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Outer-layer similarity and energy transfer
in a rough-wall turbulent channel flow
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Direct numerical simulations (DNSs) are performed to investigate the roughness effects
on the statistical properties and the large-scale coherent structures in the turbulent channel
flow over three-dimensional sinusoidal rough walls. The outer-layer similarities of mean
streamwise velocity and Reynolds stresses are examined by systematically varying the
roughness Reynolds number k+ and the ratio of the roughness height to the half-channel
height k/δ. The energy transfer mechanism of turbulent motions in the presence of
roughness elements with different sizes is explored through spectral analysis of the
transport equation of the two-point velocity correlation and the scale-energy path display
of the generalized Kolmogorov equation. The results show that, with increasing k+, the
downward shift of the mean streamwise velocity profile in the logarithmic region increases
and the peak intensities of turbulent Reynolds stresses decrease. At an intermediate
Reynolds number (Reτ = 1080), the length scale and intensity of the large-scale coherent
structures increase for a small roughness (k+ = 10), which leads to failure of the
outer-layer similarity in rough-wall turbulence, and decrease for a large roughness (k+ =
60), as compared with the smooth-wall case. The existence of the small roughness (k+ =
10) enhances the mechanism of inverse energy cascade from the inner-layer small-scale
structures to the outer-layer large-scale structures. Correspondingly, the self-sustaining
processes of the outer-layer large-scale coherent structures, including turbulent production,
interscale transport, pressure transport and spatial turbulent transport, are all enhanced,
whereas the large roughness (k+ = 60) weakens the energy transfer between the inner and
outer regions.

Key words: turbulence simulation, turbulent boundary layers

1. Introduction

Turbulent flows over rough walls occur in many engineering applications and
natural phenomena. The engineering challenge is to predict the increased drag due
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to the roughness for a given surface under operational conditions (Chung et al.
2021). In turbulence physics, extensive work has been conducted to elucidate the
different phenomena and mechanisms between rough-wall turbulence and the traditional
smooth-wall turbulent boundary layer (Raupach, Antonia & Rajagopalan 1991; Krogstad,
Antonia & Browne 1992; Jiménez 2004; Volino, Schultz & Flack 2009; Hong, Katz
& Schultz 2011; Mejia-Alvarez & Christensen 2013; Squire et al. 2016). For instance,
the existence of roughness can obviously modify the well-known near-wall dynamics
of smooth-wall flow because of the effects of local surface conditions. Qualitatively,
such effects generally include substantial modifications of the wall drag (viscous and
pressure drag components) and the intensity of the turbulent velocity fluctuations and
other physical quantities compared with the flow over a smooth wall. Nevertheless, the
effect of roughness upon a turbulence structure is not well understood, particularly in the
near-wall flows and outer-layer flows.

1.1. Outer-layer similarity
In studies of rough-wall turbulence, the existence of outer-layer similarity is a pivotal
condition because the downward shift of the mean velocity profile is often associated with
an increase in drag. Townsend (1976) proposed a similarity hypothesis that the turbulent
flow in the outer region is independent of the wall roughness and viscosity. Raupach et al.
(1991) further extended this hypothesis – specifically, that the influence of roughness is
mainly limited to the roughness sublayer, which only determines the wall friction velocity,
the virtual origin offset, the flow within the roughness sublayer and the boundary layer
thickness. The statistical characteristics of turbulence and flow structures in the outer
region are not affected by wall roughness. Here, the roughness sublayer is defined as
the region above the roughness, where turbulent motions are directly influenced by the
roughness length scales and are generally considered to be within the wall-normal position
approximately two to five times the roughness height from the surface. The definitions of
different roughness forms differ somewhat (Busse, Thakkar & Sandham 2017; Forooghi
et al. 2018; Yuan & Jouybari 2018).

Throughout the years, verification of the outer-layer similarity hypothesis has been
controversial. For example, the results of experimental studies of rough-wall boundary
layers (Krogstad et al. 1992; Tachie, Bergstrom & Balachandar 2000; Volino et al. 2009)
and the results of numerical simulations of turbulent channel flow (Leonardi et al. 2003;
Bhaganagar, Kim & Coleman 2004) and a turbulent boundary layer (Lee & Sung 2007;
Lee, Sung & Krogstad 2011) all indicated substantial roughness effects in the outer region.
On the contrary, various reports support the outer-layer similarity (Raupach & Shaw
1982; Schultz & Flack 2007; Hong et al. 2011; Yuan & Piomelli 2014a; Squire et al.
2016; Chan et al. 2018). Jiménez (2004) stated that the conflicting views regarding the
similarity hypothesis might be caused by the effect of the relative roughness on the flow
and suggested that the ratio of the boundary layer thickness to the roughness height δ/k
should be greater than 40 for the outer-layer similarity to be observed. Lee et al. (2011)
summarized that the wall similarity and its necessary conditions might not be universal
for the given flow types (Bakken et al. 2005; Flack, Schultz & Shapiro 2005) and that
the wall similarity appears to be related to other factors (e.g. dimensions of roughness
and geometric shape). Recently, Chan et al. (2018) noted that the ratio between roughness
streamwise and spanwise spacings and the boundary layer thickness are also important
factors that can affect the outer-layer similarity.

Overall, the conditions under which the outer-layer similarity is applicable in rough-wall
turbulence remain unclear. In addition, roughness effects on coherent structures of
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different flow layers are poorly understood. In the actual turbulent flow fields, strong
nonlinear interscale interactions occur and become stronger with increasing Reynolds
number. In particular, the discovery of the inner–outer-layer interactions between
different scale motions (Mathis, Hutchins & Marusic 2009; Marusic, Mathis & Hutchins
2010; Talluru et al. 2014; Hwang et al. 2016; Squire et al. 2016) further confirms
that the large-scale and very-large-scale structures of an outer region can affect the
near-wall turbulence. All of these findings challenge the outer-layer similarity theory
of rough-wall turbulence. Whether and how the roughness changes the interactions
between coherent structures with different scales are the starting points of the present
paper.

1.2. Energy transfer
Many physical processes in wall turbulence are accompanied by energy transfer, and the
wall roughness can affect the coherent structures and momentum transfer. The scale and
spatial characteristics of the energy transfer process can differ appreciably from those
in canonical wall-bounded turbulent flows. Therefore, the influence of roughness on
outer-region flow can be explained by the energy transfer mechanism between the inner
and outer regions.

Spectral analysis based on the two-point correlation function (Lumley 1964; Lee &
Moser 2015, 2019; Mizuno 2016; Cho, Hwang & Choi 2018) and the analysis of the
structure function in physical space (Hill 2002; Marati, Casciola & Piva 2004; Cimarelli,
De Angelis & Casciola 2013; Cimarelli et al. 2016; Gatti et al. 2020) are both effective
tools to study the energy transfer in wall-bounded turbulent flows. The main idea in the
former case is to investigate the production, diffusion and dissipation of turbulent kinetic
energy and energy redistribution among the velocity components via the transport equation
of the two-point velocity correlation (Lee & Moser 2015; Mizuno 2016). The description
in the spectral space can provide the characteristics of energy transfer among different
length scales in the streamwise and spanwise directions and among different flow regions
in the wall-normal direction. Some important multiscale behaviours of turbulent flows
can then be observed, such as the classical energy cascade from large to small scales and
the inverse energy cascade from small to large scales. In the latter case, the second-order
structure function of velocity fluctuations is equivalent to the kinetic energy of eddies
with length scale r in physical space; in addition, the transfer path of the scale energy,
i.e. the amount of energy contained at certain scales as dictated by the second-order
structure function, or scale-energy flux in the space composed of wall-parallel scales and
wall-normal distance can be investigated by the generalized Kolmogorov equation (Marati
et al. 2004; Cimarelli et al. 2013, 2016). The scale-energy path can supply the interscale
energy transfer involving the wall-normal scale information, which cannot be realized in
the spectral analysis because of wall-normal inhomogeneity.

As previously reviewed, considerable efforts have been devoted to understanding the
energy transfer in classical smooth-wall turbulence, whereas few studies on the energy
transfer process in the framework of rough-wall turbulence have been reported. For
instance, Yuan & Piomelli (2014b) investigated the energy transfer process between
turbulent kinetic energy and roughness-induced wake kinetic energy within the roughness
sublayer using the single-point Reynolds stress transport equation. However, their study
lacked an analysis of the interscale energy transfer along different directions. More
recently, the energy transfer of turbulent motions in the presence of surface waves was
investigated through spectral analysis using the two-point correlation transport equation.
Zhang, Huang & Xu (2019) concluded that the wave-induced production provides
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additional input for the large-scale energy at low wave ages but plays the opposite role
at high wave ages. Wang et al. (2020) found that surface waves carry a new energy source
at the dominant wavelength scale in the near-surface region, which is mainly due to the
contribution of the neighbouring streamwise turbulent motions, and those at the harmonic
wavelength scales contribute the most. This paper enriches this research in rough-wall
turbulence, providing a new perspective for gaining further insight into the outer-layer
similarity failure.

The aim of the present work is to explore the effects of roughness on the outer-layer
similarity of turbulence statistics and large-scale structures, and to investigate the
turbulent energy transfer process. The roughness Reynolds number k+ and the ratio of
the roughness height to the half-channel height k/δ are systematically varied. Direct
numerical simulations (DNSs) were performed for a fully developed turbulent channel
flow with three-dimensional sinusoidal roughness. A triple decomposition was adopted
to extract the mean, wave-induced and turbulent components of the flow field. The
turbulent statistics for rough-wall cases, including the mean velocity profiles and velocity
defects, stress profiles, energy spectra and instantaneous flow fields, were then examined
and the results were compared with those for the smooth-wall cases. In addition,
spectral analysis of the two-point correlation transport equation and the scale-energy
path display of the generalized Kolmogorov equation were performed to reveal the
underlying mechanism by which roughness affects the overlying turbulent flow at different
length scales and vertical positions. The paper is organized as follows: the problem
formulation and numerical method are briefly introduced in § 2. Roughness effects
on turbulence statistics and large-scale structures, along with detailed analyses of the
turbulent energy transfer process, are discussed in § 3. Finally, conclusions are drawn
in § 4.

2. Problem formulation

The problem considered here is a fully developed turbulent channel flow over rough walls.
The rough surface consists of three-dimensional sinusoidal roughness elements according
to

ηd = k cos(2πx/λ) cos(2πz/λ), (2.1)

where ηd is the rough surface elevation, k is the semi-amplitude and λ is the wavelength of
the roughness elements. A schematic of the computational domain and coordinate system
is shown in figure 1. We adopt a Cartesian frame fixed in the physical space, with x,
y and z denoting the streamwise, vertical and spanwise coordinates, respectively. The
corresponding velocity components in the three directions are u, v and w, respectively.
The flow is driven by a mean pressure gradient that is dynamically adjusted to maintain
a strictly constant flow rate over time. The governing equations for the turbulent
flow are the dimensionless incompressible Navier–Stokes equations and the continuity
equation

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Reb

∂2ui

∂xj∂xj
, (2.2)

∂ui

∂xi
= 0, (2.3)

where ui(i = 1, 2, 3) = (u, v,w) are the velocity components in the three directions
xi(i = 1, 2, 3) = (x, y, z), p is the pressure and Reb is the bulk Reynolds number.
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Figure 1. Schematic of the turbulent channel flow over three-dimensional sinusoidal rough walls.

The governing equations are non-dimensionalized using the bulk velocity Ub, fluid density
ρ, half-channel height δ and the kinematic viscosity ν as the characteristic quantities. The
governing equations (2.2) and (2.3) are transformed into the computational domain by
introducing an algebraic mapping

t = τ, x1 = ξ1, x2 = ξ2(1 − ηd)+ ηd, x3 = ξ3, (2.4a--d)

where ξ1, ξ2, ξ3 and τ are the space and time coordinates in the computational
domain. Periodic boundary conditions are imposed on the streamwise and spanwise
directions, and the walls of the channel are no slip. For spatial discretization, we use a
pseudo-spectral method along the transformed horizontal coordinates. In the transformed
vertical direction, a second-order finite difference method is used on a staggered grid. The
third-order time-splitting method is adopted for time advancement. Further details of the
numerical method can be found in Ge, Xu & Cui (2010).

The flow and roughness parameters for all of the rough cases simulated are summarized
in Table 1. The superscript ‘+’ denotes physical quantities normalized by the friction
velocity uτ and the wall viscous length scale δν (δν = ν/uτ ). In the present study, two
groups of numerical cases were simulated: (i) group A, in which the friction Reynolds
number Reτ is varied while k+ is kept constant; (ii) group B, in which Reτ is varied
while k/δ is kept constant. For group A, as the roughness elements have the same viscous
scale, the physical geometrical size of the roughness element relative to the half-channel
height reduces with increasing Reynolds number. For group B, all cases have the same
physical geometrical size, and the viscous scale increases proportionally with the friction
Reynolds number. For comparison, the simulation of full-channel flow over a smooth
wall at the corresponding Reynolds numbers were also carried out. The dimensions of
the computational domain are Lx × Ly × Lz = 2πδ × 2δ × πδ, and the corresponding
grid number increases with the Reynolds number. The grid points in the streamwise and
spanwise directions are uniform, and follow a cosine distribution in the vertical direction.
Note that the grid resolution needs to meet the DNS requirements and ensure the smooth
recognition of the roughness elements.
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Case Reτ k+ λ+ 2k/δ Nx × Ny × Nz Nwx Nwz 	ξ+
1 	ξ+

2,b 	ξ+
2,c 	ξ+

3

Group A 180 10 71 1/9 144 × 96 × 144 16 8 7.85 0.04 4.0 3.93
360 10 71 1/18 192 × 144 × 192 32 16 11.78 0.08 7.9 5.89
540 10 71 1/27 288 × 192 × 288 48 24 11.78 0.07 7.9 5.89
720 10 71 1/36 384 × 288 × 384 64 32 11.78 0.04 7.9 5.89

1080 10 71 1/54 576 × 384 × 576 96 48 11.78 0.04 8.9 5.89

Group B 180 10 71 1/9 144 × 96 × 144 16 8 7.85 0.04 4.0 3.93
360 20 141 1/9 192 × 144 × 192 16 8 11.78 0.08 7.9 5.89
540 30 212 1/9 288 × 192 × 288 16 8 11.78 0.07 7.9 5.89
720 40 283 1/9 384 × 288 × 384 16 8 11.78 0.04 7.9 5.89

1080 60 424 1/9 576 × 384 × 576 16 8 11.78 0.04 8.9 5.89

Table 1. Flow and roughness parameters. Here, Nwx and Nwz denote the numbers of roughness elements in the
streamwise and spanwise directions, respectively;	ξ+

1 and	ξ+
3 are the grid resolutions in the streamwise and

spanwise directions; and 	ξ+
2,b and 	ξ+

2,c are the minimum grid resolution near the bottom boundary and the
maximum grid resolution near the channel centreline in the vertical direction, respectively.

3. Results and discussion

3.1. Mean velocity profiles
In §§ 3.1 and 3.2, we mainly investigate the roughness effects on turbulence statistics.
The effect of roughness elements on wall resistance is directly reflected in the variation
of the mean velocity profile. Figure 2 shows the mean streamwise velocity profiles and
velocity defects in semi-logarithmic coordinates. The mean velocity profiles are computed
by ensemble average, including temporal and spatial averages. Different from the intrinsic
and superficial averages on the Cartesian grid (Nikora et al. 2007), the spatial average
here is performed along the ξ1 and ξ3 directions in the curvilinear coordinate system, at
each layer of grid corresponding to the mean vertical distance from the rough surface (ȳ).
Regarding the selection of the virtual origin, Chan et al. (2015) tested various methods and
obtained the most consistently reliable estimation of the virtual origin by collapsing the
total stress profile outside the roughness layer. According to their results, the zero-plane
displacement is approximately equal to the mean height of rough surface. Therefore, y = 0
is employed as the virtual origin of the bottom wall for the present rough-wall cases. The
velocity profiles still satisfy the logarithmic law in the presence of the roughness elements;
however, a downward shift arises with respect to the results for the smooth wall, which is
known as the Hama roughness function (Hama 1954) and is represented by 	U+. The
logarithmic law for the rough wall can be expressed as

U+
r = 1

κ
ln(y+)+ C −	U+, (3.1)

where the subscript r indicates the rough-wall case, κ ≈ 0.40 is the von Kármán constant,
C ≈ 5.3 is the offset constant and 	U+ reflects the increase in wall friction drag,
which is closely related to practical applications. All the mean velocity profiles with
different rough conditions follow a logarithmic variation beyond a certain normal position.
Therefore, from the perspective of first-order statistics, the hypothesis of outer-layer
similarity (Townsend 1976) is still retained for rough-wall flows. For group A, the mean
velocity profiles basically coincide, appearing to be independent of the Reynolds number.
However, for group B, the mean velocity profiles are shifted downward with increasing
the Reynolds number; that is, 	U+ is a function of the viscous-scaled roughness height
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Figure 2. Profiles of (a,b) the mean streamwise velocity plotted against the viscous wall-normal height ȳ+ and
(c,d) the velocity defects plotted against the wall-normal height normalized by the half-channel height ȳ/δ for
groups A and B, respectively. In the abscissa axis, ȳ represents the mean vertical distance from the wall in the
boundary-fitted curvilinear coordinate system. Dash-dotted lines show U+ = y+ and U+ = 1/κ ln( y+)+ C,
κ = 0.40 and C = 5.3. Green and red solid lines represent the smooth- and rough-wall results, respectively.
Line colours gradually change with the Reynolds number. The vertical solid black lines show the maximum
roughness height for each group of cases.

k+ and is independent of the friction Reynolds number, consistent with the conclusion
of Zhang, Huang & Xu (2020). Note that the current rough-wall cases keep the other
roughness parameters unchanged, except k+. In fact, the previous studies have reported
that the roughness function is also closely related to different roughness parameters, e.g.
the roughness steepness (Napoli, Armenio & De Marchis 2008; Ma et al. 2020), anisotropy
(Busse & Jelly 2020) and skewness (Flack, Schultz & Barros 2020). By plotting the
velocity defect in figure 2(c,d), we observe that the profiles for groups A and B are
self-similar in the outer layer. In addition, a good collapse is also observed in the inner
layer for group B except at Reτ = 180, which differs from the results for group A. This
phenomenon indicates that k/δ plays a more important role in determining the velocity
defect; that is, the same physical model of roughness elements will show the velocity
defect profile collapse as the Reynolds number increases.

3.2. Profiles of dispersive and Reynolds stresses
In a rough-wall turbulent flow, we must consider the effect of rough spatial geometry
on turbulence statistics. To this end, a triple decomposition method can be applied to
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Figure 3. Profiles of the Reynolds stresses: (a) streamwise component, (b) vertical component, (c) spanwise
component and (d) shear stress plotted against the wall-normal height normalized by the half-channel height
ȳ/δ for group A. The definitions of the line colours and line types are the same as those in figure 2.

decompose the instantaneous velocity into three components (Reynolds & Hussain 1972)

ui = 〈ui〉 + u′
i = ūi + ũi + u′

i, (3.2)

where ūi denotes the time and ξ2-plane average, 〈ui〉 denotes the phase-averaged
component and ũi and u′

i denote the wave-induced and turbulent fluctuations, respectively.
Accordingly, the second-order velocity correlation can be decomposed into the mean,
dispersive and Reynolds stresses as follows:

uiuj = (ūi + ũi + u′
i)(ūj + ũj + u′

j) = ūiūj + ũiũj + u′
iu

′
j. (3.3)

Figure 3 shows the profiles of the Reynolds stresses against the wall-normal height
normalized by the half-channel height ȳ/δ for group A. As shown in figure 3(a), the
roughness elements elevate the inner peak location where the near-wall cycle occupies,
compared with the smooth-wall results. The inner peak intensity of the streamwise
Reynolds stress decreases, indicating that the typical coherent structures near the wall
are disrupted by roughness and that the turbulent fluctuations are weakened. Even so, the
Reynolds number effect still exists and the inner peak intensity increases with increasing
Reynolds number. Different from the streamwise component, the spanwise Reynolds stress
is larger than the smooth-wall results, especially in the near-wall region, whereas the
vertical Reynolds stress and Reynolds shear stress are marginally affected by roughness.
The peak locations of these three components are basically unchanged as compared with
those of the smooth-wall case. A good collapse in the outer region of the flow is not
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Figure 4. Profiles of the Reynolds stresses: (a) streamwise component, (b) vertical component, (c) spanwise
component and (d) shear stress plotted against the wall-normal height normalized by the half-channel height
ȳ/δ for group B. The definitions of the line colours and line types are the same as those in figure 2.

obtained for the streamwise Reynolds stress profiles, especially for Reτ = 1080. In this
region, the profiles demonstrate a shoulder lifting phenomenon. The streamwise Reynolds
stress increases with the presence of roughness and the outer-layer similarity fails. In the
current context, the term ‘outer region’ is used to denote where the rough-wall turbulence
statistics collapse well to the smooth-wall cases, such as the Reynolds stresses and the
energy spectra. However, for the vertical and spanwise Reynolds stresses and Reynolds
shear stress, remarkable collapses are still observed in the outer region (ȳ/δ > 0.4) at all
the Reynolds numbers considered here.

Similarly, figure 4 shows the profiles of the Reynolds stresses against ȳ/δ for group
B. As seen in figure 4(a), the inner peak intensity of the streamwise Reynolds stress
decreases with increasing k+, which indicates that a larger roughness viscous scale
causes more significant suppression of the inner-layer turbulence and results in weakened
turbulent fluctuations. The peak locations are invariant with the Reynolds number except
at Reτ = 180, unlike those of group A. In the outer region, the profiles collapse with
the smooth-wall case at higher vertical positions (ȳ/δ > 0.7), supporting the Townsend’s
outer-layer similarity hypothesis. For the vertical and spanwise Reynolds stresses, the
peaks exhibit an extrapolation tendency with increasing Reynolds numbers and an obvious
bimodal phenomenon is observed at higher Reynolds numbers. The difference is that the
first peak of spanwise Reynolds stress appears below the roughness height and the value
tends to the second peak value; by contrast, the two peak locations of vertical Reynolds
stress are above the roughness crest and the first peak value is obviously larger than the
second one at Reτ = 1080. For the Reynolds shear stress, the peak location is pushed
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ũũ
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Figure 5. Profiles of the dispersive stresses: (a) streamwise component, (b) vertical component, (c) spanwise
component and (d) shear stress plotted against the wall-normal height normalized by the half-channel height
ȳ/δ for group A (blue) and group B (red), respectively. Line colours gradually change with the Reynolds
number.

to higher vertical positions; however, the intensity increases slightly with increasing
Reynolds number. Some negative regions occur at ȳ+ < 10, and this phenomenon becomes
more obvious with increasing k+. This result is mainly related to the backflow within
the roughness elements. In the outer region, the vertical and spanwise Reynolds stresses
and the Reynolds shear stress profiles of both the smooth-wall and rough-wall cases are
self-similar. The initial locations for the profile collapse are slightly different.

The dispersive stresses profiles for groups A and B are plotted in figure 5. For the
smooth-wall cases, the dispersive stresses are zero. For the rough-wall cases, the intensity
of the streamwise dispersive stress is clearly substantial, even greater than the intensity
of its turbulent counterpart. By contrast, the intensities of the dispersive stresses of other
components are obviously weaker than those of the corresponding Reynolds stresses. For
group A, the profiles are independent of the Reynolds number, except the locations that
are closely related to k/δ. This indicates that the dispersive stresses are mainly affected by
the roughness height k+, similar to the mean velocity profiles. Coincidentally, Zhang et al.
(2020) found that the roughness-induced velocity fluctuations and pressure fluctuations
both show Reynolds number independence if the roughness element has the same k+. In
addition, the dispersive stresses are dominant within the roughness sublayer but decrease
rapidly to zero above the crest of roughness element. The vertical and spanwise dispersive
stresses achieve their peak values below the roughness crest, and the peak location of
streamwise stress is slightly higher (ȳ/δ ≈ k/δ). The dispersive shear stress is negative in
the inner-layer region and exhibits two weak peaks. For group B, the dispersive stresses
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Figure 6. Profiles of the streamwise Reynolds stresses plotted against the wall-normal height normalized by
the half-channel height ȳ/δ at different Reynolds numbers: (a) Reτ = 720 and (b) Reτ = 1080. Black solid line
shows the smooth-wall results. Line colours gradually change with the roughness height.

profiles show an inward shift as the Reynolds number increases, although k/δ remains the
same. Above the roughness crest, the profiles decrease drastically to zero. The maximum
values of the streamwise dispersive stress and shear stress do not show a monotonic
variation, whereas the maximum values of the vertical and spanwise components increase
substantially with increasing k+.

To further compare the effect of k+ on the turbulence statistics in the inner and
outer regions at the same Reynolds number, we added some rough cases in figure 6
with rearrangement. The variation of the streamwise Reynolds stress in the outer region
by increasing k+ is non-monotonic at Reτ = 720; first increasing and then decreasing.
Turbulent fluctuations are enhanced in the outer region for the cases of k+ = 10 and 13.33,
whereas a good collapse between the smooth- and rough-wall profiles is observed for the
cases of k+ = 6.67 and 40. Unlike Reτ = 720, the streamwise Reynolds stress in the outer
region monotonically decreases with increasing k+ at Reτ = 1080. The effect of roughness
on the outer-layer similarity may be induced by different mechanisms for small and large
k+, if k/δ is small but Reτ is high.

In addition, a quantitative evaluation of the collapse degree of the velocity defect and
streamwise Reynolds stress profiles can be made by introducing the deviation factor as in
Squire et al. (2016). The deviation factor is obtained by calculating the maximum relative
deviations in the height range ȳ/δ = 0.5 ∼ 1.0. For the streamwise velocity defect profiles
(figure 2c,d), the deviation factor is 0.11 % for k+ = 10 and 0.35 % for k+ = 60 at Reτ =
1080, indicating that the hypothesis of outer-layer similarity holds for both the small- and
large-scale roughness elements with respect to the first-order statistics. For the streamwise
Reynolds stress profiles (figure 6), the deviation factor is 2.7 % for k+ = 6.67 and 3.2 %
for k+ = 40 at Reτ = 720, and 8.21 % for k+ = 10 and 4.43 % for k+ = 60 at Reτ = 1080.
A value of 5 % as suggested by Squire et al. (2016) is a reasonable criterion, such that the
outer-layer similarity is applied for both the small- and large-scale roughness elements at
Reτ = 720 and for k+ = 60 at Reτ = 1080, but not for k+ = 10 at Reτ = 1080.

The previous analysis indicates that the outer-layer similarity is closely related to the
roughness parameters, especially when obvious scale separation occurs at high Reynolds
numbers. Although k+ = 10 corresponds to a smaller k/δ, the outer-layer similarity of
streamwise Reynolds stress is lost, which is inconsistent with the conclusion of Jiménez
(2004). As reviewed by Chung et al. (2021), a single scale k/δ is insufficient to fully
describe the influence of roughness topography on turbulent flows. Several previous
studies on rough-wall turbulence have shown that the outer-layer similarity failure might be
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Figure 7. Contours of the one-dimensional pre-multiplied streamwise (left) and spanwise (right) energy
spectra of streamwise velocity turbulent fluctuation: (a) k+ = 10, λ+ = 71; (b) k+ = 60, λ+ = 424 at Reτ =
1080. Black solid lines represent the contours of smooth-wall energy spectra. Red solid lines correspond to the
wavelength and height of the roughness elements, respectively.

caused by the enhancement of scale interaction between the inner and outer regions (Hong
et al. 2011; Yuan & Piomelli 2014b). For instance, Hong et al. (2011) observed that the
roughness-scale eddies are generated near the surface and are then advected rapidly away
from the wall by large-scale structures that populate the outer layer in the experiments
involving rough boundary layers. Consequently, the outer-region turbulent motions are
enhanced. However, this explanation is presently speculative; we will further analyse the
specific reason by examining the energy transfer process between different spatial locations
and different scales in the following sections.

3.3. Large-scale flow structures
This section mainly describes the effects of roughness on the large-scale structures of
the outer region. We begin by examining the energy distribution at different length
scales and vertical locations. One-dimensional pre-multiplied streamwise and spanwise
energy spectra of streamwise velocity turbulent fluctuation are plotted in figure 7 for two
rough-wall cases (k+ = 10 and 60), together with the smooth-wall case at Reτ = 1080.
For the smooth-wall case, two peaks are observed in the spanwise energy spectra of the
streamwise velocity fluctuation that correspond to the inner/outer scale separation in high
Reynolds number wall turbulence. The inner peak is located at the scale around λ+z ≈ 130,
which corresponds to the spacing of near-wall low-speed streaks. The outer peak is located
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at the scale around λ+z ≈ 1120, which represents the turbulent large-scale motions in the
outer region. For the rough-wall results, the main wavenumber and its harmonics caused by
roughness periodicity still exist in the streamwise energy spectra but obviously no longer
exist in the spanwise energy spectra. The effect of roughness on the energy spectra is
mainly concentrated below the height of the roughness elements as compared with the
smooth-wall case, which becomes more obvious with increasing roughness height k+. For
the inner peak, the roughness elements elevate the peak locations of the streamwise and
spanwise energy spectra, which approximately satisfy y+

p,r ≈ y+
p,s + k+, where y+

p,r and y+
p,s

represent the vertical heights of the inner peaks in the rough-wall and smooth-wall cases,
respectively. As the roughness height k+ increases, the corresponding peak values are
weakened more substantially, consistent with the changes shown in the stress profiles. For
the outer peak, the roughness k+ = 10, λ+ = 71 enhances the large-scale structures and
the spanwise length scale of the peak increases (λ+z ≈ 1695); by contrast, the roughness
k+ = 60, λ+ = 424 reduces the outer peak in energy and the length scale (λ+z ≈ 850) is
smaller than the smooth-wall result (λ+z ≈ 1120). Roughness of different viscous scales
might have different effects on the turbulent energy transport between the roughness
sublayer and the outer layer. In the spanwise energy spectra, the contours of rough-wall
cases become coincident with the smooth-wall result in the outer region. This observation
indicates that a much higher vertical height is required for the energy spectra to satisfy the
self-similarity in the outer region, as compared with the mean velocity and second-order
statistics.

Figure 8 displays the one-dimensional pre-multiplied spanwise energy spectra of vertical
velocity and spanwise velocity turbulent fluctuations and shear stress. The selected cases
are the same as those in figure 7. For the vertical component, little difference is observed
between the rough-wall (k+ = 10) and smooth-wall cases. By contrast, the energy spectra
vary greatly below the roughness height for the case of k+ = 60 and energy tends to be
distributed at larger scales. For the spanwise component, when the roughness height is
k+ = 10, part of the extra energy region is observed in the energy spectra as compared with
the smooth-wall results. When k+ increases to 60, two peaks are observed in the spanwise
energy spectra; these peaks approximately correspond to the wall-normal heights of 10
and 100, respectively. The bimodal characteristics of the spanwise stress profile (figure 4c)
are consistent with this phenomenon. However, for both roughness heights, the rough-wall
contours of kzE+

v′v′ and kzE+
w′w′ both collapse to the smooth-wall cases in the outer region.

Finally, in the spanwise energy spectra of shear stress, the overall variation trend is similar
to the streamwise component. The peak energy in the outer region is increased, and the
corresponding spanwise length scale is also increased for the small roughness height
(k+ = 10). On the contrary, the large-scale peak decreases when the roughness height
increases.

In addition, the instantaneous flow field in the y–z plane at a certain streamwise location
is shown in figure 9 to visually describe the large-scale structures. The two rough-wall
cases of k+ = 10 and 60 at Reτ = 1080 are chosen. We intuitively observe that, as
compared with the large roughness (k+ = 60), the small roughness (k+ = 10) affects
the higher vertical position for both the streamwise turbulent velocity fluctuation and
the pressure fluctuation. Although the large roughness induces large pressure drag, the
pressure distribution is mainly concentrated near the roughness element and does not affect
the outer region. Such difference is caused by the pressure-strain terms and the transport
terms of the Reynolds stresses transport equations, which will be discussed in detail in the
following section.
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Figure 8. Contours of the one-dimensional pre-multiplied spanwise energy spectra of vertical velocity
fluctuation (left), spanwise velocity fluctuation (middle) and shear stress (right): (a) k+ = 10, λ+ = 71;
(b) k+ = 60, λ+ = 424 at Reτ = 1080. The definitions of the line colours and line types are the same as
those in figure 7.
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Figure 9. Instantaneous streamwise turbulent (a,b) velocity fluctuation u′ and (c,d) pressure fluctuation p′
in the y–z plane for (a,c) k+ = 10, λ+ = 71 (left) and (b,d) k+ = 60, λ+ = 424 (right) at Reτ = 1080. The
streamwise location is at x/δ = π.
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Figure 10. Instantaneous streamwise turbulent velocity fluctuation u′ in the x–z plane for (a,c) k+ = 10, λ+ =
71 (left) and (b,d) k+ = 60, λ+ = 424 (right) at Reτ = 1080. The vertical location is at (a,b) ȳ/δ = 0.03 and
(c,d) ȳ/δ = 0.3.

Figure 10 displays the instantaneous flow field in the x–z plane. Corresponding to the
analysis of energy spectra, two vertical locations ȳ/δ = 0.03 in the inner region and
ȳ/δ = 0.3 in the outer region are chosen. The streaky structures in the near-wall region
are substantially disrupted because of the presence of roughness elements, especially for
the large roughness height (figure 10b). The intensity of the velocity streaks is obviously
diminished, consistent with the decrease of the inner peak of the energy spectra (figure 7).
The modulation effects of roughness wavelengths can be discerned clearly for k+ = 10,
as also reflected in the roughness scale of the streamwise energy spectra. The large-scale
streamwise elongated low- and high-speed streaks are observed in the outer region, and
the large-scale structures at small roughness height are more coherent than the case of
k+ = 60. Two pairs of low- and high-speed streaks are clearly identified for k+ = 10, and
the spanwise spacing is approximately λz = Lz/2 = π/2, corresponding to the outer peak
of the spanwise energy spectra locating at the scale of λ+z ≈ 1695. The turbulent coherent
structures of the instantaneous flow field are consistent with the spanwise energy spectra.

3.4. Spectral analysis on the transport equation of two-point velocity correlation
To reveal the mechanism by which the roughness affects the outer-layer similarity,
we resort to the transport equation of two-point velocity correlation in the curvilinear
coordinates and analyse the energy transfer process in the presence of roughness.
Derivation of the transport equation and its spectral expression can be found in Wang et al.
(2020). We here replace the classic Reynolds decomposition with the triple decomposition
according to (3.2). The transport equation can be expressed as

∂u′
iu

′
jr

∂τ
(ξ1, ξ2, rξ3) = Pij +Πs,ij + Tt,ij + Tp,ij + Tν,ij − εij + WPij + Aij, (3.4)
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where the subscript r represents the quantity at the location with a certain distance
in the spanwise direction from the reference point. The terms on the right-hand side
correspond to the production, pressure-strain, turbulent transport, pressure transport,
viscous transport, dissipation, wave-induced production terms and additional terms related
to the effects of boundary deformation on the mean flow, sequentially. The specific
expression for each term is provided in Appendix A.

Figure 11 shows the premultiplied one-dimensional spanwise spectra of the production
and pressure-strain terms. For the smooth-wall case (figure 11a), the spectrum of the
production term of u′u′ has two peaks, with the inner peak located at the scale λ+z ≈
100 and the indistinct outer peak located at λ+z ≈ 1000. The intensity and scale of the
outer peaks increase for the rough-wall case of k+ = 10 as compared with the intensity
and scale of the outer peaks for smooth-wall turbulence. However, the outer peaks are
weakened and their length scale is reduced for the rough-wall case of k+ = 60. In the
spectra of the production term of u′v′ (figure 11d), the outer peak almost disappears
for both the rough-wall and smooth-wall cases. The production term P11 provides the
increased large-scale streamwise Reynolds stress (figure 3a) in the outer region, which
is obtained from the mean shear flow. In addition, there is no production term in the
transport equations of the vertical and spanwise components, which gain energy from the
streamwise component via the pressure-strain term. For the smooth-wall case (figure 11b),
the pressure-strain term Πs,22 transfers the energy from v′v′ to the other two components
within the region ȳ+ < 10; in the region ȳ+ ≥10, the energy is reversely transferred to
v′v′. The large roughness of k+ = 60 enhances the energy transfer from v′v′ below the
roughness height, leading to the increase of spanwise velocity fluctuations. This behaviour
also explains the bimodal phenomenon of the spanwise energy spectra (figure 8b). In the
spectra in figure 11(c), the pressure-strain term Πs,33 indicates that w′w′ mainly gains
energy from other components. An additional positive contribution can be observed below
the roughness height for the case of k+ = 10 as compared with the smooth-wall case.
This corresponds to the variation of w′w′ in the near-wall region in figure 3(c). In the
case of k+ = 60, an obvious difference lies in the increase of the negative contribution
region in the vicinity of the roughness crest. At this location, w′w′ outputs energy to the
other components, which corresponds to a weaker peak than that in the smooth-wall case
(figure 4c). The results show that the roughness strengthens the energy transfer via the
pressure-strain terms among the three velocity components.

In addition, figure 12 shows the pre-multiplied one-dimensional spanwise spectra of
the dissipation terms, which make negative contributions to the Reynolds stresses. For the
smooth-wall case, the dissipation terms are concentrated on small scales (λ+z < 100) in the
inner region (y+ ≈ 20). With the increase of wall-normal distance, the dissipation terms
decrease. For the case of k+ = 10, the presence of roughness generates more small-scale
eddies, which strengthens the dissipation. On the contrary, a large roughness k+ = 60
weakens the dissipation significantly. A possible reason for such a difference is that
k+ = 10 corresponds to the transitionally rough regime and the near-wall self-sustaining
cycle of turbulence is enhanced, whereas k+ = 60 is close to the fully rough regime and
the near-wall self-sustaining cycle is significantly disrupted (MacDonald et al. 2016). For
the spanwise component (figure 12c), the dissipation is obviously increased both above
and below the roughness crest, as compared with the smooth-wall case. On the other
hand, for the vertical and shear stress component (figure 12b,d), the dissipation terms
are marginally affected by the roughness. Moreover, the peak locations of the dissipation
terms are elevated in the presence of large-scale roughness (k+ = 60).
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Figure 11. Contours of the one-dimensional pre-multiplied spanwise energy spectra of the production and
pressure-strain terms: (top) k+ = 10, λ+ = 71; (middle) k+ = 60, λ+ = 424 and (bottom) the smooth-wall
case at Reτ = 1080. Different terms, i.e. (a) P+

11, (b) Π+
s,22, (c) Π+

s,33 and (d) −P+
12 are presented. Red solid

lines correspond to the wavelength and height of the roughness elements, respectively.

Figure 13 shows the premultiplied one-dimensional spanwise spectra of the
wave-induced production terms, which represent the energy exchange between
the Reynolds stresses and the dispersive stresses. Thus, the variation trend of the
spectra of the wave-induced production terms WPij with respect to the vertical height
is closely related to the profiles of the dispersive stresses in figure 5. For the
smooth-wall case, WPij values are zero. The results show that the contributions of the
wave-induced production terms are mainly confined to within the roughness sublayer
and are concentrated at roughness scales such as WP11,ux in figure 13(a). Although the
magnitudes of the wave-induced production terms are smaller than those of the production
terms, they provide energy input to roughness scales, showing the roughness-scale
peaks in the streamwise energy spectra (figure 7a,c). In addition, WP11,ux and WP12,vx
weakly contribute to large scales in the inner region, corresponding to the near-wall
large-scale streaky structures (figure 10a,b) because of the modulation effect of roughness.
Meanwhile, the intensity and vertical height in the case of k+ = 60 are obviously greater
than those in the case of k+ = 10, which is consistent with the dispersive stresses profiles.
Note that only the dominant terms are presented in figure 13. For example, other two
components of WP12 are at least one order of magnitude smaller than WP12,vx (not shown
here). The aforementioned spectral analysis representing the wave-induced production
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Figure 12. Contours of the one-dimensional pre-multiplied spanwise energy spectra of the dissipation terms:
(top) k+ = 10, λ+ = 71; (middle) k+ = 60, λ+ = 424 and (bottom) the smooth-wall case at Reτ = 1080.
Different terms, i.e. (a) ε+11, (b) ε+22, (c) ε+33 and (d) −ε+12 are presented. Red solid lines correspond to the
wavelength and height of the roughness elements, respectively.

terms provides an additional mechanism by which energy is gained or lost from the mean
flow for the large scales in the inner region, but not in the outer region.

The turbulent transport term can be decomposed into two parts, representing the spatial
turbulent transport and interscale turbulent transport, respectively,

Tt,ij = Ty
t,ij + Txz

t,ij. (3.5)

For the smooth-wall turbulence, the spatial turbulent transport term is the greatest
contributor to the total energy diffusion. Energy is transferred from the buffer region to the
inner and outer regions. The presence of small roughness k+ = 10 weakens energy transfer
through spatial turbulent transport (figure 14a), and large roughness k+ = 60 has almost
destroyed this transport mechanism. A similar phenomenon also occurs in the viscous
transport term (figure 14d). The contribution from Tν,11 to the total energy transport
drastically decreases because of the apparent destruction of the near-wall self-sustaining
cycle in the inner region. Moreover, unlike the effect of the spatial turbulent transport,
that of the viscous transport is confined to the region of ȳ+ < 20. In addition to the
contributions of the turbulent and viscous transport terms, the contribution of pressure
transport terms to the total energy diffusion is also shown in figure 14(c). The pressure
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Figure 13. Contours of the one-dimensional pre-multiplied spanwise energy spectra of the wave-induced
production terms: (top) k+ = 10, λ+ = 71 and k+ = 60, λ+ = 424 (bottom) at Reτ = 1080. Different terms,
i.e. (a) WP+

11,ux, (b) WP+
11,uy, (c) WP+

12,uy and (d) WP+
12,vx are presented. The definitions of red solid lines are

the same as those in figure 11.

transport direction is consistent with the viscous term; however, its effect does not reach
the near-wall region. The energy gain is substantially enhanced due to the presence
of large roughness below the roughness height. By contrast, for k+ = 10, the pressure
transport term increases in the outer region. The spectra of the interscale energy transport
term are shown in figure 14(b). A negative peak region is located at λ+z ≈ 100, which
corresponds to the typical spanwise scale of low-speed streaks. Energy is transferred to
both smaller- and larger-scale motions in the buffer region, representing the well-known
energy cascade and inverse energy cascade processes, respectively. However, this inverse
phenomenon disappears again in the rough-wall case. An obvious change occurs in the
outer region, where the spectra of Txz

t,11 are significantly stronger at the spanwise scale of
λ+z ≈ 1600. The variations of the pressure transport, the spatial turbulent transport and the
interscale turbulent transport terms correspond to the contributions of the production term
in figure 11(a) for the two rough-wall cases and the smooth-wall case.

3.5. Scale-energy paths on the generalized Kolmogorov equation
The previously discussed spectral analysis did not include the energy transfer of the
vertical scales because of spatial inhomogeneity in the wall-parallel directions. Here, we
apply the generalized Kolmogorov equation to investigate the scale dependence of energy
transfer in the reduced space of vertical and spanwise scales and the vertical direction.
The generalized Kolmogorov equation is an exact budget equation for the second-order
structure function tensor, and describes the production, transport and dissipation of
the scale energy in the combined physical and scale space. Moreover, the generalized
Kolmogorov equation, unlike the above spectral analysis, can properly define the concept
of scale in the inhomogeneous wall-normal direction. Hill (2002) first derived the
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Figure 14. Contours of the one-dimensional pre-multiplied spanwise energy spectra of the spatial turbulent
transport, scale-energy transport, viscous transport and pressure transport terms: (top) k+ = 10, λ+ = 71;
(middle) k+ = 60, λ+ = 424 and (bottom) the smooth-wall case at Reτ = 1080. Different terms, i.e. (a) Ty+

t,11,
(b) Txz+

t,11 , (c) T+
p,22 and (d) T+

ν,11 are presented. Red solid lines correspond to the wavelength and height of the
roughness elements, respectively.

generalized Kolmogorov equation, and Gatti et al. (2020) further extended it to the
anisotropic case. Here, we rewrite the equation in the curvilinear coordinates as follows:

∂〈δu′
iδu

′
j〉

∂τ
+ ∂ϕij,k

∂rξk

+ ∂ψij,k

∂Xξk

= ζij, (3.6)

where 〈δu′
iδu

′
j〉 denotes the second-order structure function, also known as the scale

energy; u′
i represents the turbulent fluctuations after the triple decomposition, which is

consistent with the previous sections; δu′
i is the difference in u′

i between two points
identified by their midpoint ξi and the separation distance rξi ; ϕij,k denotes the fluxes of
the scale energy in the space of scales rξk(k = 1, 2, 3); ψij,k denotes the fluxes in the
space of positions Xξk(k = 1, 2, 3); and the right-hand side ζij denotes the source term
that describes the net production of the scale energy in space and among scales. See
Appendix B for specific expressions of each term.

Figure 15 shows the distributions of scale-energy fluxes in (rξ2, rξ3,Xξ2) space for the
rough-wall cases k+ = 10 and 60 and the smooth-wall case at Reτ = 1080. The path
lines are coloured according to the magnitude of the flux, here the path lines denote
the field lines of the flux vector field (φrξ2 , φrξ3 , φXξ2 ). For the smooth-wall turbulence
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Figure 15. Scale-energy paths in the (rξ2 , rξ3 ,Xξ2 ) space traced by means of the field lines of the flux vector
field (φrξ2 , φrξ3 , φXξ2 ) for the rough-wall cases: (a,b) k+ = 10, λ+ = 71; (c,d) k+ = 60, λ+ = 424 and (e,f )
the smooth-wall case at Reτ = 1080. The rξ2 − Xξ2 plane denotes the isosurface of the scale energy 〈δu′δu′〉 =
0.05. The colours scale according to the strength of flux vector field. The red square circle in (a–e) represents
the energy transfer from small scale to large scale.

in figure 15(e,f ), the overall variation trend is that the scale-energy flux path starts from
vicinity of the wall at rξ2 = 0 and corresponds in position to the self-sustaining cycle of
near-wall turbulence. The spanwise scale rξ3 and vertical scale rξ2 both increase together
with increasing vertical distance ξ2. Above the buffer region, part of energy path leaves
the attached-scale plane and exhibits a spiral-like increase; the remainder of the path
continues to follow the attached-scale plane but finally ends at small dissipative scales.
This trend is consistent with the description of the scale-energy path at Reτ = 2000,
as reported by Cimarelli et al. (2016), who provided an overall image of the energy
transfer of the inner–outer interaction model. The existence of small-scale roughness
k+ = 10 increases the energy flux from the small scale to the large scale, as marked
by the red box in figure 15(a). After the spanwise scale and the vertical scale increase

968 A18-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.425


G.-Z. Ma, C.-X. Xu, H.J. Sung and W.-X. Huang

Small roughness

Rough wall

Attached-scale plane

Large roughness

S(↑) S(↑) S(↑) S(↑)

W(↓) W(↓) W(↓) W(↓)

W(↓)

W(↓)
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Figure 16. Sketch of the paths through which the large-scale turbulent fluctuations and momentum flux
gain/lose energy. ‘S’ means strengthening of the transport mechanism, and ‘W’ means weakening of the
transport mechanism due to roughness.

to a certain value, this part of increased energy path leaves the attachment scale plane
and rises to a higher vertical position. Simultaneously, the spanwise scale decreases
(figure 15b), corresponding to the interscale transport spectral analysis. The energy
output from the large scales in the outer region increases (figure 14b). However, for the
large-scale roughness k+ = 60 in figure 15(c), the scale-energy source term is weakened
by the destruction of the near-wall self-sustaining process; thus, the field line of the
scale-energy flux (ϕrξ2 , ϕrξ3 , ϕXξ2 ) starting from the near-wall region is substantially
reduced as compared with the smooth-wall case. The spanwise length scale of the
scale-energy flux is still large when approaching the channel centre (figure 15d), which
corresponds to the weakening of the positive energy cascade process. As a consequence,
the energy transfer from large scales to small scales might be weakened.

Notably, although the large-scale roughness weakens the inverse turbulent energy
cascade in the inner region, the profiles of the Reynolds stresses still satisfy the outer-layer
similarity (figure 4a). Cho et al. (2018) confirmed that the dominant energy transfer
mechanism in wall turbulence is the classical energy cascade, even if the inverse energy
cascade process is interrupted. The turbulence statistics of the outer region are not
dramatically affected, consistent with the present findings related to rough-wall turbulence.
Compared with its ability to display the energy transfer process in spectral space, the
scale-energy path can display the energy transfer process better in physical space among
different flow regions and scales. However, it cannot distinguish the specific source of
energy flux, such as the pressure effect or viscosity effect; thus, the physical meaning is
not clearly revealed as done in the previous section by using the transport equation of the
two-point velocity correlation.

As a summary, the energy transport process including the spatial and interscale energy
transports is sketched in figure 16. The scale-energy flux starts from the energy source term
in the near-surface region and increases the spanwise scale and vertical scale following the
attached-scale plane. The production term is very active along this line, and the intensity of
the flux increases. The existence of small-scale roughness strengthens the energy transfer
from small scales to large scales in this region, corresponding to the variation of the
interscale turbulent transport term Txz

t,11 in figure 14(b) and the energy flux field line in
the near-wall region; by contrast, the effect of large-scale roughness is the opposite. As
the spanwise scale and vertical scale continue to increase, the wave-induced production
term inputs energy to the large-scale structures of the roughness sublayer, corresponding
to the increase of the flux field lines ascending to higher vertical positions, whereas
large-scale structures of the outer region mainly gain energy from the mean flow by
the turbulent production term (figure 11a) and this corresponds to the increase of the

968 A18-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.425


Rough-wall turbulent channel flow

flux field lines ascending to higher vertical positions. The wave-induced production term
due to large-scale roughness contributes mainly to the roughness sublayer; however, the
turbulent production term is weakened in the outer region. When the vertical height ȳ+ is
greater than 300, the spanwise scale of the scale energy decreases and the vertical scale
continues to increase. At this time, part of the energy flux field lines begins to develop
upward from the attached-scale plane. This process is also reflected in the spanwise energy
spectra of the interscale turbulent transport term Txz

t,11 in figure 14(b) (i.e. the positive
energy cascade process of the spanwise large-scale structures to the small-scale structures).
The existence of small-scale roughness greatly enhances this transport process, whereas
large-scale roughness weakens the energy output because of the reduced intensity of the
large-scale structures in the outer region. At this vertical location, the roughness affects the
pressure diffusion term similarly as it affects the interscale transport term (i.e. small-scale
roughness enhances the transport of pressure diffusion to the large-scale structures),
and the corresponding instantaneous pressure fluctuation increases dramatically in the
outer region (figure 9c). As the vertical height continues to increase, the spanwise scale
and vertical scale both begin to decrease. Energy is transferred to a higher vertical
position through the spatial diffusion term Ty

t,11. All the energy flux field lines leave the
attached-scale plane to develop upward. Small-scale roughness strengthens the energy
transport of the turbulent spatial diffusion term to the channel centre (figure 14a). The
turbulent spatial diffusion weakens when the roughness height increases to k+ = 60. The
ultimate field lines of the scale-energy flux reach the vertically distributed energy sink
corresponding to the small dissipative scale. The dissipative effect in the outer region is
weakened by the destruction of near-wall self-sustaining cycle in the presence of roughness
elements, which causes the flux field lines to exhibit a larger spanwise scale distribution
in the channel centre than in the smooth-wall turbulence. The spanwise scale for the
smooth-wall case tends to zero at this vertical location. In addition, the energy transfer
from the buffer region to the near-wall region through the viscous diffusion term is
obviously weakened, especially for the case of large roughness.

4. Conclusions

In the present study, DNSs with a body-conforming grid were performed for turbulent
channel flows over three-dimensional sinusoidal rough walls. By systematically varying
the roughness Reynolds number k+ or the ratio of the roughness height to the half-channel
height k/δ, we simulated two groups of cases and compared the results with those for
smooth-wall turbulence, where the friction Reynolds numbers Reτ were varied from 180
to 1080. A triple decomposition method was adopted to extract the mean, wave-induced
and turbulent components of the flow field. First, the outer-layer similarity of the mean
streamwise velocity and Reynolds stresses with the vertical height non-dimensionalized
by inner and outer scales, respectively, was examined. Second, variations of the large-scale
coherent structures in the outer region with the roughness height k+ were studied using the
one-dimensional pre-multiplied spanwise spectra of the turbulent streamwise velocity and
the instantaneous flow fields. Finally, the turbulent energy transfer process in rough-wall
turbulence was revealed by the spectral analysis of the transport equation of the two-point
velocity correlation and scale-energy path display of the generalized Kolmogorov
equation. The main conclusions and innovations are summarized as follows:

(i) The roughness Reynolds number k+ strongly affects turbulence statistics. The shift
of the mean streamwise velocity profile in the logarithmic region increases and
the peak intensities of turbulent Reynolds stresses decrease with increasing k+.
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The dispersive stresses are mainly distributed within the roughness sublayer and
rapidly decay to zero above the crest of the roughness elements.

(ii) At an intermediate Reynolds number (Reτ ≈ 1080), the length scale and intensity
of large-scale coherent structures increase for the small roughness (k+ = 10), which
leads to failure of the outer-layer similarity in rough-wall turbulence, and decrease
for the large roughness (k+ = 60), as compared with the smooth-wall case.

(iii) On the basis of the spectral analysis of the transport equation of the two-point
velocity correlation, we attempted to explain the effect of the roughness with
different sizes on the outer-layer large-scale coherent structures. The influence of
the small and large roughness on the turbulent production terms is similar to
that of spanwise energy spectra of the streamwise velocity turbulent fluctuation.
The self-sustaining process of large-scale coherent structures in the outer region
is maintained by turbulent production terms, which gain energy from the mean
flow. The small roughness (k+ = 10) strengthens this mechanism, reflected as the
enhancement of the inter-scale turbulent transport, the spatial turbulent transport
and the pressure diffusion, whereas the opposite influence is shown in the
large roughness. The wave-induced production terms contribute to the large-scale
structures in the inner region but do not influence the outer-layer large-scale
structures.

(iv) By displaying the scale-energy transfer path of the generalized Kolmogorov
equation, we found that the energy transfer process of the near-wall small scales
to the large scales at a higher vertical position is enhanced in the presence of small
roughness (k+ = 10), which corresponds to the energy increase of the large-scale
coherent structures in the outer region. A damage to the self-sustaining process of the
near-wall region is greater for the large roughness (k+ = 60), leading to a weakening
of the inverse energy cascade process from the inner region to the outer region. As
a result, the intensity and length scale of the large-scale coherent structures in the
outer region are both reduced by the large roughness.
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Appendix A. Two-point correlation transport equation

In the previous study, Wang et al. (2020) derived the two-point correlation transport
equation in curvilinear coordinates of travelling wavy boundaries; that is, if we write the
equation of velocity fluctuations u′

i at one point (ξ1, ξ2, ξ3, τ ), multiply it by the velocity
fluctuations u′

rj at another point (ξ1, ξ2, ξ3 + rξ3, τ ) and then add the ξ2-average of this
equation to its counterpart with the subscripts exchanged, then the transport equation of
two-point correlation can be obtained. Different from their derivation process, we replace
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the classic Reynolds decomposition with the triple decomposition according to (3.2), i.e.

∂u′
iu

′
rj

∂τ
(ξ1, ξ2, rξ3) = Pij +Πs,ij + Tt,ij + Tp,ij + Tν,ij − εij + WPij + Aij, (A1)

Pij = −(u′
rjv

′δi1 + u′
iv

′
rδj1 + u′

rju
′
kφkδi1 + u′

iu
′
rkφrkδj1)

∂U
∂ξ2

, (A2)

Πs,ij =
∂p′u′

rj

∂ξ1
δi1 − ∂p′

ru′
i

∂ξ1
δj1 + p′ ∂u′

rj

∂ξ2
δi2 + p′

r
∂u′

i
∂ξ2

δj2

+
∂p′u′

rj

∂rξ3

δi3 − ∂p′
ru′

i
∂rξ3

δj3 + p′φi
∂u′

rj

∂ξ2
+ p′

rφrj
∂u′

i
∂ξ2

, (A3)

Tt,ij =
∂u′

rj(u
′
iu

′)
∂ξ1

−
∂u′

i(u
′
rju

′
r)

∂ξ1
− u′

rj
∂u′

iv
′

∂ξ2
− u′

i

∂u′
rjv

′
r

∂ξ2

+
∂u′

rj(u
′
iw

′)
∂rξ3

−
∂u′

i(u
′
rjw

′
r)

∂rξ3

− u′
rjφk

∂u′
iu

′
k

∂ξ2
− u′

iφrk
∂u′

rju
′
kr

∂ξ2
, (A4)

Tp,ij = −
∂p′u′

rj

∂ξ2
δi2 − ∂p′

ru
′
i

∂ξ2
δj2 − φi

∂p′u′
rj

∂ξ2
− φrj

∂p′
ru

′
i

∂ξ2
, (A5)

Tν,ij = ν
∂2u′

iu
′
rj

∂ξ2∂ξ2
+ 2νφ2

∂

∂ξ2

(
u′

rj
∂u′

i
∂ξ2

)
+ 2νφr2

∂

∂ξ2

(
u′

i

∂u′
rj

∂ξ2

)
+ · · · , (A6)

εij = 2ν
∂2u′

iu
′
rj

∂ξ1∂ξ1
− 2ν

∂u′
i

∂ξ2

∂u′
rj

∂ξ2
+ 2ν

∂2u′
iu

′
rj

∂rξ3∂rξ3

− 2ν(φ2 + φr2)
∂u′

i
∂ξ2

∂u′
rj

∂ξ2
+ · · · , (A7)

WPij = −(ũ′
rjv

′δi1 + ũ′
iv

′
rδj1 + ˜u′

rju
′
kφkδi1 + ˜u′

iu
′
rkφrkδj1)

∂̃U
∂ξ2

− (ũ′
rju

′δi1 + ũ′
iu

′
rδj1)

∂̃U
∂ξ1

, (A8)

Aij = −(u′
rjφ1δi1 + u′

iφr1δj1)
∂ ūū
∂ξ2

− (u′
rjφi + u′

iφrj)
∂ p̄
∂ξ2

+ 2v(φ2u′
rjδi1 + φr2u′

iδj1)
∂2ū
∂ξ2∂ξ2

, (A9)

where the overbar denotes the ensemble average on a curved plane of the boundary-fitted
grid and over time. Here, φi denotes transformation between the derivatives of numerical
space and physical space. The viscous transport and dissipation terms only consider the
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principal parts here. Furthermore, the turbulent transport term Tt,ij can be decomposed
into two parts as follows:

Ty
t,ij = −1

2

∂u′
rj(u

′
iv

′)
∂ξ2

− 1
2

∂u′
i(u

′
rjv

′
r)

∂ξ2
− 1

2
φk
∂u′

rj(u
′
iu

′
k)

∂ξ2
− 1

2
φrk
∂u′

i(u
′
rju

′
rk)

∂ξ2
, (A10)

Txz
t,ij =

∂u′
rj(u

′
iu

′)
∂ξ1

−
∂u′

i(u
′
rju

′
r)

∂ξ1
+
∂u′

rj(u
′
iw

′)
∂rξ3

−
∂u′

i(u
′
rjw

′
r)

∂rξ3

− 1
2

∂u′
rj(u

′
iv

′)
∂ξ2

− 1
2

∂u′
i(u

′
rjv

′
r)

∂ξ2
+ (u′

iv
′)
∂u′

rj

∂ξ2
+ (u′

rjv
′
r)
∂u′

i
∂ξ2

− 1
2
φk
∂u′

rj(u
′
iu

′
k)

∂ξ2
− 1

2
φrk
∂u′

i(u
′
rju

′
rk)

∂ξ2
+ u′

iu
′
kφk

∂u′
rj

∂ξ2
+ u′

rju
′
rkφrk

∂u′
i

∂ξ2
. (A11)

For the streamwise velocity fluctuations and the Reynolds shear stress, the wave-induced
production terms can be further expressed as

WP11 = −(ũ′
rv

′ + ũ′v′
r + ˜u′

ru′
kφk + ˜u′u′

rkφrk)
∂̃U
∂ξ2

− (ũ′
ru′ + ũ′u′

r)
∂̃U
∂ξ1

= WP11,uy + WP11,ux, (A12)

WP12 = −(ṽ′
rv

′ + ˜v′
ru

′
kφk)

∂̃U
∂ξ2

− (ũ′v′
r + u′˜u′

rkφrk)
∂̃V
∂ξ2

+ ũ′v′
r
∂̃U
∂ξ1

− ũ′u′
r
∂̃V
∂ξ1

= WP12,uy + WP12,vy + WP12,ux + WP12,vx. (A13)

By performing the Fourier transform in the spanwise direction, (A1) becomes

∂Eij

∂τ
= Ep,ij + EΠs,ij + ETt,ij + ETp,ij + ETν ,ij − Eε,ij + EWP,ij + EA,ij, (A14)

where the spectral expansion of each term is expressed as

Eij(ξ2, kξ3) =
∑
kξ3

Êij(ξ2, kξ3) exp(ikξ3rξ3), (A15)

where Êij is the spectral coefficient and kξ3 is the corresponding spanwise wavenumber.
Then the one-dimensional spanwise energy spectrum is defined as

Eij(ξ2, kξ3) = Êij(ξ2, kξ3)+ Êij(ξ2,−kξ3). (A16)

Appendix B. The generalized Kolmogorov equation

In the present work, we write the anisotropic generalized Kolmogorov equations (Gatti
et al. 2020), for the triple decomposition and in curvilinear coordinates. The anisotropic
generalized Kolmogorov equations are the exact budget equations for each component
of the second-order structure function tensor 〈δu′

iδu
′
j〉 where δu′

i is the difference of the
ith fluctuating velocity component between two points identified by their midpoint Xξi
and the separation distance rξi . The operator 〈·〉 denotes ensemble averaging, as well as

968 A18-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.425


Rough-wall turbulent channel flow

averaging along the homogeneous directions. In curvilinear coordinates, the expressions
are as follows:

∂〈δu′
iδu

′
j〉

∂τ
+ ∂ϕij,k

∂rξk

+ ∂ψij,k

∂Xξk

= ζij, (B1)

ϕij,k = 〈δUkδu′
iδu

′
j〉 + 〈δũkδu′

iδu
′
j〉 + 〈δu′

kδu
′
iδu

′
j〉 − 2ν

∂〈δu′
iδu

′
j〉

∂rξk

, (B2)

ψij,k = 〈U∗
k δu

′
iδu

′
j〉 + 〈ũ∗

kδu
′
iδu

′
j〉 + 〈u∗

kδu
′
iδu

′
j〉 + 1

ρ
〈δp′δu′

i〉δkj

+ 1
ρ

〈δp′δu′
j〉δki − ν

2

∂〈δu′
iδu

′
j〉

∂Xξk

+ Aij,k, (B3)

ζij = −〈δu′
jδu

′
k〉
(
∂Ui

∂ξk

)∗
− 〈δu′

iδu
′
k〉
(
∂Uj

∂ξk

)∗
− 〈δu′∗

j u′
k〉δ

(
∂Ui

∂ξk

)
− 〈δu′

iu
′∗
k 〉δ

(
∂Uj

∂ξk

)
−
〈
δu′

iδu
′
k
∂δũj

∂rξk

〉
−
〈
δu′

jδu
′
k
∂δũi

∂rξk

〉
−
〈
δu′

iu
′∗
k
∂δũj

∂Xξk

〉

−
〈
δu′

ju
′∗
k
∂δũi

∂Xξk

〉
+ 1
ρ

〈
δp′ ∂δu

′
i

∂Xξj

〉
+ 1
ρ

〈
δp′ ∂δu

′
j

∂Xξi

〉
− 4ε∗ij + Āij, (B4)

where the ∗ operator is the arithmetic mean of a given quantity between the two points.
Here, Aij,k and Āij denote the additional terms due to coordinate transformation. For the
streamwise turbulent velocity fluctuations, the equation can be further expressed as

∂

∂rξ1

〈δUδu′δu′〉 + ∂

∂rξ3

〈δw̃δu′δu′〉 + ∂

∂rξj

〈δu′
jδu

′δu′〉

+ ∂

∂rξj

∂

∂rξj

(−2ν〈δu′δu′〉)+ ∂

∂Xξ2

〈v′∗δu′δu′〉 ∂

∂Xξ2

∂

∂Xξ2

(
−ν

2
〈δu′δu′〉

)
= −2

〈
δv′δu′

(
∂U
∂ξ2

)∗〉
− 2

〈
δu′v′∗δ

(
∂U
∂ξ2

)〉
+ 2
ρ

〈
δp′δ

(
∂u′

∂ξ1

)〉
− 4ε∗11 + Ā11.

(B5)
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