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THE DECOMPOSITION OF THE MODULE OF n-th ORDER 
DIFFERENTIALS IN ARBITRARY CHARACTERISTIC 

KLAUS G. FISCHER 

1. I n t r o d u c t i o n . Throughou t this paper, it is assumed t ha t A is the 
complete, equicharacterist ic, local ring of an algebraic curve a t a one-branch 
singularity whose residue field k is algebraically closed and contained in A. 

Hence, the domain A is dominated by only one valuat ion ring in its quot ient 
held F, and if / is a uniformizing parameter , then the integral closure of A in 
F, denoted by Â, is k[[t]]. 

The kernel of the multiplication map 7r(£<=i (xi ® yù) = ]C'*=i Xiji 

A ®AÂ^Â->0 

is denoted by I(A/A), and Dn(Â/A) = I(Â/A)/In+l(Â/_A) is called the 
module of nt\\ order differentials. I t was shown in [2] t ha t I (A/A) is nilpotent. 
This follows essentially from the hniteness of A over A. I t was also shown in [2] 
under the assumption tha t k is of characterist ic zero, t ha t the decomposition of 
I(Â/A) over the P . I .D . Â is uniquely determined by the multiplicity sequence 
of A, and an explicit formula for the decomposition was listed [2, p . 123]. The 
abs t rac t of t ha t paper incorrectly s ta ted the result to have been shown for any 
characterist ic of k when in fact it was proved for char k = 0 only. 

T h e purpose of this note is to prove t h a t this decomposition and the subse­
quent formula do indeed hold for a rb i t ra ry characterist ic of k. T h e a rguments 
are, in par t , improvements of those used in [2] and the reader is referred there 
for terminology and background. Recently, William C. Brown studied these 
and related results in the more general non-unibranched case in [11. 
Acknowledgement for helpful comments in the formulation of this paper are 
also due him. 

2. S o m e r e m a r k s a n d l e m m a s . If c t A, denote by v(x) the value (or 
order) of the element x and by e(A) the multiplici ty of the maximal ideal M 
of A. An element x belonging to M is said to be transversal to M if v(x) = e(A). 

Due to the s tandard assumption tha t Â = k\[t]] one has : 

LEMMA 1. If x Ç MCA, then I{Â/k[[x\\) is a free Â module of rank 
v(x) — 1. 

Proof. The element x is by assumption of positive degree. I t follows from 
power series a rguments [3, p . 211, Theorem 28] t ha t Â is finitely generated over 
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k[[x\\. Since k[\x]] is itself a local P . I .U. and since dim,u Â/(x)Â = v(x), it 
follows tha t Â is a free k[[x]] module of rank v(x). 

Since the sequence of Â modules 

0- A A -* A 0 I(A/k[[x]]) ->s± wk[[r]] 

is split exact and since the middle term is free of rank v(x), the left term must 
be a free Â module of rank v(x) — 1. 

Given any three commutat ive rings A C B C C, the kernel of the canonical 

map x Œ ï = i (*t ®A yt)) = Z*=i (*i ®BJÎ), 

\: C <g>A C —> C ®B C 

is generated as an ideal by the elements {1 (x)A x — x (x)A 1: x 6 B}. 
Hence, if A' is the strict closure of A m Â where Af is defined by A' = 

{x G Â: 1 (X)A x — x 0A 1 = 0 } , then A C A' and it is easily seen tha t 
A 0A Â ~ Â ®A>Â where the isomorphism x is given as above. In fact, 
restricting x gives I(Â/A) ^ I(Â/Af) as Â modules. Since Â = k[[t]], it is 
clear tha t A', which contains A, is local and tha t A' = k[[t]]. Hence, any 
consideration of the decomposition of I(Â/A) as an Â module may be done 
under the assumption tha t A is strictly closed; tha t is, ^4r = A. 

Denote by AM the blow-up of A along M. I t is impor tant to note tha t if A 
is strictly closed, then 

AM = {z/x: z G M\ 

where x is a fixed transversal element to M. 
Now if x is an arbi t rary element in M, let R = k[\x]] and consider the 

diagram: 

0^ ^0 

N(A) I(A/AM) 

(*) 

I{A/R) 

N(AM) IU/A) 
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In this, <fi, and <p2 and 6 are the obvious canonical maps and the free A 
modules N(A) and N(AM) are the kernels of <pi and <̂ 2, respectively. Notice 

The sequences 

0 /(/ÏA4) - » i ®AA 

Id 

/I ->0 

easily show 6 is onto. Likewise, <p\ and <̂ 2 are also shown to be onto. Referring 
to this diagram one shows: 

LEMMA 2.1fx is transversal to M in A, then x N(AM) = N(A). 

Proof. First consider the case when A is strictly closed, in which case 

AM = {z/x: z G M, x transversal to M\. 

The kernel of <p2 is generated as an ideal in Â ®R Â by (1 (x) z/x — z/x (x) 1) 
where R = k[[x]]. 

Hence, if y Ç iV(,4M), then 

7 = 1 \ 

Z i % i 
R 1 , and 

XT? E (ct ®Bdi)(l Zi ®R 1 ) , 

so <pi(xrj) = 0. 

Now suppose £ G iV(^4). Then 

>*i), 2 , e ^> 

and hence 

Z {cit ®Rbi)\i®R 
Zi Zi 

X 
A 

But the right hand factor of £ is an element in N(AM), so £ Ç 7V(,4M). Hence, 
x iV(^ M ) = JV(4). 

In the general case, if x is transversal to M in ^4, it is also transversal to the 
maximal ideal M' of A' since e(^4) = e(A'). Hence, the aforementioned iso­
morphism between I(Â/A) and I {A/A') easily shows N(A) = N(A'), and 
likewise N(AM) = 7V(G4M)'). But since (AM)f = (A')M\ it follows that 
xN(AM) = N(A). 

3. The theorem. Let A = A0 and denote AM by Ax. The ring 4 i is local 
once again, and one may form its blow up along its maximal ideal M\. Denote 
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AiMl by A2; this process stops a t Â after a finite number of steps, and it shall 
be assumed tha t An is singular and tha t An

Mn = k[\t]]. 

The sequence A = /lo C ^4i C • • • C ^ C / ï is called the blow up sequence 
of A and the sequence e(Ao) = <?0, e(Ai) = ei, . . . , e(An) = en is called the 
multiplicity sequence of A. By assumption none of these integers in this de­
creasing sequence is equal to one. 

Given any finitely generated module T over the P . I .D . Â, let F be a free 
module of rank s mapping onto T and consider the (s X s) matr ix determined 
by the relations for T. If ai is the greatest common divisor of all i X i sub-
determinants then (7i = Ei, a2/<Ti = E2, • • • , <TS/<TS-I = Es are the invar iant 
factors of T which are unique up to units from &[[/]]. These completely deter­
mine the s t ructure of T over A. 

With these preliminaries the theorem stated a t the outset may be proved. 

T H E O R E M . Let A be the complete load ring of an algebraic curve at a one-branch 
singularity defined over an algebraically closed field k of arbitrary characteristic. 
Then the module Dn(Â/A) of nth order differentials for n » 1 is uniquely deter­
mined by the multiplicity sequence of A. 

Proof. Since KÀ/A) is nilpotent [2, Theorem 1.2] one need only consider 
the decomposition of I (A/A). I t will be shown recursively how the invariant 
factors of I(Â/A) are found. 

Using the previous notation, let An be the last singular ring in the blow up 
sequence of / l , and let x be transversal to Mn in A„. Hence, A„Mn = A. Sett ing 
7̂  = k[[x]] gives tha t I{Â/R) is free of rank en — 1. Referring to diagram (*), 
let (a) be the matr ix determined by the relations for I(Â/À) and cr* the greatest 
common divisor of the i X i subdeterminants of (a). Since I(Â/Â) = 0, the 
invariant factors o-j, o^Ai, • • • , v€n-\laCn-i of I(Â/Â) must all be units. Lemma 
2 shows tha t xN(Â) = N(A„). Hence, the matr ix determined by the relations 
for I(A/An) is just x(a) and it follows tha t the greatest common divisor of the 
i X i subdeterminants of this matr ix is xV,-. This shows tha t each of the 
en — 1 invariant factors of I(A/A„) is just x multiplied by a unit. 

For the general step denote by B with maximal ideal P the ring under con­
sideration in the blow up sequence of A. Let Ei, . . . , £,, be the invar iant 
factors of I(Â/BP) and choose x to be transversal to P in B. Then v(x) = e, 
the multiplicity of B. Let R = k[[x]} and note t ha t I(A/R) is free of rank 
e — 1. Once again referring to diagram (*), let (a) be the (e — 1) X (e — 1) 
sized matrix determined by the relations for I(A/BP). If at is the greatest 
common divisor of the i X i subdeterminants of (a), one may assume tha t 
the ratios ci, 0-2/0-1, . . . , ac-i/ac-2 are just 

U\, U2, • . • , W ( c _ i ) _ s , £ i Z / ( c _ i ) _ ( s _ i ) , . . . , Eglle-i 

respectively where the 11/s are units. 
But since xN(Bp) = N(B), the matrix determined by the relations for 
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I(A/B) is x(a) and it follows t ha t the invar iant factors of I(A/B) are, up to 

units , 

x, . . . , x, EiX, . . . , Esx 

( e - l ) - s 

This recursive process gives the invariant factors of I (A/A). In fact, let 

Et = tei where et = e(Ai), i = 0, . . . , n. Then , up to units , the factors of 

I {A I A) are given by: 

(**) EQ, . . . , Eoj E\EQ, . . . , EIEQ, . . . , EnEn-\ . . . , Eo» • • • , EnEn-\ . . . , E{) 

eQ — ei ei — e2 

This formula shows tha t the multiplicity sequence determines the decomposi­
tion of IÇÂ/A). 

Conversely, given the ring A with a known decomposition of I (A/A) one 
may read off the multiplicity sequence of A in the following way. 

If all the invariant factors of I(Â/A) are simply units , then the uniqueness 
of these factors and formula (**) imply t h a t e(A) = 1, t h a t is A = k[[t]]. 
These same considerations show in the general case t ha t if G is the non-trivial 
factor of highest order appearing in the decomposition, then this order must 
equal eo . . . en, where e0 = e(A), . . . , en = e(A) again represents the non-
trivial multiplicity sequence of A. In fact, the number of t imes the factor G 
appears (up to units) equals en — 1. Hence, en is determined. 

Now consider F = G/ten. Once again the uniqueness of the factors and 
formula (**) imply tha t apa r t from G, the order of F is the largest t h a t can 
possibly appear among the factors of I(Â/A). If v(F) = 0, then since v(F) = 
e0 . . . en-i and since et > 1 for all i, e(A) = en and this must be the complete 
multiplicity sequence of A. (n = 0 in this case). 

If v(F) > 0, then the number of t imes a factor of order v(F) appears among 
the invariant factors of I(Â/A) must equal en_i — en. Such a factor may not 
exist in which case en-\ = en. In either case, en-\ is determined. 

One continues the process by considering F/ten~l = G/tenten~1 until such 
division produces an element of order zero in which case the complete mult i ­
plicity sequence will have been determined. Th i s completes the proof of 
the theorem. 

For a rb i t ra ry characterist ic of k, the formula for the length of I(Â/A) over 
A, denoted by \x(I(Â/A)), is easily found to be as before [2, Theorem 3.6]. 

COROLLARY. XÂ(I(Â/A)) = Z%iet(et - 1). 

Proof. If Eo, . . . , £ „ are the invar iant factors of I(Â/A), then formula (**) 

en — 1 
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shows 

X, - ( / ( lM)) = (eo - ciMEo) + (ci - et)[v(Eo) + i;(£i)J 

+ . . . + (e„- l)[v(E,) + ...+v(E„)\ 

i--=0 

since v(Et) = et. 
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