Since the map from
HY() to HY¢) is zero, HY7(—P)) must be mapped to the image of
HYK) in HY(—3P)). However, since dim H*(K) is 3, this image has
dimension 2; since HY7(—P)) has dimension 3, f is p-linear, and % is
perfect, we see f cannot be injective.

Now we can construct the example. Let a be a non-zero element of
the kernel of f. Thus a determines a non-trivial extension

0—> g —>E—> T(P)—>0
The degree of every. quotient bundle of E is positive, but the extension
0—> 77— E*— 7(3P)—>0

splits, so E® is not ample and hence neither is E.

We will now prove that a vector bundle over an elliptic curve X is
ample if and only if every direct summand has positive degree. This result
has been proved independently by Hartshorne [11]. The idea of our proof
is the following: We use induction on the rank of £ and Lemma 2.5 to
reduce our problem to the case of a non-trivial extension E of an ample bundle
by the structure sheaf. We construct another elliptic curve X’ and a map
of high degree f from X’ to X so the extension remains non-trivial. Then
Proposition 2.2 and Lemma 2.2 show f*(E) is ample, and hence E is ample.

LemMa 2.5. Let E be an indecomposable bundle over an elliptic curve X and
F an indecomposable quotient of E. If deg E >0, then deg F > 0.

Proof. For any line bundle L of degree zero, I'(E”®L) =0, since
dimME QL) = dim [(EQL") — deg E = 0

by the Riemann-Roch Theorem and the fact that if F is indecomposable
and deg F >0, then dim[(F) = deg F [1, Lemma 15]. Hence I'(F "®L) = 0.
But if deg F <0, then I'(F"®L) 0. If deg F=0, then F = F,QL for one of
Atiyah’s canonical bundles F, and some L of degree zero. It again follows
that I'(F®L)+ 0 (cf. Theorem 5 [1]), since I'(F,) 0.

LeEmMa 2.6. Let X be an elliptic curve, E an ample bundle on X and n a
positive integer. Then there is another elliptic curve X' and a map f from X' to
X so that deg f >n and the map from H(X,E”) to H(X', fHE")) is injective.
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Proof. Let X be elliptic and f any map of degree 2 from another
complete non-singular curve X’. Then there is an exact sequence

0—> T —> f4Tx1—> L—>0

where L is a line bundle on X. [ claim degL=<0. For there is an exact
sequence

0—> L —> L' QRfu0x1 —> Tx—>0
and if deg L >0, we would have an exact sequence
0—> HYX, 7x)—> H\(X, L") —> HY(X", /(L")

since H(L”®f«x) is naturally isomorphic to H'(f*L) and HY(f*(L")) =0
since f¥L”) is negative. But then we would have a non-trivial extension

0O—> Ty —> E—>L—0,
but the extension
0—> Ty —> f*E—> f*L—0

would be trivial. This is impossible since £ and f*E are ample by Corollary
7.8 of [9].

Now let E be any ample bundle. Then the map from HYX,E”) to
HYX’, f{E")) has kernel HY(X, E”®L). Since (EY®L)” is ample, E"®L has
no sections, so our map is injective.

If X is an elliptic curve, we can find another elliptic curve X’ and a
map f of degree two from X’ to X. We can consider X as a group by
choosing an identity for the group law, and then multiplication by two in
X is a map of degree four. Thus if K(X) denotes the function field of X,
multiplication by two defines K(X) as a sub-field of degree 4 in K(X).
Then there is a sub-field K’ of degree 2 between K(X) and a non-singular
model of K’ gives us our curve X'.

Finally, we can construct the curve X’ and the map f of the Lemma
of large degree by letting f be the composition of morphisms of degree
two.

TaeEOREM 2.3. Let X be an elliptic curve and E a bundle on X. Then E
is ample if and only if every direct summand of E has positive degree.
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Proof. We use induction on the rank of E. The induction hypothesis
and Lemma 2.5 show we may assume every quotient bundle F of E is
ample if F# E. Since deg E >0, there is a non-zero map f from 7y to
E. This map factors through a sub-line bundle L of E. Now either 7%
is mapped isomorphically to L or L is ample. If L is ample, E is ample
since it is an extension of two ample bundles, E/L and L. If L is iso-
morphic to ¢, we have a non-trivial extension

O0—> Px—>E—>E' —>0

where E’ is ample. Now let X’ be an elliptic curve and f a map from
X’ to X so that deg f >rank E and the map from HYX, E") to H\(X, fXE"))
is injective. Then the extension

0—> %1 —> fHE)—> fHE')—>0

is non-trivial. By Lemma 2.5 and the induction hypothesis, every quotient
bundle F of f*E is ample if F+# f*E. Also deg f*E = deg f* deg E >rank
S*E. So Lemma 2.2 shows f*E is ample, and hence E is ample.

CHAPTER III. Ample Bundles on P?

Suppose the characteristic of k¥ is p 0. Then a line bundle is ample
if and onmly if it is p-ample. Furthermore, a bundle over a non-singular
curve is p-ample if and only if it is ample. The first purpose of this
chapter is to construct an ample bundle on P? which is not p-ample.
Using this bundle we will construct a series of ample bundles F, on P? so
that F,(k) has no sections if k=<#xn. Such a sequence exists even if the
characteristic of k¥ is zero. We note a result of Barton [3] which says in
this case that there is a k, so that E(k) is generated by global sections if
E is ample, ¢(E) = nH and k=k,.

Our second main purpose is to study the cohomology of I'(E)®F where
E is an ample bundle and F is coherent. In characteristic zero, we have
I'™(E) is isomorphic to S™E), so the higher cohomology groups vanish for
n large. But in characteristic p the higher cohomology groups no longer
vanish.

The non-vanishing of these cohomology groups has implications for
relative cohomology. To illustrate this, we let ¥ be P? and E a vector
bundle over P? with the property that for any locally free F, then
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H\(Y, """ (E)QF)) # 0

for n large. We will exhibit such a p-ample £ later. Let X be P(E " ®%)
and consider the natural embedding of Y in X. The normal bundle of ¥V

in X is E, and we let I denote the sheaf of ideals of ¥. Then HYX,y, F)
is infinite dimensional since

H Xy, F) = SYHYY, I* I™'®F)

and since
H\Y, I" "M QF)
is dual to
HY Y, F " ®I™(E)(—3)).

('(E) = (I"/I"*Y)"). Now by [10, 4.4], H¥X —Y, F) is infinite dimensional,
and taking into account the long exact sequence of local cohomology, H} (F)
is also infinite dimensional. Hence the situation in characteristic p is com-
pletely different from that in characteristic zero, where HXW — Z,F) is

finite dimentional if Z is a non-singular projective surface with ample normal
bundle in a non-singular projective fourfold [10].

TueoreMm 3.1. In any characteristic, there is on P? an exact sequence of locally
free sheaves

O—> (12— 7*—>E—>0

with E ample. E is not p-ample when char k = p.
The idea of the proof is to construct a surjection from 4 to ¢ (7)® of
a sufficiently general nature. Then we will show E restricted to every curve
is ample. The integer seven above may be replaced by any larger integer.
Let X denote P} and H denote a line in X.

Lemva 3.1, The generic linear system of dimension 3 in |7H| has no base
points and contains no divisor with multiple components.

Proof. Using the formula,

dim|mH | =_(”L4‘_1)2(Z"j_‘?.L_;

we readily verify that
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dim [7TH| =44+ dim|(7— i)H| +dim |iH |,
for 0<i<7. On the other hand,
dim |(7 — )H| 4+ dim |{H |

is the dimension of the subset G; of |7H | consisting of all divisors D which
can be written as D, +D, where D, is in |[(7—i)H| and D, is in |iH]|.
Since codim G;=4, it follows that the generic linear system of dimension
3 does not meet G; and so all divisors in this system are prime.

It is also clear the generic linear system of dimension 3 has no base
points since four divisors usually do not have a point in common.

Now given a linear map D of P? into |7H|, we can get a map from
& to (7). Indeed any linear map between projective spaces comes from
a linear map on the corresponding vector spaces, in this case k' and
H'(X, 7 (7). Hence given two maps D and D", we get a map

g — 7"

LemmMa 3.2, It is possible to choose D and D so that the above map is
surjective. Furthermore, D,ND? is a finite collection of points for all t in P3.

Progf. Let L and L’ be disjoint linear systems of dimension 3 in |7H|
which have no base points and which contain no divisors with multiple
components, and let D and D’ be linear maps of P® onto L and L’ res-
pectively. We will alter D’ by an automorphism of P? to obtain D”. For
2 in P? and ¢ in PGL(3), consider the planes

F(x) = {t|lxeD,}cP?
F'(z) = {t|lxeD;}cP?
and the subset B of PGL(3)x P?
B = {(o, 2)|oF (x) = F'(2)}.

Let p, and p, denote the projections of B into PGL(3) and P:. Now if
B, = p3'{x}, then

codimpgrs(Ba) = 3

since B, is just the set of ¢ which map F(x) onto F'(x). So dim B < dim
PGL(3). Hence there is a ¢ in PGL(3) so that ¢ is not in py(B). Now
define
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D" . PP—> |TH|

by
D7} = Di¢

But then for each x, there are s and ¢ in P? so that

xeD]; x¢D,

x&DY; xeD,.
Hence the map f:2*—> 7 (7)? is surjective. For let w be a section of
" corresponding to s and let p, and p, be the projections of ¢7(7)? onto
(7). Then p,f corresponds to D and p,f to D”. Then p.(f(w)) vanishes
at z, but p,(f(w)) does not. Since L and L’ are disjoint and contain only
irreducible divisors, D7ND, is a finite set of points for all ¢.

We are now ready to construct our ample bundle. We take a surjective
map of the type constructed above and let E” be the kernel.

0—>E~ > 74— 7 (1)t —>0

0—> J (=1} —> 7' —> E—>0.

Now E is not p-ample since HYE”'®¢7(—1)) =0 for all . Indeed, we
have the exact sequence

0 = H(& (—1)") —> H'(E”"(—1)) —> H{(Z (=7p"™ — 1)) = 0.

To show E is ample, we use the criterion of Proposition 2.1. Let C
be an irreducible curve on P.. We must show every quotient line bundle
of E\¢ is ample. But if L were not ample, we would have L isomorphic
to ¢J¢ since L is generated by global sections. This in turn would give a
nowhere zero section of EY,. Hence we would get a section of 74 This
section would extend to a section ¢7%. Finally, the image of this section
in ¢ (7)? would vanish on C. But this section would correspond to a point
¢ in P? and then

ccDh.nDy.

But this intersection has only a finite number of points. Hence L is ample
and so E is ample.

We now construct a series of ample bundles F, so that F,(k¥) has no
sections if k<. First, suppose the characteristic of k¥ is p 0. A theorem
of Barton states that if E is ample and F is a bundle, then E?®F is ample
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for ! large [3]. Hence we choose F, to be E?®¢”(—n) where [ is large
enough so that F, is ample. We have an exact sequence
0—> 72 (—7p" — n)t —> 7 (—n)!—> F,—>0

Using the long exact sequence of cohomology, we see F,(k) has no sections
for k<<n.

Now we can also construct such bundles in characteristic zero. Let 4
be a local integral domain so that the residue field ¥ has characteristic p
and whose quotient field K has characteristic zero. Then we can extend the
two maps from ﬂ’},%(n) to ﬁ’p,%(?p‘ + n) to maps from ¢ py(n) to Tri(n+7pY).
So we can construct a new locally free sheaf E” over P}

0—> Tp3(—7p" — n)?—> Tpy(—n)! —> E"' —>0

Now letting F, = E”"®K, we see that

O~ Tpe(—Tp" — n) —> Tpy(—n)' —> F, —> 0.
Furthermore, F, is ample since the set of xeSpeéA such that E” is ample
on the fiber over # is- open and non-emipty.
~ As we promised in the introduction, we now give an example of a p-
ample bundle £ on P? so that for any bundle F,
HNI™(E)®F) #0

for all » large. We need the following lemma which will enable us to

relate the cohomology of I'”"(E) and E”".

LemMa 3.3 (char k= p). Let E be a vector bundle of rank 2. Then for
each n >1, there is an exact sequence

x  0—> SP" (E?) —> SP"(E) —> I'"(E) —> """ (E?) —>0.

Proof. Let A be a ring of characteristic p. Let P denote the repre-
sentation of GI(2, A) on A? defined by

PC 2= @)

S* will denote the symmetric power representation of GI(2.4) on A**!,
Then we define a new representation I'"™ by

r~(F) = (((S"F=™".
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However, since S" is actually a group homomorphism and since transpose
and inverse commute, we have

[™(F) = (S"F"))".

‘We let ¢ =p" and » = p*!. So to prove * we merely have to show there
is an exact sequence of representations.

¥ 0—>S"P—>S'——>T?"—>["P—>0.

Now let !/ be the largest integer such that p' divides k!(g—k)! for all %.
Denote p' by s and the (g+1)x(g+ 1) diagonal matrix given by
g — To)!
b = klqg—k)!
N
by B. Now let gy, - - -,g, be the usual basis for A*' and f,, -~ -, f, the
usual basis for A"*'. Let C be the linear map from A™! to A%*!' which
sends f, to g, and D the map of A! to A™!' which sends g¢,, to f, and
9, to zero if p does not divide /. Now p divides b, if and only if »

divides k. 1 claim that for any F in GI(2,A) we have a commutative
.diagram with exact rows,

C B
0—-‘—)AT+1__9A11+1"‘—)A‘1+1'_—>A’+1——>0
| TPy | sup) | ) | 7 P(F)

0—> AT — A9y A7 A" —5 (0.
C B D .

‘“This will prove *+ and hence =,
We need only check commutativity of the diagram for F of the form

69 G 1) and @

As a sample of these checks, we prove commutativity of ‘the middle square

when
11
F={; 1)
stPe) = 3120

SUF*) (g, = Ig (?)gj
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So we have
rem - HDn
So
rF)Ble) = 3 (f)He=BL

(PG = (1~ By ila = !
BS(P)g) = 33(§ 5L,

However the reader may easily verify that in Z,

(Dt = (=) =

The above lemma gives us a hold on the cohomology of I'*"(E).

THEOREM 3.2. Let F be a projective surface, E a p-ample bundle of rank 2:
on F, and G a coherent sheaf on F. Then for large n,

dim H!(I"*(E)QG) = dim HY{(E?"QG).
Progf. First, there are m, and #, so that
* HX(S”" (E*")®G) =0
if m=m, or n=mn,. Indeed, let ¢7(1) be an ample line bundle so that
HGR (k) =

for all £>0. Now choose m, so that if m=m, then E" is a quotient of

a direct sum of ¢7(1)’s. Then S?”"(E?")®G is a quotient of a direct sum of
O ®BRG’s for k>0, Hence * holds if m=m,. On the other hand, the

bundles E, E?, - -+, E?™ are all ample. So there is an #, so that if n=n,,
then

H2(SP(EP"Y®G) = 0

if m=<m, So = is established if m=m, or n=#n,. Now from Lemma 3.3,
we have exact sequences

0—> S (E?™ )G —> S*(E*")QG—> D, ., —> 0
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0—> Dy —> I'P"(EP" QG —> I (E*™ ) QG —> 0.
Now =* and the fact that H? is right exact show that
H*Dy,q) =0
if m=mn, or n=mn,. So we have an exact sequence
H{(IP(EP®G) —> H\I™ " (E*")®G) —> 0

So if n is greater than 2m, and 2, we have exact sequences

HY{(I'"(E)QRG) —> HI(I'*" (E?)®RG) —> 0
H\(I?" (EP)®G) —> H(I®"* (EP)QRG) —> 0

HY(I'?(E?")®G) —> HY(E?"QG) —> 0.
So our theorem follows.

Now we can give our example, which is one of a series constructed by
Kleiman [13]. Fix a surjection on P?

g*—> 7(2)—>0.
Dualizing and twisting by ¢7(1), we get an exact sequence
0— 7(—1)—> 71— E—>0.
Then E is p-ample since it is a quotient of a direct sum of ample line
bundles. Now let G be a bundle on P2 Then
HYGQ®E?™) #0,

for n large. For if = is large, HG(p"™) and H*G(p")) are both zero, so
HY(G®E?") and H*G(—p") are isomorphic. However,

dim H*G(—p")) = dim H(G " ®Z(p" — 3)).
Hence by our theorem,
H\I'*(E)®G) #0

for » large.
We give the following theorem which clarifies somewhat the relations
between the various properties we have been discussing.
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TureoreM 3.3 (char k= p). Let F be a projective surface and E a p-ample
bundle of rank 2 on F. Then if for any coherent sheaf G,

HNI'"'(E)®G) = 0

for n large, then E tis cohomologically p-ample.

Proof. From Theorem 3.2, we see HYE?"®G) vanishes for large n.
Now if L is a line bundle so that H%L) =0, we write GRE?" as a quotient
of copies of L. Then HX*G®E?") vanishes.
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