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Abstract

Three families of examples are given of sets of (0, 1)-matrices whose pairwise products form a basis for
the underlying full matrix algebra. In the first two families, the elements have rank at most two and some
of the products can have multiple entries. In the third example, the matrices have equal rank

√
n and all

of the pairwise products are single-entried (0, 1)-matrices.
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1. Introduction

Let F be a field with identity denoted by 1 and let Mn(F) denote the algebra of n × n
matrices with entries in F. We call a matrix having only one of its entries nonzero and
its nonzero entry equal to 1 an elementary matrix. If this 1 is in the position (i, j) we
denote the matrix by Ei, j. If {Ai}Γ is a set of n × n matrices whose pairwise products,
that is, the set of matrices {AiA j : i, j ∈ Γ}, form a basis for Mn(F) then, obviously, the
cardinality of Γ is at least n. In [1] an example is given to show that this lower bound
is attained whatever the value of n. In this example most, but not all, of the products
are elementary matrices and the following question is raised.

Question 1.1. Is it possible to find n matrices in Mn(F) whose set of pairwise products
is the basis of Mn(F) consisting of elementary matrices?

We show (Theorem 3.5) that it is possible if n is the square of an integer. If n is not
a square and F is the real or complex field, no set of (0, 1)-matrices with n elements
can have this property (Theorem 3.1).
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2. Matrices of rank at most two

Example 2.1. Let F be a field with identity denoted by 1. Let n ∈ Z+. For 1 ≤ i ≤ n
define the n × n matrix Ai ∈ Mn(F) by Ai = Ei,1 + E1,i. We show that the pairwise
products of {A1, A2, . . . , An}, that is, the set of matrices {AiA j : 1 ≤ i, j ≤ n}, is a basis
for Mn(F). Since this set has n2 elements, we need only show that it spans Mn(F), and
to show this it is enough, in turn, to show that every elementary matrix Ei, j belongs to
the span. For the proof note that

(i) Ei, jEk,l = δ j,kEi,l;
(ii) Ei, j = AiA j, if i , 1, j , 1, i , j;
(iii) E1,1 = 1

4 A2
1 (= 1

2 A1);
(iv) Ei,i = A2

i −
1
4 A2

1, 2 ≤ i ≤ n;
(v) Ei,1 = 1

2 AiA1, 2 ≤ i ≤ n;
(vi) E1, j = 1

2 A1A j, 2 ≤ j ≤ n.

More generally, we have the following theorem. We introduce some notation
to make computations with elementary matrices somewhat easier. In most of what
follows we will denote the elementary matrix Ei, j simply by (i; j). From (i) above, we
can write (i; j)(k; l) = δ j,k(i; l).

Theorem 2.2. Let F be a field, n ∈ Z+ and p ∈ {1, 2, . . . , n} and let µ and σ be
permutations of {1, 2, . . . , n}. Define Ai ∈ Mn(F) by Ai = (µ(i); p) + (p; σ(i)) for
1 ≤ i ≤ n. The pairwise products of {A1, A2, . . . , An} form a basis for Mn(F).

Proof. Since Aµ−1(i) = (i; p) + (p;σ · µ−1(i)) we can suppose that µ = ι, the identity
permutation. We will show that each of the n2 elementary matrices (i; j) belongs to
P = span{AiA j : 1 ≤ i, j ≤ n}.

For 1 ≤ i, j ≤ n and i , σ−1(p), j , σ(p) and j , σ2(i),

AiAσ−1( j) = ((i; p) + (p;σ(i)))((σ−1( j); p) + (p; j)) = (i; j).

So (i; j) ∈ P if i , σ−1(p), j , σ(p) and j , σ2(i). It remains to show that (i; j) ∈ P if
i = σ−1(p) or j = σ(p) or j = σ2(i).
Case I: p = σ(p). Then Ap = 2(p; p) and so A2

p = 4(p; p). Hence (p; p) = 1
4 A2

p ∈ P.

Subcase I(a): i = σ−1(p). In this case, i = p and we need to show that (p; j) ∈ P, for
1 ≤ j ≤ n, j , p. If j , p,

ApAσ−1( j) = 2(p; p)((σ−1( j); p) + (p; j)) = 2(p; j).

Hence (p; j) = 1
2 ApAσ−1( j) ∈ P, if j , p.

Subcase I(b): j = σ(p). In this case, j = p and we need to show that (i, p) ∈ P, for
1 ≤ i ≤ n, i , p. If i , p,

AiAp = 2((i; p) + (p;σ(i)))(p; p) = 2(i; p).

Hence (i; p) = 1
2 AiAp ∈ P, if i , p.
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Subcase I(c): j = σ2(i). We need to show that (i;σ2(i)) ∈ P, for 1 ≤ i ≤ n, i , p. If
i , p,

AiAσ(i) = ((i; p) + (p;σ(i)))((σ(i); p) + (p;σ2(i))) = (i;σ2(i)) + (p; p).

Hence (i;σ2(i)) = AiAσ(i) −
1
4 A2

p ∈ P, if i , p.

Case II: p , σ(p). If j , σ(p) and j , σ2(p),

Aσ−1(p)Aσ−1( j) = (σ−1(p); j) + (p; j) and ApAσ−1( j) = (p; j).

Hence,

(σ−1(p); j) = Aσ−1(p)Aσ−1( j) − ApAσ−1( j) ∈ P whenever j , σ(p), σ2(p). (2.1)

Also, if i , σ−1(p) and i , σ−2(p),

AiAp = (i; p) + (i;σ(p)) and AiAσ−1(p) = (i; p).

Hence

(i;σ(p)) = AiAp − AiAσ−1(p) ∈ P whenever i , σ−1(p), σ−2(p). (2.2)

Now, if i , σ−1(p),
AiAσ(i) = (i;σ2(i)) + (p; p).

Since ApAσ−1(p) = δ(p; p) where δ = 1 if p , σ2(p) and δ = 2 if p = σ2(p),

(i;σ2(i)) = AiAσ2(i) −
1
δ

ApAσ−1(p) ∈ P whenever i , σ−1(p). (2.3)

Taking (2.1), (2.2) and (2.3) into consideration, to complete the proof it only remains
to show that each of (i) (σ−1(p);σ(p)), (ii) (σ−1(p);σ2(p)) and (iii) (σ−2(p);σ(p))
belongs to P (still with p , σ(p)).
Case (i): (σ−1(p);σ(p)). If p , σ2(p),

(σ−1(p);σ(p)) = Aσ−1(p)Ap − A2
p − A2

σ−1(p) + ApAσ−1(p) ∈ P.

If p = σ2(p),

(σ−1(p);σ(p)) = (σ(p);σ(p)) = Aσ(p)Ap + 1
2 ApAσ(p) − A2

p − A2
σ(p) ∈ P.

Case (ii): (σ−1(p);σ2(p)). If p , σ2(p),

(σ−1(p);σ2(p)) = Aσ−1(p)Aσ(p) − ApAσ(p) + ApAσ−1(p) ∈ P.

If p = σ2(p),

(σ−1(p);σ2(p)) = (σ(p); p) = A2
σ(p) −

1
2 ApAσ(p) ∈ P.

Case (iii): (σ−2(p);σ(p)). Notice that

(σ−2(p);σ(p)) = Aσ−2(p)Ap − Aσ−2(p)Aσ−1(p) +
1
δ

ApAσ−1(p) ∈ P,

where, as before, δ = 1 if p , σ2(p) and δ = 2 if p = σ2(p).
This completes the proof. �
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Remark 2.3. The example given in [1] is of a type covered by the preceding theorem.

The next example shows that, with the Ai defined as in the preceding theorem (with
µ = ι), σ need not be a permutation if the pairwise products span Mn(F).

Example 2.4. Define the mapping σ : {1, 2, 3} −→ {1, 2, 3} by σ(1) = σ(3) = 2 and
σ(2) = 3. Define matrices A, B,C ∈ M3(F) by A = (1; 1) + (1; 2), B = (2; 1) + (1; 3) and
C = (3; 1) + (1; 2). We have the multiplication table:

A B C
A (1; 1) + (1; 2) (1; 3) + (1; 1) (1; 2)
B (2; 1) + (2; 2) (2; 3) (2; 2) + (1; 1)
C (3; 1) + (3; 2) (3; 3) + (1; 1) (3; 2)

It is easily seen that the set of products in this table span, and so form a basis for,
M3(F). This example is a simple case of the following general result.

Theorem 2.5. Let n, p ∈ Z+ with n ≥ 3 and 1 ≤ p ≤ n. If the map σ : {1, 2, . . . , n} −→
{1, 2, . . . , n} satisfies

(i) σ({1, 2, . . . , n}\{p}) = {1, 2, . . . , n}\{p} = range(σ),
(ii) σ(p) , σ2(p),

then the n × n matrices Ai = (i; p) + (p;σ(i)), for 1 ≤ i ≤ n, have the property that the
set of matrices {AiA j : 1 ≤ i, j ≤ n} is a basis for Mn(F).

Proof. Let V denote the span of {AiA j : 1 ≤ i, j ≤ n}. We show that V = Mn(F) by
showing that V contains every elementary matrix (i; j). Notice that σ(p) = σ(q) for
some q , p and q , σ(p) because σ(p) , σ2(p).

Let 1 ≤ i ≤ n. Then

AiAq = ((i; p) + (p;σ(i)))((q; p) + (p;σ(p))) = (i;σ(p)) ∈ V.

Since
AiAp = ((i; p) + (p;σ(i)))((p; p) + (p;σ(p))) = (i; p) + (i;σ(p),

it now follows that (i; p) ∈ V. In particular, (p; p) ∈ V. Then, from

AiAσ(i) = ((i; p) + (p;σ(i)))((σ(i); p) + (p;σ2(i))) = (i;σ2(i)) + (p; p),

it follows that (i;σ2(i)) ∈ V.
So far, we have shown that each of (i; p), (i;σ(p)) and (i;σ2(i)) belongs to V. For

1 ≤ j ≤ n and j < {p, σ(i)},

AiA j = ((i; p) + (p;σ(i)))(( j; p) + (p;σ( j))) = (i;σ( j)) ∈ V.

Using property (i) in the statement of the theorem, it is easily shown that

σ({1, 2, . . . , n}\{p, σ(i)}) = {1, 2, . . . , n}\{p, σ2(i)},

and so we have proved that (i; j) ∈ V for 1 ≤ i, j ≤ n. ThusV = Mn(F). �
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Remark 2.6. Possibly the simplest example of a map σ : {1, 2, . . . , n} −→ {1, 2, . . . , n}
satisfying the hypotheses of the preceding theorem is given by σ(n) = 2, σ(i) = i + 1
for i , n, and where we have taken p = 1.

Remark 2.7. Suppose the map σ : {1, 2, . . . , n} −→ {1, 2, . . . , n} satisfies σ(p) = p and
{AiA j : 1 ≤ i, j ≤ n} is a basis for Mn(F), where Ai = (i; p) + (p;σ(i)). Then σ is a
permutation of {1, 2, . . . , n}. For, in this case, Ap = 2(p; p). Let σ(i) = σ( j). If neither
i nor j is equal to p then

ApAi = 2(p; p)((i; p) + (p;σ(i))) = 2(p;σ(i)) = 2(p;σ( j)) = ApA j

and so i = j (since the set of products {ArAs : 1 ≤ r, s ≤ n} is linearly independent). If
i = p and j , p then σ(i) = σ( j) = p and

A jAp = 2(( j; p) + (p; p))(p; p) = 2(( j; p) + (p; p)) = 2A2
j ,

and this is a contradiction.

3. Matrices of rank two or more

We turn our attention to generating sets of matrices with n elements whose pairwise
products are elementary matrices. In Theorem 2.5 above, each of the matrices Ai

is a (0, 1)-matrix with two nonzero entries. The same is true for the matrices in
Theorem 2.2 if σ(p) , p and µ = ι. We next show that, for real or complex matrices,
if each generator Ai is a (0, 1)-matrix with two nonzero entries, the pairwise products
cannot all be elementary matrices unless n = 4.

Theorem 3.1. Let n ∈ Z+ and let F be a field with characteristic zero in which n has a
square root. Let {Ai : 1 ≤ i ≤ n} ⊆ Mn(F) be a set of (0, 1)-matrices such that:

(i) Ai has mi nonzero entries for 1 ≤ i ≤ n;
(ii) AiA j is an elementary matrix for 1 ≤ i, j ≤ n;
(iii) {AiA j : 1 ≤ i, j ≤ n} is a basis for Mn(F).

Then Ai has rank equal to mi for 1 ≤ i ≤ n and n = m2 for some positive integer m
satisfying

∑n
i=1 mi = nm.

Proof. Suppose that such a set {Ai : 1 ≤ i ≤ n} of matrices exists. Let 1 ≤ i ≤ n and
suppose that (r; s) is a summand of Ai . If no Ap had a summand of the form (s; t),
for some t, then the sth row of each elementary matrix AxAy would be zero. Since
this is a contradiction, there exists Ap having a summand (s; t), for some t. Similarly,
considering columns, there exists Aq having a summand of the form (u; r), for some u.
Thus if (r; s) is also a summand of A j then AiAp = A jAp = (r; t), so i = j. This shows
that the sets of summands of the Ai are pairwise disjoint. Also, if (r1; s1) and (r2; s2)
are distinct summands of Ai then r1 , r2, since otherwise AqAi is not an elementary
matrix for some Aq (of the form (u1; r1), for some u1). Similarly, s1 , s2. Thus the
number of nonzero entries of Ai is the rank of Ai, that is, mi.
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Let A =
∑n

i=1 Ai. By hypothesis,( n∑
i=1

Ai

)2
= A2 = En,

where En is the n × n matrix having all of its entries equal to 1. Since A2e = ne, where
e = (1, 1, . . . , 1), it follows that A f =

√
n f , where f = Ae +

√
ne. Clearly f , 0. Thus

A2 f = n f = En f and it follows that f is a nonzero multiple of e. So Ae =
√

ne and
all of the rows of A sum to

√
n. From this, n = m2 for some positive integer m and A

has nm nonzero entries. But the number of nonzero entries of A is
∑n

i=1 mi (since the
nonzero entries of the Ai are pairwise disjoint). Hence,

∑n
i=1 mi = nm. �

Corollary 3.2. If each of the matrices Ai has the same number m of nonzero entries,
then n = m2.

We now show that such sets of (0, 1)-matrices exist.

Example 3.3. Define the 4 × 4 (0, 1)-matrices A, B,C,D, each of rank two, by

A = (1; 1) + (2; 4), B = (1; 3) + (2; 2), C = (4; 1) + (3; 4), D = (4; 3) + (3; 2).

We have the multiplication table

A B C D
A (1; 1) (1; 3) (2; 1) (2; 3)
B (2; 4) (2; 2) (1; 4) (1; 2)
C (4; 1) (4; 3) (3; 1) (3; 3)
D (3; 4) (3; 2) (4; 4) (4; 2)

Here the set of 16 pairwise products of A, B,C,D is the set of all 4 × 4 elementary
matrices in M4(F).

Example 3.4. Define the 9 × 9 (0, 1)-matrices Ai, j, 0 ≤ i, j ≤ 8, each of rank three, by

A(0,0) = (1; 1) + (2; 5) + (3; 9),
A(0,1) = (1; 4) + (2; 8) + (3; 3),
A(0,2) = (1; 7) + (2; 2) + (3; 6),
A(1,0) = (5; 1) + (6; 5) + (4; 9),
A(1;1) = (5; 4) + (6; 8) + (4; 3),
A(1,2) = (5; 7) + (6; 2) + (4; 6),
A(2,0) = (9; 1) + (7; 5) + (8; 9),
A(2,1) = (9; 4) + (7; 8) + (8; 3),
A(2,2) = (9; 7) + (7; 2) + (8; 6).
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We have the multiplication table

A(0,0) A(0,1) A(0,2) A(1,0) A(1,1) A(1,2) A(2,0) A(2,1) A(2,2)
A(0,0) (1; 1) (1; 4) (1; 7) (2; 1) (2; 4) (2; 7) (3; 1) (3; 4) (3; 7)
A(0,1) (3; 9) (3; 3) (3; 6) (1; 9) (1; 3) (1; 6) (2; 9) (2; 3) (2; 6)
A(0,2) (2; 5) (2; 8) (2; 2) (3; 5) (3; 8) (3; 2) (1; 5) (1; 8) (1; 2)
A(1,0) (5; 1) (5; 4) (5; 7) (6; 1) (6; 4) (6; 7) (4; 1) (4; 4) (4; 7)
A(1,1) (4; 9) (4; 3) (4; 6) (5; 9) (5; 3) (5; 6) (6; 9) (6; 3) (6; 6)
A(1,2) (6; 5) (6; 8) (6; 2) (4; 5) (4; 8) (4; 2) (5; 5) (5; 8) (5; 2)
A(2,0) (9; 1) (9; 4) (9; 7) (7; 1) (7; 4) (7; 7) (8; 1) (8; 4) (8; 7)
A(2,1) (8; 9) (8; 3) (8; 6) (9; 9) (9; 3) (9; 6) (7; 9) (7; 3) (7; 6)
A(2,2) (7; 5) (7; 8) (7; 2) (8; 5) (8; 8) (8; 2) (9; 5) (9; 8) (9; 2)

Here the set of 81 pairwise products of the A(i, j) is the set of all 9 × 9 elementary
matrices in M9(F).

The preceding two examples are particular cases of the following result.

Theorem 3.5. Let m ∈ Z+ and let n = m2. There exists a set of n (0, 1)-matrices
{Ai : 1 ≤ i ≤ n} ⊆ Mn(F) such that each Ai has m nonzero entries and

(i) AiA j is an elementary matrix for 1 ≤ i, j ≤ n;
(ii) {AiA j : 1 ≤ i, j ≤ n} is a basis for Mn(F).

Proof. By Example 3.3 above, we can suppose that m ≥ 3. Define the matrices A(i, j),
for 0 ≤ i, j ≤ m − 1, by

A(i, j) =

m− j∑
r=1

(σi(r) + im; (r − 1 + j)(m + 1) − j + 1)

+

m∑
r=m− j+1

(σi(r) + im; (r − m + j)(m + 1) − j),

where σ : {1, 2, . . . ,m} −→ {1, 2, . . . ,m} is the cyclic permutation (1, 2, . . . ,m) (that is,
1 7→ 2 7→ 3 7→ · · · 7→ (m − 1) 7→ m 7→ 1). Call Hr(A(i, j)) the rth head of A(i, j) and call
Tr(A(i, j)) the rth tail of A(i, j) where these are defined by

Hr(A(i, j)) = σi(r) + im,

Tr(A(i, j)) =

(r − 1 + j)(m + 1) − j + 1 if 1 ≤ r ≤ m − j,
(r − m + j)(m + 1) − j if m − j + 1 ≤ r ≤ m.

Then A(i, j) =
∑m

r=1(Hr(A(i, j)); Tr(A(i, j)). Notice that, for 0 ≤ i, j ≤ m − 1,

|Hr(A(i, j)) − Hs(A(i, j))| ≤ m − 1 for 1 ≤ r, s ≤ m,
|Tr(A(i, j)) − Ts(A(i, j))| ≥ m + 1 for 1 ≤ r, s ≤ m with 0 < |r − s| , m − 1,

|Tr(A(i, j)) − Ts(A(i, j))| = 1 if |r − s| = m − 1.
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In particular, all of the tails of A(i, j) are distinct and all of the heads are distinct because
σi is a bijection on {1, 2, . . . ,m}.

We claim that

|{Tr(A(i, j)) : 1 ≤ r ≤ m} ∩ {Hs(A(p,q)) : 1 ≤ s ≤ m}| ≤ 1 for 0 ≤ i, j, p, q ≤ m − 1.

Suppose Tr(A(i, j)) = Hs(A(p,q)) and Tu(A(i, j)) = Hv(A(p,q)), with r , u and s , v. Then

|Tr(A(i, j)) − Tu(A(i, j))| = |Hs(A(p,q)) − Hv(A(p,q))| ≤ m − 1,

so |Tr(A(i, j)) − Tu(A(i, j))| = 1, and we can take r = 1, u = m, so that Tr(A(i, j)) = jm + 1
and Tu(A(i, j)) = jm. Consequently, Hs(A(p,q)) = σp(s) + pm = jm + 1 and Hv(A(p,q)) =

σp(v) + pm = jm, and so σp(v) = ( j − p)m. It follows that j − p = m, so that σp(v) =

m. Since σp(s) = σp(v) + 1, we have σp(s) = m + 1. This is a contradiction and
establishes the claim.

Next we shall show that

|{Tr(A(i, j)) : 1 ≤ r ≤ m} ∩ {Hs(A(p,q)) : 1 ≤ s ≤ m}| = 1 for 0 ≤ i, j, p, q ≤ m − 1.

We do this by showing that

{Tr(A(i, j)) : 1 ≤ r ≤ m} ∩ {Hs(A(p,q)) : 1 ≤ s ≤ m} , ∅ for 0 ≤ i, j, p, q ≤ m − 1.

In fact we will show that

(1i) Tp− j+1(A(i, j)) = Hm− j+1(A(p,q)) if 1 ≤ j ≤ p,
(1ii) Tp+1(A(i,0)) = H1(A(p,q)),
(2) Tm− j+p+1(A(i, j)) = Hm− j+1(A(p,q)) if j ≥ p + 1.

Case (1i). Let r = p − j + 1 and s = m − j + 1 with 1 ≤ j ≤ p. Then 1 ≤ r ≤ m − j, and
so Tr(A(i, j)) = (r − 1 + j)(m + 1) − j + 1 = p(m + 1) − j + 1. Also m − p + 1 ≤ s ≤ m,
so Hs(A(p,q)) = σp(s) + pm = s + p − m + pm = p − j + 1 + pm = Tr(A(i, j)).

Case (1ii). It is easily verified that Tp+1(A(i,0)) = H1(A(p,q)) = pm + p + 1.

Case (2). Let r = m − j + p + 1 and s = m − j + 1 with j ≥ p + 1. Then m − j + 1 ≤ r ≤
m, and so Tr(A(i, j)) = (r − m + j)(m + 1) − j = (p + 1)(m + 1) − j. Also 1 ≤ s ≤ m − p,
so Hs(A(p,q)) = σp(s) + pm = s + p + pm = m − j + 1 + p + pm = Tr(A(i, j)).

Hence, for every i, j and p, q, the set of tails of A(i, j) and the set of heads of A(p,q)

have precisely one element in common. It follows that the product A(i, j)A(p,q) is an
elementary matrix. Since we know, in each case, the tail of A(i, j) and the head of A(p,q)

which coincide, we can write down these elementary matrices (the other products are
zero).

For 1 ≤ j ≤ p,

A(i, j)A(p,q) = (Hp− j+1(A(i, j)); Tp− j+1(A(i, j,)))(Hm− j+1(A(p,q)); Tm− j+1(A(p,q)))
= (Hp− j+1(A(i, j)); Tm− j+1(A(p,q)))
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and this is equal to
(p − j + i(m + 1) + 1; (m + q − j)(m + 1) − q + 1) if p − j + i + 1 ≤ m, j ≥ q + 1,
(p − j + i(m + 1) + 1; (1 − j + q)(m + 1) − q) if p − j + i + 1 ≤ m, j ≤ q,
(p − j + i(m + 1) + 1 − m; (m + q − j)(m + 1) − q + 1) if p − j + i ≥ m, j ≥ q + 1,
(p − j + i(m + 1) + 1 − m; (1 − j + q)(m + 1) − q) if p − j + i ≥ m, j ≤ q.

For j = 0,

A(i,0)A(p,q) = (Hp+1(A(i,0)); Tp+1(A(i,0)))(H1(A(p,q)); T1(A(p,q)))
= (Hp+1(A(i,0)); T1(A(p,q)))

=

(p + i(m + 1) + 1; qm + 1) if p + i + 1 ≤ m,
(p + i(m + 1) + 1 − m; qm + 1) if p + i + 1 ≥ m + 1.

For j ≥ p + 1,

A(i, j)A(p,q) = (Hp− j+m+1(A(i, j)); Tp− j+m+1(A(i, j,)))(Hm− j+1(A(p,q)); Tm− j+1(A(p,q)))
= (Hp− j+m+1(A(i, j)); Tm− j+1(A(p,q)))

and this is equal to

(p − j + (i + 1)(m + 1); (m + q − j)(m + 1) − q + 1)
if j ≥ p + 1 + i and j ≥ q + 1,

(p − j + (i + 1)(m + 1); (1 − j + q)(m + 1) − q)
if j ≥ p + 1 + i and j ≤ q,

(p − j + (i + 1)(m + 1) − m; (m + q − j)(m + 1) − q + 1)
if j ≤ p + i and j ≥ q + 1,

(p − j + (i + 1)(m + 1) − m; (1 − j + q)(m + 1) − q)
if j ≤ p + i and j ≤ q.

There are m2 = n matrices A(i, j), so there are n2 such products. The proof will be
complete if we show these products give rise to different elementary matrices, that is,

A(i1, j1)A(p1,q1) = A(i2, j2)A(p2,q2) implies that (i1, j1) = (i2, j2) and (p1, q1) = (p2, q2).

Let A(i1, j1)A(p1,q1) = A(i2, j2)A(p2,q2) with i1, j1, p1, q1, i2, j2, p2, q2 ∈ {0, 1, 2, . . . ,m − 1}. In
the remainder of the proof, for an elementary matrix (i; j), we will call i the head of
(i; j) and j the tail of (i; j) and write H((i; j)) = i, T ((i; j)) = j. Then

H(A(i1, j1)A(p1,q1)) = H(A(i2, j2)A(p2,q2)) and T (A(i1, j1)A(p1,q1)) = T (A(i2, j2)A(p2,q2)).

Now
H(A(i1, j1)A(p1,q1)) = Hp1− j1+1(A(i1, j1)) or Hp1− j1+m+1(A(i1, j1))

and
T (A(i1, j1)A(p1,q1)) = Tm− j1+1(A(p1,q1)) or T1(A(p1,q1)),

with similar expressions for H(A(i2, j2)A(p2,q2)) and T (A(i2, j2)A(p2,q2)).
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Case 1: j1 = j2 = 0. Then T (A(i1,0)A(p1,q1)) = T (A(i2,0)A(p2,q2)), which gives

T1(A(p1,q1)) = T1(A(p2,q2)) = q1m + 1 = q2m + 1,

so that q1 = q2. Also, H(A(i1,0)A(p1,q1)) = H(A(i2,0)A(p2,q2)), which gives

Hp1+1(A(i1,0)) = Hp2+1(A(i2,0)) = σi1 (p1 + 1) + i1m = σi2 (p2 + 1) + i2m.

Thus |σi1 (p1 + 1) − σi2 (p2 + 1)| = |i2 − i1|m ≤ m − 1 and it follows that i1 = i2 and
σi1 (p1 + 1) = σi2 (p2 + 1), so p1 = p2. Thus (i1, j1) = (i2, j2) and (p1, q1) = (p2, q2).
Case 2: j1 , 0, j2 , 0. In this case

H(A(i1, j1)A(p1,q1)) = Hr1 (A(i1, j1)) and H(A(i2, j2)A(p2,q2)) = Hr2 (A(i2, j2)),

where r1 = p1 − j1 + 1 or p1 − j1 + 1 + m and r2 = p2 − j2 + 1 or p2 − j2 + 1 + m. Thus
σi1 (r1) + i1m = σi2 (r2) + i2m and |σi1 (r1) − σi2 (r2)| = |i2 − i1|m ≤ m − 1. It follows that
i1 = i2 and r1 = r2. Also

T (A(i1, j1)A(p1,q1)) = Tm− j1+1(A(p1,q1)) = T (A(i2, j2)A(p2,q2)) = Tm− j2+1(A(p2,q2)).

Now Tm− j1+1(A(p1,q1)) = (m + q1 − j1)(m + 1) − q1 + 1 or (1 + q1 − j1)(m + 1) − q1 and
Tm− j2+1(A(p2,q2)) = (m + q2 − j2)(m + 1) − q2 + 1 or (1 + q2 − j2)(m + 1) − q2. We
cannot have Tm− j1+1(A(p1,q1)) = (m + q1 − j1)(m + 1) − q1 + 1 and Tm− j2+1(A(p2,q2)) =

(1 + q2 − j2)(m + 1) − q2 since then

|m + q1 − j1 − 1 − q2 + j2|(m + 1) = |q1 − q2 − 1| ≤ m,

from which q1 − q2 − 1 = 0 and j1 − j2 = m, a contradiction. Similarly, we cannot have
Tm− j1+1(A(p1,q1)) = (1 + q1 − j1)(m + 1) − q1, Tm− j2+1(A(p2,q2)) = (m + q2 − j2)(m + 1) −
q2 + 1. So Tm− j1+1(A(p1,q1)) = Tm− j2+1(A(p2,q2)) must give

|(q1 − j1) − (q2 − j2)|(m + 1) = |q2 − q1| ≤ m,

from which we deduce that q1 = q2 and j1 = j2.
To show that p1 = p2 in this case, we should consider the fact that r1 = r2. We

cannot have r1 = p1 − j1 + 1 and r2 = p2 − j2 + 1 + m, since then, using the fact that
j1 = j2, we would have m = p1 − p2, which is a contradiction. Similarly, we cannot
have r1 = p1 − j1 + 1 + m and r2 = p2 − j2 + 1. Thus Hr1 (A(i1, j1)) = Hr2 (A(i2, j2)) must
give p1 − j1 = p2 − j2, from which we deduce that p1 = p2, since j1 = j2. Thus
(i1, j1) = (i2, j2) and (p1, q1) = (p2, q2).

Finally, we show we cannot have either j1 = 0, j2 , 0 or j1 , 0, j2 = 0. Suppose
that j1 = 0, j2 , 0. Then T (A(i1, j1)A(p1,q1)) = q1m + 1 and

T (A(i2, j2)A(p2,q2)) = (m + q2 − j2)(m + 1) − q2 + 1 or (1 + q2 − j2)(m + 1) − q2.

If T (A(i2, j2)A(p2,q2)) = (m + q2 − j2)(m + 1) − q2 + 1, then

q1(m + 1) − q1 + 1 = q1m + 1 = (m + q2 − j2)(m + 1) − q2 + 1,

so |m + q2 − j2 − q1|(m + 1) = |q2 − q1| ≤ m − 1, which gives q2 = q1 and j2 = m, a
contradiction. If, on the other hand, T (A(i2, j2)A(p2,q2)) = (1 + q2 − j2)(m + 1) − q2, then
q1(m + 1) − q1 + 1 = (1 + q2 − j2)(m + 1), so

|1 + q2 − j2 − q1|(m + 1) = |q2 − q1 + 1| ≤ m,
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and so q2 − q1 + 1 = 0 and j2 = 0, a contradiction. Similarly, we cannot have j1 , 0
and j2 = 0. This completes the proof. �

Remark 3.6. In the following remark, ek denotes the standard basis vector in Cn which
has kth entry equal to one and all other entries zero. Also, T ∗ denotes the adjoint of the
matrix T . We use the well-known fact that for any rank-one complex square matrix R
and any complex matrices X, Y of the same size as R, if XRY = 0 then either XR = 0
or RY = 0.

Question 1.1 from the introduction is answered in the affirmative by Theorem 3.5
for matrices of size n where n is a square. If n is not square, the answer is still unknown,
even for real or complex matrices, although Theorem 3.1 shows that, in this case, sets
of (0, 1)-matrices will not provide an example. But suppose n ≥ 2 and {Ai : 1 ≤ i ≤ n}
is a set of n × n real or complex matrices (not necessarily (0, 1)-matrices, and not
necessarily of equal rank) such that {AiA j : 1 ≤ i, j ≤ n} = {Ep,q : 1 ≤ p, q ≤ n}.

(i) We cannot have AiA j = Ei, j, for 1 ≤ i, j ≤ n. In fact, we will prove that if i , j,
then A2

i = Ep,p,A2
j = Eq,q and AiA j = Eu,v, with u = p or v = q, leads to a contradiction.

Suppose it were true. Then

0 = A2
i A2

j = Ai(AiA j)A j = AiEu,vA j,

so AiEu,v = 0 or Eu,vA j = 0. If u = p, then AiEp,v = 0, so AiEp,p = 0 (since
AiEp,pEp,v = 0 and Ep,pEp,v , 0). But this would mean A3

i = 0, which is a
contradiction. On the other hand, if v = q, then Eu,qA j = 0, so Eq,qA j = 0 = A3

j , which
again is a contradiction.

(ii) Let 1 ≤ i, j ≤ n. There exist p, q such that ApAq = E j, j. Then range(Ai(ApAq)) =

span{Aie j} = range((AiAp)Aq) ⊆ range(AiAp) = span{ek}, for some k. Thus each matrix
Ai has at most one nonzero entry in each column. Applying this result to the set of
adjoints {A∗i : 1 ≤ i ≤ n} shows that each Ai has at most one nonzero entry in each row.
So the rank of any Ai is the number of its nonzero entries.

(iii) If n is odd, there exists i such that A2
i is diagonal. For an elementary matrix has

nonzero trace if and only if it is diagonal. Since trace(AB) = trace(BA), we see that
AiA j is a diagonal elementary matrix if and only if A jAi is. If no A2

i is diagonal, the
number of diagonal positions would be even, so n would be even.

(iv) No Ai can have rank one. For suppose that Ai had rank one. Then Ai = λEp,q

for some nonzero scalar λ and some p, q. Since A2
i is an elementary matrix, λ2 = 1 and

p = q, so Ai = ±Ep,p. Now {AiA j : 1 ≤ j ≤ n} = {Ep,r : 1 ≤ r ≤ n}, {A jAi : 1 ≤ j ≤ n} =
{Es,p : 1 ≤ s ≤ n}. Let r , p. There exist j, k such that AiA j = Ep,r and AkAi = Er,p.
Then (AiA j)(AkAi) = Ep,p = Ep,p(A jAk)Ep,p. Since A jAk is an elementary matrix, we
must have A jAk = Ep,p = A2

i and so j = k = i, and p = r. This is a contradiction.
In particular, on a space of dimension two, no such set of matrices can exist, since

otherwise, each Ai, being noninvertible and nonzero, would have rank one. (This was
observed in [1].)

(v) No such family can exist on a space of dimension three. Suppose we had 3 × 3
matrices A,B,C such that {A2,AB,AC,BA,B2,BC,CA,CB,C2} is the set of elementary
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matrices on C3. By what has been observed, each of A, B,C has rank two, and one of
them, which we can assume to be A, has a diagonal square. We can even suppose that
A2 = E1,1. By the spectral mapping theorem, since A2e1 = e1, there exists a nonzero
vector f such that A f = µ f , where µ = ±1. Then A2 f = f , so we can take f = e1.
Thus e1 ∈ range(A). Since the range of A is spanned by elementary basis vectors (see
(i) above), we can suppose that range(A) = span{e1, e2}. Then range(A2) = span{e1} =

span{Ae1,Ae2}, so Ae2 = γe1 for some scalar γ. Since A2e2 = 0 = γAe1 = γµe1 we have
γ = 0. Thus Ae2 = 0 and since A has rank two we must have Ae3 , 0.

Suppose that BC is diagonal. Then CB is also diagonal (since it has nonzero
trace), and we can suppose that BC = E2,2 and then CB = E3,3. Since Ae3 , 0, we
have ACB , 0. Now e3 is orthogonal to the range of A, so it belongs to the kernel
of A∗. Thus, since A∗ has rank two, A∗e2 , 0, so A∗E2,2 , 0 and, taking adjoints,
E2,2A = BCA , 0.

We have shown that ACB , 0 and BCA , 0. Since A2CB = A(AC)B = 0 and AC
has rank one, and ACB , 0, we get A2C = 0 by using the fact mentioned at the
beginning of this remark. Similarly, from BCA2 = B(CA)A = 0, we get CA2 = 0. Since
E1,1C = CE1,1 = 0, it follows that the matrix C has the form C = 0 ⊕ D, where D is a
2 × 2 matrix. Since C has rank two, D is invertible. This contradicts the fact that
C2 = 0 ⊕ D2 has rank one.

We have just shown that BC cannot be diagonal. Similarly CB cannot be diagonal.
Suppose that AB was diagonal. Then AB cannot equal E3,3 since then we would
have BA = E2,2 so BAe2 = 0 = e2 (since Ae2 = 0). Thus AB = E2,2 and so BA = E3,3.
Then BAe1 = 0 = B(µe1) so Be1 = 0 and BE1,1 = 0. Now A3 = AE1,1 = µE1,1. Then
A2AB = 0 = A3B = µE1,1B, so E1,1B = 0. As argued in the preceding paragraph,
E1,1B = BE1,1 = 0 contradicts the fact that B2 has rank one. Thus we cannot have
AB diagonal. Similarly we cannot have AC diagonal.

By what we have shown above, since there exist X,Y ∈ {A,B,C} such that XY = E2,2
and YX = E3,3, we can suppose that B2 = E2,2 and C2 = E3,3. Then A2C2 = 0 and
AC2 , 0 (since Ae3 , 0) implies that A2C = E1,1C = 0, which in turn implies that
B2C , 0 (note that C∗e1 = 0 implies that C∗e2 , 0). Similarly, B2A2 = 0 and B2A , 0
implies that BA2 = BE1,1 = 0, which in turn implies that BC2 , 0.

Thus B2C , 0 and BC2 , 0. But this contradicts B2C2 = B(BC)C = 0 (since BC has
rank one). So no such family can exist.

(vi) What about 5 × 5 real or complex matrices? Does such a family exist?
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