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Abstract

We construct the first example of a stable hyperholomorphic vector bundle of rank
five on every hyper-Kähler manifold of K3[2]-type whose deformation space is smooth
of dimension 10. Its moduli space is birational to a hyper-Kähler manifold of type
OG10. This provides evidence for the expectation that moduli spaces of sheaves on a
hyper-Kähler could lead to new examples of hyper-Kähler manifolds.
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1. Introduction

1.1 Background and motivation
Hyper-Kähler manifolds are a well-studied class of Kähler manifolds. Interest in them origi-
nates with the Beauville–Bogomolov decomposition theorem which shows that they are building
blocks for Kähler manifolds with torsion first Chern class. Despite having a well-developed gen-
eral theory, culminating in Verbitsky’s global Torelli theorem [Ver13], few examples are known.
Moreover, all known examples arise, up to deformation, from smooth moduli spaces of sheaves on
K3 (or Abelian) surfaces [O’G97, Yos01], or desingularizations of singular moduli spaces [O’G99,
O’G03].

In a quest to generalize to higher dimensions the properties of vector bundles on K3 surfaces,
which allow for the rich geometry of their moduli spaces, O’Grady [O’G22] introduced the notion
of modular sheaves. A torsion-free sheaf F on a hyper-Kähler manifold X is called modular if
its discriminant satisfies a certain numerical condition, see Definition 3.11.
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Towards a modular construction of OG10

This property is satisfied, for example, if Δ(F ) remains of type (2, 2) along all deformations
of X. In this case, a celebrated result due to Verbitsky [Ver99, Theorem 3.19] for locally free
sheaves, and later generalized by Markman [Mar20, Corollary 6.12] to reflexive sheaves, says that
if F is also slope-stable, then it deforms along any Kähler deformation of X.

As described in [O’G21] and [O’G22], the underlying motivation for the notion of modularity
is to try to extend to higher dimensions the proof that moduli spaces of sheaves on K3 surfaces are
hyper-Kähler manifolds. Specifically, the key step is to deform the pair (X, F ) to a hyper-Kähler
with a Lagrangian fibration and study the deformed sheaf by restriction to the fibers.

The examples considered in [O’G22] are rigid, that is, without infinitesimal deformations.
O’Grady proved an existence and uniqueness result for stable modular sheaves with certain
invariants, which in turn implies a birationality result for the period map for Debarre–Voisin
varieties.

In an effort to construct more examples, Markman [Mar23] studied sheaves with obstruction
map of rank one. The obstruction map for an object E ∈ Db(X) is the map

χE : HH2(X)→ Ext2(E, E), η �→ ηE , (1)

given by evaluation at E. Here we used that an element η ∈ HH2(X) in the second Hochschild
cohomology group of a smooth projective variety X can be seen as a natural transformation
id

η−→ [2].
Similarly, there is a cohomological obstruction map

χcoh
E : HH2(X)→ H∗(X, C),

given by contraction with the Chern character of E, see [Mar23, Definition 6.11]. Objects with
cohomological obstruction map of rank one have been studied independently by Beckmann in
[Bec22], where they are called atomic.

In [Mar23, Theorem 1.2] it is shown that if E is a torsion-free atomic sheaf on a hyper-
Kähler manifold X, then it is modular in the sense above. The rank of the (cohomological)
obstruction map is invariant under derived equivalences, so this point of view naturally yields
an approach to find new modular sheaves: mapping atomic objects to torsion-free sheaves via
derived equivalences. The most promising class of atomic objects [Bec22, Theorem 1.8] consists
of line bundles supported on smooth Lagrangians Z ⊂ X, with the property that the restriction
map H2(X, C)→ H2(Z, C) has rank one.

In addition to being modular, atomic sheaves enjoy a crucial extra property. Namely, on the
set of atomic objects one can define an ‘extended Mukai vector’. It lives in the ‘extended Mukai
lattice’, first introduced in the breakthrough work by Taelman [Tae23]. This is the rational vector
space

H̃(X, Q) := Qα⊕H2(X, Q)⊕Qβ,

equipped with the quadratic form q̃ obtained by extending the Beauville–Bogomolov–Fujiki
(BBF) form on H2(X, Q) by declaring that α and β are orthogonal to H2(X, Q), isotropic and
q̃(α, β) = −1.

The geometric meaning of the classes α and β can be understood by the short exact sequence
of [Tae23, Lemma 3.7]. Namely, if dim(X) = 2n, we have

0→ SH(X)→ SymnH̃(X, Q)→ Symn−2H̃(X, Q)→ 0, (2)

where SH(X) is the Verbitsky component, i.e. the subalgebra of H∗(X, Q) generated by
H2(X, Q). The images of αiβn−i under the orthogonal projection SymnH̃(X, Q)→ SH(X)
generate the monodromy invariant part.
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Taelman [Tae23, Theorems 2.4, 4.8 and 4.9] showed that an equivalence Φ : Db(X) ∼−→ Db(Y )
induces Hodge isometries ΦSH : SH(X)→ SH(Y ) and ΦH̃ : H̃(X, Q)→ H̃(Y, Q). These two
isometries are compatible via the sequence above up to sign, i.e. the diagram

commutes up to a sign.
Building up on this work, Beckmann [Bec22, Bec23] and Markman [Mar23] introduced the

extended Mukai vector ṽ(E) ∈ H̃(X, Q) for any atomic object E ∈ Db(X). It is only defined up
to a constant, by requiring the symmetric power ṽ(n) to be compatible with the usual Mukai
vector v(E) := ch(E)

√
tdX via the maps in the sequence (2); see Definition 3.1.

The extended Mukai vector inherits some of the properties of the Mukai vector, while at the
same time being valued in a smaller, more manageable, vector space than the whole rational
cohomology. Among those, one of the more useful is compatibility with derived equivalences.
More precisely, if E ∈ Db(X) is an atomic object, then

ΦH̃(〈ṽ(E)〉) = 〈ṽ(Φ(E))〉,
where 〈ṽ〉 denotes the line spanned by ṽ.

The investigation of sheaves on hyper-Kähler manifolds and their moduli spaces is one of
the most promising paths to find new examples of hyper-Kähler manifolds. This idea has been
around since the works of Kobayashi [Kob86] and Verbitsky [Ver99], but the theory is still in its
infancy. The first step would be to answer the following question posed by Markman.

Question. Can we realize OG10 as a moduli space of sheaves on a hyper-Kähler manifold of type
K3[2]?

Atomic sheaves have beautiful properties, which make them excellent candidates to have
reasonable moduli spaces. In this paper, we make progress towards the answer: we find a stable
atomic vector bundle on a K3[2] whose moduli space has an irreducible component birational to
OG10.

1.2 Main results
The first result of this paper is the construction of a new example of a non-rigid atomic vector
bundle. Denote by q2i ∈ SH4i(X) the classes defined in Definition 3.5, and by pt ∈ Htop(X, Q)
the class of a point. Recall that if X is of type K3[2], then

c2(X) = 30q2

by [BS22, Proposition 2.4]. We also refer to § 6.1 for the notion of a(v)-generic polarization.

Theorem 1.1. Let X be a projective hyper-Kähler of K3[2]-type. Consider the Mukai vector

v := 5
(
1− 3

4q2 + 9
32pt

)
∈ H∗(X, Q),

and let h be any a(v)-generic polarization. Then, there exists an h-stable vector bundle F0 on X
with Mukai vector v. Moreover, the group Ext1(F0, F0) is ten dimensional, the Yoneda pairing
is skew-symmetric and induces an isomorphism∧2

Ext1(F0, F0)
∼−→ Ext2(F0, F0).
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In particular, its deformation functor is smooth.

We briefly describe the steps involved in the construction.

(1) If X ⊂ P5 is a general cubic fourfold and H is a general hyperplane, then the structure sheaf
OF (X∩H) is an atomic object in Db(F (X)). We degenerate the cubic to the determinantal
cubic and consider the corresponding degeneration of the Fano variety of lines. After a
resolution, the central fiber is a moduli space M of torsion sheaves on a general K3 surface
of degree two, and the surface F (X ∩H) degenerates to a reducible Lagrangian Z with two
components.

(2) The moduli space M is endowed with a Lagrangian fibration π : M → P2. This Lagrangian
fibration has a section, whose image L is one of the components of the reducible Lagrangian
Z. The other component is a Lagrangian plane P ′ ⊂M . As shown in [ADM16], there is an
autoequivalence Φ of M mapping a general point to a line bundle supported on its fiber. We
make the following construction: starting from a line bundle L ∈ Pic0(L), we glue it with
OP ′ , to obtain a degree zero line bundle L on Z. The image Φ(L) is a locally free sheaf, but
not slope-stable.

(3) To make it stable we apply a second autoequivalence: the composition of two (inverses of)
P-twists around line bundles. After twisting by a line bundle, the resulting vector bundle
will have c1 = 0. Using atomicity we can easily compute the Mukai vector from this con-
struction. Slope-stability, combined with atomicity, allows the bundle to deform to every
Kähler deformation of M thanks to [Mar23, Theorem 1.2]. The Yoneda pairing is studied
on the Lagrangian side, by relating it to the cup product on the cohomology of L.

Along the way we prove a number of interesting results on their own. We highlight in
particular the following.

Proposition 1.2 (Proposition 5.2). Let M = MS(0, H, 1− g) be a moduli space of torsion
sheaves on a general polarized K3 surface (S, H) of genus g, and let π : M → Pg be the Lagrangian
fibration. Let L ⊂M be a Cohen–Macaulay subvariety such that π|L : L→ Pg is finite. If VL is
a vector bundle on L, then Φ(VL) is a locally free sheaf.

The proof is based on an analysis done by Arinkin in [Ari13] on the singularities of the
Fourier–Mukai kernel of Φ. This is the first technique to produce locally free sheaves starting
from push-forwards of locally free sheaves on subvarieties. We believe this could be helpful in
understanding the relationship between atomic vector bundles and atomic Lagrangians.

The rest of the paper is devoted to the study of the irreducible component of the moduli
space M of Gieseker-semistable sheaves on M containing F0. While Theorem 1.1 is a general
existence result, we study the geometry of M only in a particular case. Namely, F0 is the vector
bundle on M obtained from the construction outlined above, and h is a suitable polarization
(see § 6.1 for a reminder on this notion). In this context, we are able to prove the following.

Theorem 1.3 (Proposition 7.2 and Theorem 7.7). The smooth locus Msm is equipped with a
closed holomorphic 2-form. Moreover, there is a birational map preserving the 2-form

X ��� M,

where X is a hyper-Kähler manifold of type OG10.

The birational map is easily described. Recall that M is a moduli space of sheaves on a
general polarized K3 surface (S, H) of degree two. The reducible Lagrangian Z ⊂M has two
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components. One is the image P ′ of a section of the Lagrangian fibration π. The other is a
Lagrangian surface L isomorphic to Sym2C, where C ⊂ S is a general curve in |2H|.

A degree-zero line bundle LC supported on a general curve in |2H| is a general element in
the moduli space MS(0, 2H,−4). The variety X is the symplectic resolution of this moduli space,
and the birational map is given by steps (1)–(3) applied to the symmetric square L�2

C .
The 2-form at the point [F ] ∈Msm is given by

Ext1(F, F )× Ext1(F, F )→ C, (a, b) �→ TrF (χF (η) ◦ a ◦ b),

where η ∈ HH2(M). A priori it depends on the choice of η, but, at least on the image of the
birational map, it is unique up to a constant.

We conjecture that M is itself a hyper-Kähler manifold of type OG10, in particular that it
is smooth.

A possible way to address this is to analyze the singularities of the sheaves in M: are they
all locally free? Are they all reflexive? We believe that a positive answer to these questions could
lead to an understanding of the singularities of M.

1.3 Structure of the paper
In § 2 we review the works [Col82] and [vDri12] to show that there is a smooth family F → Δ
of hyper-Kähler varieties realizing the degeneration above.

In § 3 we review some of the background on atomic sheaves. We also prove new numerical
results. First, we compute explicitly the discriminant of an atomic sheaf, reproving that an atomic
sheaf is modular. We use this computation to speculate on Bogomolov’s inequality for atomic
sheaves. Then, in Theorem 3.17 we give a formula for the Euler pairing of an atomic object with
itself, generalizing the well-known formula for K3 surfaces.

In § 5 we apply this to construct the bundle of Theorem 1.1. We show that the image of a line
bundle supported on Z is a locally free sheaf, we compute its Mukai vector and its Ext groups.

In § 4 we develop some technical algebraic results which we will need to compute the Ext
groups of the sheaf F , and to perform the semistable reduction. The main result of this section
is Proposition 4.11 where the groups Ext∗(OZ ,OZ) are described in terms of the topology of Z.

In § 6 we perform two inverse P-twists and prove that the resulting object is a stable vector
bundle. Locally freeness is proved in Proposition 5.2. The key ingredient of the proof of stability
is the notion of a suitable polarization introduced in [O’G21], which allows us to relate stability
on the general fiber to global stability. The main use of this is in Proposition 6.4.

Finally, in § 7 we study the moduli space M of Gieseker-semistable deformations of F0 on M .
We study the image of the obstruction map in Theorem 7.7, and prove Theorem 1.3.

Notation and conventions
Unless otherwise specified, all the functors are derived. Where it does not generate confusion,
we use the same notation L for a line bundle supported on a subvariety and for its pushforward.
We use O’Grady’s normalization for the Fujiki constant: if X is a hyper-Kähler manifold of
dimension 2n and α ∈ H2(X), then∫

X
α2n = cX · (2n− 1)!! · qX(α)n,

where qX denotes the BBF form.
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2. Degenerating the Fano variety of lines

Let X0 ⊂ P5 be the determinantal cubic, that is the secant variety to the Veronese surface
V ⊂ P5. It is given in coordinates by ∣∣∣∣∣∣

x0 x1 x2

x2 x3 x4

x2 x4 x5

∣∣∣∣∣∣ = 0.

It is singular along the Veronese surface. If P5 is identified with the space of conics on a projective
plane, X0 corresponds to the singular conics and V to the non-reduced ones.

Let X ⊂ P5 be a very general cubic and let X → Δ be the pencil spanned by X0 and X. If
X = {f = 0}, the equation of the pencil is∣∣∣∣∣∣

x0 x1 x2

x2 x3 x4

x2 x4 x5

∣∣∣∣∣∣ + tf = 0.

Taking the relative Fano variety of lines, we get a family F → Δ whose general fiber Ft is
the Fano variety of lines F (Xt) of a general member of the pencil. The central fiber F0 = F (X0)
is described in [vDri12, Propositions 3.2.3 and 3.2.4]: it is the union of F1

∼= (P2)[2] and F2
∼=

P2 × (P2)∨, where F1 is non-reduced with multiplicity four.

Proposition 2.1 [vDri12, Theorem 3.3.7]. After a base change along a 2 : 1 map Δ′ → Δ and
blowing up F in F1, we get a family F̂ → Δ′ such that the following hold.

(1) The special fiber has two irreducible components

F̂0 = E ∪ F̂2.

(2) The map F̂2 → F2 is an isomorphism, in particular F̂2
∼= P2 × (P2)∨.

(3) The intersection E ∩ F̂2 ⊂ F̂2 is isomorphic to the incidence variety in P2 × (P2)∨.

(4) The blow-up F̂ is smooth along F̂2.

We describe the family F̂ in more detail. Since the Veronese surface V has degree two, the
intersection V ∩X gives a smooth sextic curve Γ ∈ P2. Let p : S → P2 be the K3 surface obtained
as the double cover of P2 ramified over Γ. Let P ⊂ S[2] be the image of the map

P2 → S[2], x �→ p−1(x),

where p−1(x) denotes the schematic fiber. Rephrasing [vDri12, Theorems 3.5.8 and 3.5.11] gives
the following result.

Theorem 2.2. There is a smooth family F → Δ′ such that the general fiber F t = F (Xt) is the
Fano variety of lines of the cubic Xt and the special fiber F0 is isomorphic to S[2]. The family F̂ is
the blow-up of F in P . Under this identification F̂2 is the exceptional divisor, and E ∼= BlP (S[2]).

Consider the moduli space M := M(0, H,−1), where H := p∗(O(1)). A generic point is
represented by a line bundle of degree 0 supported on a curve in |H|. There is a birational
map

g : S[2] ��� M, ξ �→ ωC ⊗ Iξ, (3)

where C is the unique curve in |H| containing ξ. This is well defined outside the plane P ⊂ S[2].
The birational map g is the Mukai flop of the plane P , and the dual plane P ′ ⊂M is the image
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of the section of the Lagrangian fibration

π : M → (P2)∨, F �→ Supp(F ),

where Supp(F ) is the Fitting support.

Remark 2.3. Since the cubic X is very general, the plane P ⊂ S[2] does not deform sideways in
F → Δ′. The argument in the proof of [Huy97, Theorem 3.4] shows that the Mukai flop (3) can
be deformed to F . This implies that F̂ can also be contracted to a family F ′ → Δ′ with the
same general fiber and special fiber F ′

0
∼= M .

In [Col82] Collino does the same operations with the Fano variety of lines of a hyperplane
section. More precisely, let H ⊂ P5 be a general hyperplane. The intersection V ∩H gives a
general conic K ⊂ P2, and the intersection X0 ∩H is the secant variety of the image of K via
the Veronese embedding. Define C := p−1(K) ⊂ S as the inverse image of the conic via the double
cover, it is a genus-five curve.

Let XH → Δ be the pencil of the hyperplane sections and let Z ⊂ F be the relative Fano
surface of lines. The special fiber is the union of two components Z0 = Z1 ∪ Z2 ⊂ F1 ∪ F2, where
Z2 is reduced and Z1 is non-reduced of multiplicity four. Moreover, both Z2 and Z1red

are
isomorphic to P2.

Proposition 2.4 [Col82, Proposition 2.1]. After a base change along a 2 : 1 map Δ′ → Δ and
blowing up Z in Z1, we get a smooth family Ẑ → Δ′ with reducible central fiber

Ẑ0 = E′ ∪ Ẑ2.

Moreover, the exceptional divisor E′ is isomorphic to Sym2C and Ẑ2 is isomorphic to Z2.

We want to understand the image of Ẑ via the contraction F̂ → F ′ of Remark 2.3. First
observe that the intersection Z1 ∩ Z2 consists of the lines tangent to K, so it is isomorphic to
K∗. Via the embedding Z2 ⊂ P2 × (P2)∨ it gets mapped into the incidence variety inside K ×K∗.
In particular, it maps isomorphically to its image under both projections.

Via the contraction F̂ → F ′, the component F̂2 in the central fiber F̂0 gets mapped to (P2)∨,
so it induces a map Ẑ2 → (P2)∨. This map must be an isomorphism. This is because

Ẑ2
∼= Z2

∼= P2,

and the contraction maps the intersection Ẑ2 ∩ E′ isomorphically to its image K∗. Hence, the
special fiber of Ẑ remains unchanged under the contraction F̂ → F ′. The same argument also
works for the contraction F̂ → F . Summarizing the argument, and adjusting the notation, we
showed the following.

Theorem 2.5. There is a smooth family F → Δ and a smooth subvariety Z ⊂ F with the
following properties.

• The general fibers Ft and Zt are respectively the Fano varieties of lines F (Xt) of the cubic
Xt, and of its hyperplane section F (Xt ∩H).

• The special fiber F0 is identified with the moduli space M = M(0, H,−1).
• The special fiber Z0 is a normal crossing P ′ ∪ L, where L ⊂M is a Lagrangian surface

isomorphic to Sym2C. The intersection L ∩ P ′ is isomorphic to K.

Here, the terminology ‘normal crossing’ is used to indicate the union of two smooth varieties
which intersect along a smooth divisor. We conclude the section with a more detailed description
of the geometry of the central fiber. If the K3 surface S is very general, and this happens if we
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choose the cubic X to be very general, the Neron–Severi lattice of the moduli space M is

NS(M) = Zλ⊕ Zf, (4)

the Beauville–Bogomolov form with respect to this basis has matrix(
2 2
2 0

)
.

Geometrically, f := π∗(O(P2)∨(1)) is the inverse image via the Lagrangian fibration of a hyper-
plane class, and λ restricts to a principal polarization on a general fiber Mt. From the point of
view of the Hilbert scheme, we have

NS(S[2]) = Zh⊕ Zδ,

where h is the polarization induced by H = p∗(OP2(1)) on S, and δ is half the exceptional divisor
of the Hilbert–Chow map. The Mukai flop identifies the divisors

h←→ λ,

h− δ ←→ f.

Remark 2.6. As explained in [vDri12, Section 3.7] the family F → Δ of Theorem 2.5 is a pro-
jective family, and comes equipped with an ample line bundle L. On the general fiber this line
bundle is the Plücker polarization, and on the special fiber F0 = M is OM (λ + f). It has square
6 and divisibility 2 on every fiber.

Proposition 2.7. The Lagrangian fibration π is finite of degree 4 when restricted to L.

Proof. The map π|L : L→ (P2)∨ is proper, so it suffices to show that it is quasi-finite. The
intersection P ′ ∩ L is one dimensional and it maps bijectively onto the dual conic K∗ via π. On the
complement of P ′ the Mukai flop is an isomorphism, so it suffices show that Sym2C −K → (P2)∨

is quasi-finite.
The fiber of a line l ∈ (P2)∨ consists of the subschemes ξ ∈ S[2] mapping to the schematic

intersection l ∩K. The number of such subschemes is always finite. If l intersects K transversely
outside the ramification locus Γ, there are four reduced subschemes mapping to the intersection.

�

3. Numerical computations

3.1 Review: atomic and modular sheaves
We briefly review the theory of atomic and modular sheaves. The main references are [O’G21,
O’G22] for modular sheaves and [Bec22, Bec23, Mar23] for atomic sheaves. A more detailed
overview of the background is in [Bec23, Section 2].

Let X be a hyper-Kähler manifold of dimension 2n. The rational extended Mukai lattice is
the rational vector space

H̃(X, Q) := Qα⊕H2(X, Q)⊕Qβ.

It is endowed with the non-degenerate quadratic form q̃ obtained by extending the BBF form q
on H2(X, Q) by declaring that α and β are orthogonal to H2(X, Q), isotropic and q̃(α, β) = −1.
It is also equipped with a Hodge structure, defined by H̃(X, C)2,0 = H2,0(X) and imposing
compatibility with q̃.
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Let SH(X) ⊆ H∗(X, Q) be the Verbitsky component, i.e. the subalgebra of H∗(X, Q)
generated by H2(X, Q). By [Tae23, Lemma 3.7] there is a short exact sequence

0→ SH(X) Ψ−→ SymnH̃(X, Q) Δ−→ Symn−2H̃(X, Q)→ 0.

Here Δ is the Laplacian operator, defined by

x1 · · ·xn �→
∑
i<j

q̃(xi, xj)x1 · · · x̂i · · · x̂j · · ·xn.

The map Ψ is defined as follows. First, for every λ ∈ H2(X, Q) define the operator eλ on H̃(X, Q)
by

eλ(α) = λ, eλ(β) = 0, eλ(μ) = q(λ, μ)β ∀μ ∈ H2(X, Q).

If we denote by x(n) ∈ SymnH̃(X, Q) the nth symmetric power of x ∈ H̃(X, Q), then Ψ is defined
as

λ1 . . . λk �→ eλ1 . . . eλk
(α(n)/n!),

where eλ acts on SymnH̃(X, Q) by derivations.
Recall that there is an action of the Looijenga–Lunts–Verbitsky (LLV) algebra g(X) both on

SH(X) and H̃(X, Q), and the injection Ψ is equivariant with respect to this action; for details
see [Ver96, LL97, Tae23]. Similarly Ψ is an isometry with respect to the bilinear form bSH on
SH(X) and the one1 induced by q̃ on SymnH̃(X, Q). We denote by

T : SymnH̃(X, Q)→ SH(X)

the orthogonal projection with respect to the bilinear form on SymnH̃(X, Q) induced by q̃.

Definition 3.1 [Bec22, Definition 1.1]. An object E ∈ Db(X) is atomic if there exists a non-zero
ṽ(E) ∈ H̃(X, Q) such that

Ann(v(E)) = Ann(ṽ(E)) ⊂ g(X).

Remark 3.2. This notion is related to the obstruction map (1) as follows. In [Mar23, Theorem 1.7]
it is shown that if E is 1-obstructed (that is, χE has rank one) and v(E) is not killed by the LLV
algebra, then E is atomic. The same result is shown in [Bec22, Theorem 1.3] as a consequence of
the equivalence between atomicity and cohomological obstruction map of rank one, established
in [Bec22, Theorem 1.2].

Proposition 3.3 ([Bec22, Proposition 3.3] and [Mar23, Theorem 1.7]). If E ∈ Db(X) is atomic,
the projection T (ṽ(E)(n)) is a rational multiple of the projection v(E)SH of the Mukai vector
onto the Verbitsky component.

3.2 Mukai vector of atomic objects on fourfolds
Now we consider X a hyper-Kähler manifold of dimension four. We want to give an explicit
formula for the Mukai vector of an atomic object, in terms of its extended Mukai vector. In
order to do this, it is necessary to choose a representative for the line spanned by ṽ(E). If the
rank of E does not vanish, we can normalize ṽ(E) as follows.

Proposition 3.4 [Mar23, Theorem 6.13(3)]. Assume r(E) �= 0. Then ṽ(E) can be chosen of
the form

r(E)α + c1(E) + s(E)β,

where s(E) is a rational number.

1 To be precise, one needs to rescale by cX to obtain an isometry, see [Bec23, Section 2].
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We are also going to need to understand the projection on the Verbitsky component of certain
classes in SymnH̃(X, Q). For this, we recall the following notation.

Definition 3.5 [Bec23, Section 3]. Let X be a hyper-Kähler manifold of dimension 2n. For
every 1 ≤ i ≤ n, denote by q2i ∈ SH4i(X, Q) the class defined by the property∫

X
ω2n−2iq2i = cX

(2n− 2i)!
2n−i(n− i)!

q(ω)n−i = cX(2n− 2i− 1)!!q(ω)n−i,

for every ω ∈ H2(X, Q). For i = 0, we set q0 := 1.

Remark 3.6. By [Bec23, Lemma 2.3] the classes q2i generate the monodromy invariant subspace
of SH4i(X) for every i.

Lemma 3.7 [Bec23, Lemma 3.5]. For 1 ≤ i ≤ n we have

T (α(n−i)β(i)) = (n− i)!q2i.

Lemma 3.8. For every γ ∈ H2(X, Q) we have

T (α(n−2) · γ(2)) = (n− 2)!(γ2 − q(γ, γ)q2) ∈ SH4(X).

Proof. By definition

Ψ(γ2) = eγ · eγ(αn/n!) =
α(n−2) · γ(2)

(n− 2)!
+ q(γ, γ)

α(n−1) · β
(n− 1)!

.

The map Ψ is a section of T , so T (Ψ(γ2)) = γ2. Substituting we get

T (α(n−2) · γ(2)) = (n− 2)!
(

T (Ψ(γ2))− q(γ, γ)
T (α(n−1) · β)

(n− 1)!

)
= (n− 2)!(γ2 − q(γ, γ)q2),

where we used Lemma 3.7 in the last equality. �

Lemma 3.9. Let X be a hyper-Kähler fourfold, and let λ ∈ H2(X, C). Then∫
X

T (λβ)μ = cXq(λ, μ),

for every μ ∈ H2(X, C)

Proof. By linearity, we can assume that q(λ, λ) �= 0. By definition, we have

Ψ(λ3) = eλ · eλ · eλ

(
α(2)

2

)
= 3q(λ, λ)λβ.

Using that Ψ is a section of T we obtain T (λβ) = λ3/3q(λ, λ), which is easily seen to satisfy the
thesis. �

For any λ ∈ H2(X, Q), we denote by λ∨ ∈ H6(X, Q) the class such that∫
X

λ∨μ = cXq(λ, μ), for every μ ∈ H2(X, Q). (5)

With this notation, the lemma above says that T (λβ) = λ∨. Using this, if dim(X) = 4 we can
give the explicit form of the Mukai vector of an atomic object.
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Corollary 3.10. Let X be a hyper-Kähler fourfold, and E ∈ Db(X) an atomic object with
non-zero rank. Write

ṽ(E) = rα + λ + sβ.

Then we have

v(E)SH = r + λ +
1
2r

(λ2 − q̃(ṽ(E), ṽ(E))q2) +
s

r
λ∨ +

s2

2r
q4.

Proof. The symmetric square of ṽ(E) is given by

ṽ(E)(2) = r2α(2) + 2rαλ + 2rsαβ + λ(2) + 2sλβ + s2β(2) ∈ Sym2H̃(X, Q). (6)

Applying the results above, we obtain

T (ṽ(E)(2)) = 2r2 + 2rλ + 2rsq2 + (λ2 − q(λ, λ)q2) + 2sλ∨ + s2q4.

Dividing by 2r and rearranging the terms we obtain the formula for the Mukai vector in the
statement. �

3.3 Discriminant
An atomic torsion-free sheaf is modular by the arguments in [Bec22, Section 5]. Using the
computations above, we can give a direct proof of this fact, by computing the discriminant in
terms of the extended Mukai vector. Bogomolov’s inequality will then give an inequality for
stable atomic sheaves which is similar to the one for K3 surfaces.

Let X be a hyper-Kähler manifold of dimension dim(X) = 2n, and let F be a torsion-free
sheaf on X. Recall that the discriminant of F is the class

Δ(F ) := −2r(F ) ch2(F ) + c1(F )2 ∈ H4(X, Q).

Definition 3.11 (O’Grady). A torsion-free sheaf F is modular if the projection Δ(F )SH on the
Verbitsky component is a multiple of the class q2.

Define the number rX as in [Bec23, Section 3]; by Lemma 3.3 in [Bec23] we have

(tdX)1/2
2,SH = rXq2. (7)

Its values for the known deformation types are

rX =

⎧⎪⎨⎪⎩
n + 3

4
for K3[n] or OG10,

n + 1
4

for Kumn or OG6.

Proposition 3.12. Let F be an atomic torsion-free sheaf. Then F is modular, and

Δ(F )SH = (q̃(ṽ(F ), ṽ(F )) + 2rXr(F )2)q2.

Proof. Taking the nth symmetric power of ṽ(F ) we get

ṽ(F )(n) = r(F )nα(n) + nr(F )n−1α(n−1)c1(F ) +
(

n

2

)
r(F )n−2α(n−2)c1(F )(2)

+ nr(F )n−1s(F )α(n−1)β + · · · .
Using Lemmas 3.7 and 3.8 we get

T (ṽ(F )(n)) = n!r(F )n + n!r(F )n−1c1(F ) +
(

n

2

)
r(F )n−2(n− 2)!(c1(F )2

− q(c1(F ), c1(F ))q2) + n!r(F )n−1s(F )q2 + · · · .
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The projection onto SH(X) of the Mukai vector of F is a rational multiple of this class. Since
the rank is non-zero, we deduce that n!r(F )n−1v(F ) = T (ṽ(F )(n)). Dividing by n!r(F )n−1 and
comparing the terms of degree four, we get

v2(F )SH =
1

2r(F )
(c1(F )2 − q(c1(F ), c1(F ))q2) + s(F )q2. (8)

On the other hand, by definition v(F ) = ch(F ) ∪ (tdX)1/2. By (7) we get

ch2(F )SH = v2(F )SH − rXr(F )q2

=
1

2r(F )
(c1(F )2 − q(c1(F ), c1(F ))q2) + (s(F )− rXr(F ))q2.

Substituting ch2(F )SH in the definition of the discriminant we obtain

Δ(F )SH = (q(c1(F ), c1(F )) + 2rXr(F )2 − 2r(F )s(F ))q2

= (q̃(ṽ(F ), ṽ(F )) + 2rXr(F )2)q2. �

Corollary 3.13. If F is an atomic torsion-free slope semistable sheaf, then

q̃(ṽ(F ), ṽ(F )) + 2rXr(F )2 ≥ 0.

Proof. If F is slope semistable for a polarization H on X, Bogomolov’s inequality gives∫
X

Δ(F ) ∪Hn−2 ≥ 0.

The thesis follows from the proposition above because
∫
X Hn−2q2 = (2n− 3)!!q(H)n−1 ≥ 0. �

Example 3.14. If X = S is a K3 surface, the inequality

v(F )2 ≥ −2r(F )2

can be improved in the case of a stable sheaf F . Indeed, in this case it follows from Serre duality
and Hirzebruch–Riemann–Roch that

v(F )2 ≥ −2.

Remark 3.15. It is possible that, similarly to the case of K3 surfaces, a stronger version of the
inequality 3.13 could hold. Equality should be related to F being a P-object. A precise formulation
of this inequality seems to be related to understanding how to normalize the extended Mukai
vector. For example, in [Bec23, Lemma 4.8 (iii)] it is shown that if F is in the orbit of the
structure sheaf (in particular, it is a P-object), there is a natural normalization for ṽ(F ) for
which the equality

q̃(ṽ(F ), ṽ(F )) = −2rX

holds.

3.4 Euler characteristic
To conclude this section we give a general formula for the Euler pairing of an atomic sheaf with
itself, under the assumption that the Mukai vector is contained in the Verbitsky component.
Recall that there is a bilinear product bSH on SH(X), defined by

bSH(λ1 · . . . λm, μ1 · . . . μ2n−m) := (−1)m

∫
X

λ1 ∪ . . . λm ∪ μ1 ∪ · · · ∪ μ2n−m.
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Lemma 3.16. There exists a constant C such that

bSH

(
T (ṽ(n)), T (ṽ(n))

)
= Cq̃(ṽ, ṽ)n.

Proof. Consider the action of the algebraic group SO(H̃(X, C)) on SH(X, C) and H̃(X, C),
obtained integrating the action of g′0 ∼= so(H̃(X, C)) as explained in [Tae23, Section 5]. It
acts by isometries with respect to the bilinear forms bSH and q̃. Moreover, the projec-
tion T : SymnH̃(X, C)→ SH(X, C) is SO(H̃(X, C))-equivariant, being the projection onto a
subrepresentation. Hence, both sides of the equality we want to show are invariant under the
action of SO(H̃(X, C)).

Write ṽ = rα + λ + sβ. Dividing by the rank (we can because both sides are homogeneous
of degree n) and acting by exp(eλ/r) we can assume that ṽ = α + sβ. By definition, we have
q̃(ṽ, ṽ) = −2s. Moreover, we have

ṽ(n) =
∑ (

n

i

)
siα(n−i)β(i).

Applying 3.7 we obtain

T (ṽ(n)) =
∑ n!

i!
siq2i.

By definition of the Mukai pairing bSH, we get

bSH

(
T (ṽ(n)), T (ṽ(n))

)
=

( ∑ n!
i!

n!
(n− i)!

∫
X

q2iq2n−2i

)
sn = Cq̃(ṽ, ṽ)n,

for some constant C independent of ṽ. �
Theorem 3.17. Let X be a hyper-Kähler manifold of dimension dim(X) = 2n. Let E ∈ Db(X)
be an atomic object with non-zero rank r. Assume that v(E)SH = v(E). Then

χ(E, E) = (−1)n(n + 1)r2

(
q̃(ṽ(E), ṽ(E))

2rXr2

)n

.

Proof. From the Riemann–Roch theorem and the assumption that v(E)SH = v(E) it follows that
χ(E, E) = bSH(v(E), v(E)). Since T (ṽ(n)) = n!rn−1v(E), from the previous lemma we obtain

bSH(rn−1v(E), rn−1v(E)) = Cq̃(ṽ, ṽ)n

for some constant C. Dividing both sides by rn we get

bSH

(
v(E)

r
,
v(E)

r

)
= Cq̃

(
ṽ

r
,
ṽ

r

)n

. (9)

To compute the constant C, we substitute ṽ = α + rXβ, the extended Mukai vector of the struc-
ture sheaf. Since r = 1 and χ(OX ,OX) = n + 1 we get C = (−1)n((n + 1)/(2rX)n). Substituting
C into (9) and rearranging we get the result. �
Remark 3.18. The assumption that the Mukai vector is contained in the Verbitsky component
is satisfied for every atomic E in the case of hyper-Kähler varieties of K3[2]-type. In this case,
the formula becomes

χ(E, E) = 3 ·
(

q̃(ṽ(E), ṽ(E))
2rrX

)2

.

Note that it gives a non-trivial integral constraint on the difference ext2(E, E)− 2 ext1(E, E).
Finding an independent restriction on its possible values, for example in the form of a bound
on ext2(E, E), could be a path to investigate smoothness of the moduli space of semistable
deformations of E.
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4. Homological algebra of normal crossings Lagrangians

In this section we develop some homological algebra aimed towards the computation of the Ext
groups Extk(OZ ,OZ), where Z = L ∪ P ′ ⊂M is the central fiber of the family of Theorem 2.5.
The results in this section will be important both for computing the Ext groups Extk(F, F ), and
to study stability of the sheaf F in § 6.

4.1 P-twist
We begin with some computations which we will prove useful later, especially in § 6 to perform
the semistable reduction. Let X be a hyper-Kähler fourfold, and let E and F be two coherent
sheaves on X. We make the following assumptions:

(1) E is a P-object, that is Ext∗(E , E) is isomorphic as an algebra to H∗(P2, C);
(2) Ext∗(E ,F) ∼= C[−1]⊕ C[−3], and it is non-trivial as a module over Ext∗(E , E).

In particular, there is a unique non-trivial extension

0→ F → G → E → 0.

To a P-object E one can associate an autoequivalence PE of Db(X) called the P-twist around
E . Here we briefly recall the definition, for details see [HT06, Section 2]. Let h ∈ Ext2(E , E) a
generator. Define the map h

∨ : Ext∗−2(E ,F)→ Ext∗(E ,F) as the precomposition with h. The
P-twist around E applied to F can be described as

PE(F) = C
(
C(Ext∗−2(E ,F)⊗ E h

∨·id− id ·h−−−−−−−→ Ext∗(E ,F)⊗ E)→ F
)
. (10)

Here we used the notation C(A→ B), to indicate the cone of the morphism A→ B ∈ Db(X).

Remark 4.1. By the octahedral axiom one can see that PE(F) can be equivalently described as
the cone of the map

Ext∗(E ,F)⊗ E [−1]→ C(Ext∗(E ,F)⊗ E → F).

We want to compute the cohomology sheaves of the complex PE(F). We first compute those
of the cone of the evaluation map.

Lemma 4.2. Consider the evaluation map

Ext∗(E ,F)⊗ E → F .

The cohomology sheaves of its cone C are

Hk(C) ∼=

⎧⎪⎨⎪⎩
G for k = 0,

E for k = 2,

0 otherwise.

Proof. The long exact sequence in cohomology gives the two sequences

0→ F → H0(C)→ E → 0,

0→ H2(C)→ E → 0.

The rest of the long exact sequence shows that there is no cohomology in degrees different from
0 and 2. The first sequence is induced by the evaluation map Ext1(E ,F)⊗ E → F . Therefore, it
is not split and H0(C) ∼= G. �
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Proposition 4.3. The cohomology sheaves of PE(F) are given by

Hk(PE(F)) ∼=
{
G for k = 0,

E for k = 3.

In particular, there is a distinguished triangle

G → PE(F)→ E [−3].

Proof. Consider the distinguished triangle

Ext∗(E ,F)⊗ E [−1]→ C(Ext∗(E ,F)⊗ E → F)→ PE(F)

of Remark 4.1. Applying the long exact sequence of cohomology sheaves and Lemma 4.2 we get
the exact sequences

0→ G → H0(PE(F))→ 0,

0→ H1(PE(F))→ E → E → H2(PE(F))→ 0,

0→ H3(PE(F))→ E → 0.

If we check that the middle map E → E in the second sequence is the identity we are done. By
definition, it is induced in H2 by the map

Ext∗(E ,F)⊗ E [−1]→ C,

which, in turn, is obtained from the octahedral axiom, composed with the isomorphism in
Lemma 4.2. Chasing the definitions and the commutativity in the octahedral axiom one sees
that the desired map is induced in H2 by the map

H[−1] : Ext∗(E ,F)⊗ E [−1]→ Ext∗(E ,F)⊗ E [1],

described explicitly as

in the proof of [HT06, Lemma 2.5]. From this description it is clear that the induced map in H2

is the identity. �
Corollary 4.4. The object P−1

E (G) sits in a distinguished triangle

E → P−1
E (G)→ F .

Proof. From [HT06, Lemma 2.5] we see that PE(E) ∼= E [−4]. Applying the equivalence P−1
E to

the distinguished triangle
G → PE(F)→ E [−3]

of Proposition 4.3 we obtain
P−1
E (G)→ F → E [1].

Rotating this triangle gives the thesis. �
Corollary 4.5. If E and F are as above, we have

Extk(E ,G) ∼=
{

0 if k �= 4,

C if k = 4.
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Proof. Setting G′ := P−1
E (G) we get

Extk(E ,G) = Extk(E , PE(G′)) = Extk(E [4],G′)

= Extk−4(E ,G′).
Both objects G and G′ are sheaves, so the ext groups above vanish for k �= 4. For k = 4, the exact
sequence

Ext4(E , E)→ Ext4(E ,G)→ Ext4(E ,F) = 0,

shows that it is at most one dimensional. It is non-zero, because of the map G → E , so it is one
dimensional. �

4.2 Normal crossings Lagrangians
We consider a normal crossings Lagrangian subvariety

Z = Z1 ∪ Z2 ⊂ X

in a hyper-Kähler variety of dimension 2n. That is, Z1 and Z2 are smooth Lagrangians, and their
scheme-theoretic intersection W := Z1 ∩ Z2 is smooth of dimension n− 1; in particular,

TZ1 |W ∩ TZ2 |W = TW .

Remark 4.6. Let σX denote the symplectic form on X. Since TW ⊂ TZi |W and Zi is Lagrangian,
we have

σX(v, w) = 0 for every v ∈ TZi and w ∈ TW .

The sum TZ1 |W + TZ2 |W is a subbundle of TX |W of rank n + 1, so it is the symplectic orthogonal
to TW .

The following result was shared by E. Markman through personal communication with the
author.

Lemma 4.7 (Markman). The normal bundle NW/Z1
is dual to NW/Z2

.

Proof. Consider the following diagram.

The nine lemma implies that the right vertical map is an isomorphism. From the previous remark
we see that

(TZ1 |W + TZ2 |W )/TW
∼= (TW )⊥/TW ,

which is a symplectic rank-two bundle, in particular it has trivial determinant. We conclude that

NW/Z1
⊗NW/Z2

∼=
∧2

(NW/Z1
⊕NW/Z2

) ∼= OX . �
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We define the vector bundle

Ñ := TX |W /(TZ1 |W + TZ2 |W ),

following the notation in the appendix of [CKS03]. A diagram chase gives the following.

Lemma 4.8. There is an isomorphism of short exact sequences as follows.

Proof. The first short exact sequence is given by

0→ (TZ1 |W + TZ2 |W )/TZ2 |W → TX |W /(TZ2 |W )→ TX |W /(TZ1 |W + TZ2 |W )→ 0,

and noting that (TZ1 |W + TZ2 |W )/TZ2 |W ∼= TZ1 |W /TW . The central vertical map in the diagram
is induced by the restriction of the isomorphism σX : TX

∼= ΩX . The composition

TZ1 + TZ2 → TX
∼= ΩX → ΩW

vanishes by Remark 4.6. Thus, the central map factors to give the diagram in the statement. �
Denote by ji : Zi ↪→ X the embeddings. If E1 and E2 are locally free sheaves on Z1 and Z2,

we can compute the Ext groups Extk(j1,∗E1, j2,∗E2) using the following spectral sequence.

Theorem 4.9 [CKS03, Theorem A.1]. With the above notation, there is a convergent spectral
sequence

Ep,q
2 := Hp

(
W, E∨

1 |W ⊗ E2|W ⊗NW/Z2
⊗

∧q−1
Ñ

)
=⇒ Extp+q(j1,∗E1, j2,∗E2).

Example 4.10. If X has dimension 4, and E = OZ1 and F = OZ2(−W ), then by Lemma 4.8 we
have

Ep,q
2 = Hp(N∨

W/Z2
⊗NW/Z2

⊗ Ωq−1
W ) = Hp(Ωq−1

W ).

The spectral sequence degenerates at the E2 page by degree reasons, giving

Extk(OZ1 ,OZ2(−W )) ∼= Hk−1(W, C).

Proposition 4.11. Assume that X has dimension four. Then, there is a long exact sequence

Hk(Z2, C)→ Extk(OZ2(−W ),OZ)→ Hk−1(W, C)→ Hk+1(Z2, C),

where the connecting homomorphism is the pushforward in cohomology along the inclusion
W ⊂ Z2. In particular, there is an isomorphism

Extk(OZ2(−W ),OZ) ∼= Hk(Z2 −W, C).

Proof. Consider the long exact sequence obtained applying Hom(OZ2(−W ),−) to

0→ OZ2(−W )→ OZ → OZ1 → 0.

Since Z2 ⊂ X is a Lagrangian surface, by dimensional reasons the local-to-global spectral
sequence vanishes and yields

Extk(OZ2(−W ),OZ2(−W )) ∼= Hk(Z2, C). (11)

Example 4.10 implies that

Extk(OZ2(−W ),OZ1) ∼= Hk−1(W, C). (12)
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Therefore, we only need to show that the connecting homomorphisms

Extk(OZ2(−W ),OZ1)→ Extk+1(OZ2(−W ),OZ2(−W ))

become identified with the pushforwards in cohomology. The Serre dual statement is that the
connecting map

Extk(OZ2(−W ),OZ2(−W ))→ Extk+1(OZ1 ,OZ2(−W ))

is the restriction Hk(Z2, C)→ Hk(W, C).
The isomorphisms (11) and (12) are induced by the degeneration of the spectral sequences:

Hp RHom(H−q(j∗2j2,∗OZ2(−W )),OZ2(−W )) =⇒ Extp+q(OZ2(−W ),OZ2(−W ))

and

Hp RHom(H−q(j∗2j1,∗OZ1),OZ2(−W )) =⇒ Extp+q+1(OZ1 ,OZ2(−W )).

The connecting homomorphism is induced by pullback along the map

OZ1 → OZ2(−W )[1].

Taking j∗2 and H−q we get the zero map in cohomology for every q. This implies that the long
exact cohomology sequence induced by j∗2OZ1 → j∗2cOZ2(−W )[1] is actually a collection of short
exact sequences, represented by maps

H−q(j∗2j1,∗OZ1)→ H−q(j∗2j2,∗OZ2(−W ))[1]. (13)

Pulling back along those maps gives a map on the E2 page of the spectral sequences, which
induces the connecting homomorphism that we wish to understand.

Using [CKS03, Proposition A.6] we obtain H−q(j∗2j1,∗OZ1) ∼= i2,∗
∧q Ñ∨, where ik : W → Zk

is the inclusion. The map (13) becomes a map

i2,∗
q∧

Ñ∨ →
q∧

N∨
Z2/X ⊗OZ2(−W )[1].

Verdier duality gives that i!2 = i∗2 ⊗OW (W )[−1], so the map becomes
∧q Ñ∨ →

∧q N∨
Z2/X , which

is identified with the restriction map via Lemma 4.8.
The isomorphism

Extk(OZ2(−W ),OZ) ∼= Hk(Z2 −W, C),

follows from the five lemma applied to the long exact sequence obtained by Poincaré and Lefschetz
duality. �

5. Construction of the bundle

Let M = MS(0, H,−1) be the moduli space appearing as the central fiber in the family of
Theorem 2.5. As we recall below, there exists an autoequivalence

Φ : Db(M) � Db(M)

whose kernel is the relative Poincaré sheaf. Let Z = P ′ ∪ L ⊂M the central fiber of the family
of Lagrangians of Theorem 2.5.

We make the following construction. Start with L a line bundle of degree zero on L. Since
the intersection P ′ ∩ L = K∗ is rational, the restriction L|K∗ is trivial. Hence, L glues with the
structure sheaf of P ′ and gives a global line bundle L on Z. This means that we have a short
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exact sequence

0→ L(−K∗)→ L → OP ′ → 0 (14)

of sheaves on X. The goal of this section is to study the image Φ(L), and precisely to prove the
following.

Proposition 5.1. Let Φ : Db(M) � Db(M) and Z be as above, and define

F := Φ(L) ∈ Db(M).

(1) The object F is a locally free sheaf of rank five with extended Mukai vector

ṽ(F ) = 5
(
α + 3f − 3

4β
)
.

(2) Defining F0 := F ⊗O(−3f), we have

ṽ(F0) = 5
(
α− 3

4β
)

and

v(F0) = 5
(
1− 3

4q2 + 9
32pt

)
.

5.1 Relative Poincaré sheaf
Let (S, H) be a polarized K3 surface such that every curve in |H| is integral, e.g. (S, H) general.
The moduli space M := MS(0, H, d) is equipped with a Lagrangian fibration

M → |H|

realizing it as the relative compactified Jacobian Picd+g−1(C/|H|) of the universal curve over the
linear system |H|. In particular, a general point is a line bundle of degree d on a smooth curve
in the linear system |H|.

In [ADM16] the authors extend to the relative compactified Jacobian the construction of the
Poincaré sheaf done by Arinkin [Ari13] for the Jacobian of singular (integral) curves. In the case
of d = 1− g, we obtain a sheaf

P ∈ Coh(M ×|H| M).

Taking the Fourier–Mukai transform we obtain a functor

Φ := ΦP : Db(M)→ Db(M),

which is an autoequivalence by [Ari13, Theorem C]. By construction, Φ maps a general point
x ∈M to a line bundle over the Jacobian of C = π(x). The sheaf P is only defined up to a
normalization, which we fix by requiring that

Φ(OP ′) = OM . (15)

The most important aspect (for us) of the autoequivalence Φ is its ability to turn
Cohen–Macaulay sheaves into vector bundles.

Proposition 5.2. Let M = MS(0, H, 1− g) be a moduli space of torsion sheaves on a general
polarized K3 surface (S, H) of genus g, and let π : M → Pg be the Lagrangian fibration. Let
L ⊂M be a subvariety such that π|L : L→ Pg is finite. If VL is a Cohen–Macaulay sheaf on L,
then Φ(VL) is a locally free sheaf.

Proof of Proposition 5.2. Since the Poincaré sheaf P ∈ Coh(M ×Pg M) is flat with respect to
both projections by [Ari13, Theorem A], π∗

1(ML)⊗ P is a sheaf on M ×Pg M . Thus, Φ(VL) is a
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complex concentrated in non-negative degrees. To show that it is a locally free sheaf, it suffices
to prove

Exti
M (Φ(VL), C(x)) = 0 for i > 0,

for every x ∈M , where C(x) denotes the skyscraper sheaf at x. From [Ari13, Proposition 7.1]
it follows that Φ−1(C(x)) = PM×{x∨}[g], where x∨ parameterizes the dual sheaf to x. Thus, we
have

Exti
M (Φ(VL), C(x)) = Exti

M (VL,Lt[g]),

where t := π(x), and Lt := PM×{x∨} is a torsion-free rank-one sheaf supported on Mt. Since VL

is a Cohen–Macaulay sheaf of dimension g on M , the derived dual RHomM (VL,OM ) is just
Extg(VL,OM )[−g]. Hence, we have

Exti
M (VL,Lt[g]) � Hi(M, RHomM (VL,OM )⊗L Lt[g])

� Hi(M, Extg(VL,OM )⊗L Lt).

The sheaf
Hi(Extg(VL,OM )⊗L Lt) = T orOM

k (Extg(VL,OM ),Lt)

vanishes by [Ser65, Corollary to Theorem V.4]. Indeed, by [Ari13, Theorem A(2)] the sheaf Lt

is Cohen–Macaulay of dimension g on M , and the same holds for Extg(VL,OM ). Thus, we have

Hi(M, Extg(VL,OM )⊗L Lt) = H i(M, Extg(VL,OM )⊗ Lt) = 0 for i > 0,

because the sheaf Extg(VL,OM )⊗ Lt is supported on Mt ∩ L which is finite. �
We conclude our overview of the autoequivalence Φ with the following lemma, which allows

us to understand the restriction to a general fiber.

Lemma 5.3. Let M = MS(0, H, 1− g) where (S, H) is a general polarized K3 of genus g. For
every E ∈ Db(M) we have

ΦP(E)|Mt = iMt,∗ΦPt(E|Mt)

for t ∈ (Pn)∨ a general point.

Proof. First note that the equivalence Φ is (Pn)∨-linear, because the kernel P is defined on the
fiber product. In particular there is an isomorphism of functors

Φ(−)⊗OMt = Φ(−⊗OMt).

The projection formula gives the isomorphism of functors −⊗OMt
∼= iMt,∗i∗Mt

(−). To conclude,
it remains to prove that

Φ(iMt,∗(−)) ∼= iMt,∗ΦPt(−),

which follows from the base change theorem as explained in [Huy06, Lemma 11.30]. �

5.2 Computation of the class
We are almost ready to prove Proposition 5.1, the last remaining piece is to compute the extended
Mukai vector of the structure sheaf OZ . As explained in [Bec22, Section 8.1], the structure sheaf
of F (Xt ∩H) is an atomic sheaf on F (Xt). Using [Mar23, Lemma 7.3] we can determine the line
generated by its Mukai vector in H̃(X, Q), which is

〈ṽ(OF (Xt∩H))〉 = 〈ht − 3β〉, (16)

where ht is the Plücker polarization on F (Xt).
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Lemma 5.4. The structure sheaves OP ′ and OP ′∪L are atomic sheaves on M with Mukai lines
spanned respectively by

〈ṽ(OP ′)〉 = 〈λ− 3f + 3β〉

and

〈ṽ(OP ′∪L)〉 = 〈λ + f − 3β〉.
Proof. The statement for P ′ follows from [Mar23, Lemma 7.3]. The statement for the union
P ′ ∪ L follows from (16) combined with Theorem 2.5 and Remark 2.6. �
Proof of Proposition 5.1. Consider the short exact sequence (14)

0→ L(−K∗)→ L → OP ′ → 0.

After applying the autoequivalence Φ this becomes

0→ Φ(L(−K∗))→ F → OM → 0.

Here Φ(L(−K∗)) is locally free by Proposition 5.2, and has rank four by Lemma 5.3. It follows
that F is locally free of rank five.

Now we compute its extended Mukai vector. Note that since L has degree zero, we have
v(L) = v(OL), so it suffices to compute the extended Mukai vector of Φ(OZ). We start by
describing the action of the equivalence Φ on H̃(X, Q). We follow the computations done in
[Bec23, Proposition 10.4] for odd genus.

First, since the skyscraper sheaf of a point goes to a line bundle of degree 0 on a fiber, we
deduce that β �→ f . From the autoduality property of the Poincaré sheaf, described in [Ari13,
Equation (7.8)], we see that f �→ β. The choice (15) for the normalization of P implies

λ− 3f + 3β �→ −2
(
α + 5

4β
)
,

where the coefficient −2 is determined by imposing the map ΦH̃ to be an isometry. This implies
that

λ + f − 3β = λ− 3f + 3β + (4f − 6β) �→ −2
(
α + 5

4β
)

+ (4β − 6f)

= −2α− 6f + 3
2β.

Since ṽ(OZ) = λ + f − 3β by Lemma 5.4, the formula for the extended Mukai vector follows by
[Mar23, Theorem 1.7(4)]. Since by Lemma 5.3 F has rank five, its normalized extended Mukai
vector is

ṽ(F ) = 5α + 15f − 15
4 β.

Twisting by O(−3f) we kill the first Chern class, and the extended Mukai vector becomes

ṽ(F0) = 5
(
α− 3

4β
)
.

This can be computed, for example, using the fact that tensor product with a line bundle induces
an isometry on H̃(X, Q). Corollary 3.10 then gives

v(F0) = 5
(
1− 3

4q2 + 9
32pt

)
,

because if cX = 1, then q4 = pt. �

5.3 Ext groups
To conclude this section, we apply the results of § 4 to compute the Ext groups Ext∗(F, F ). Being
obtained from L ∈ Db(M) through an equivalence, it suffices to compute the Ext groups of L.
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Lemma 5.5. With the above notation, we have isomorphisms

Ext1(L,L) ∼= H1(L, C),

Ext2(L,L) ∼= Cok(H0(K∗, C)→ H2(L, C)).

Proof. Again, we start with the short exact sequence (14)

0→ L(−K∗)→ L → OP ′ → 0.

The isomorphisms (11) and (12) remain valid for the same reasons. The rest of the proof of
Proposition 4.11 is not affected by the twist, so it remains to show that

Exti(L,L) ∼= Exti(L(−K∗),L) for i = 1, 2. (17)

The sheaves E = OP ′ and F = L(−K∗) satisfy the assumptions of § 4.1 by Theorem 4.9. Thus,
(17) is a consequence of the vanishings in Corollary 4.5. �

Corollary 5.6. The Yoneda pairing is skew-symmetric and induces an isomorphism∧2
Ext1(L,L) ∼−→ Ext2(L,L), a ∧ b→ a ◦ b.

Proof. This relies on the fact that the Lagrangian L is, in fact, the symmetric square of a genus
five curve C. In fact, we have

H2(L, C) ∼= H2(C, C)⊕
∧2

H1(L, C),

where the second summand is embedded via cup product. The fundamental class of K∗ ⊂ Sym2C
spans the direct summand H2(C, C). Thus, taking the cokernel as in Lemma 5.5 we get

Ext2(L,L) ∼=
2∧

H1(L, C). (18)

To conclude, recall that by [Mla19, Theorem 2.1.5], the isomorphism

Ext∗(L,L) ∼= H∗(L, C)

preserves the algebra structure. Hence, the cokernel map

H2(L, C)→ Ext2(L,L)

maps the cup product to the Yoneda product. The statement then follows from (18). �

6. Semistable reduction

In this section, we assume we have a fixed line bundle L ∈ Pic0(L), and we examine the stability
of the bundle F constructed in § 5. In particular, we will show that it is not stable, and to obtain
a slope-stable vector bundle we apply two (inverses) P-twists.

By our normalization of the Poincaré sheaf we have Φ(OP ′) = OM , and Propositions 5.2
and 2.7 imply that G := Φ(L(−K∗)) is a vector bundle of rank four. Therefore, we have a short
exact sequence

0→ G→ F → OM → 0, (19)

obtained applying Φ to (14).
As noted in the proof of Lemma 5.5, the sheaves E = OP ′ and F = OL(−K∗) are as in the

setting of § 4.1. By Corollary 4.4 the inverse P-twist of L around OP ′ lives in a short exact
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sequence

0→ OP ′ → P−1
OP ′ (L)→ L(−K∗)→ 0.

and we set

F ′ := Φ
(
P−1
OP ′ (L)

)
∈ Db(M). (20)

By construction of the P-twist we have F ′ ∼= P−1
OM

(F ). Applying the equivalence Φ we get a short
exact sequence

0→ OM → F ′ → G→ 0.

In particular, the sheaf F ′ is locally free of rank five.

Lemma 6.1. The vector bundles F and F ′ are unstable for any polarization h on M .

Proof. By [HT06, Remark 2.4] any P-twist acts as the identity in cohomology, so F and F ′ have
the same (extended) Mukai vector, which can be computed using Proposition 5.1. In particular,

rk(F ) = rk(F ′) = 5 and c1(F ) = c1(F ′) = 15f.

The slope with respect to a polarization h is

μ(F ) = μ(F ′) = 3q(h, f) > 0.

Thus, the sequence (19) destabilizes F .
To destabilize F ′, first recall that the normal bundles of K∗ in P ′ and L are dual to each

other

OL(K∗)|K∗ ∼= OP ′(2)|∨K∗ ,

as we proved in Lemma 4.7. Since the restriction L|K∗ is trivial, because K∗ is rational, we have

Hom(L(−K∗),OP ′(2)|K∗) = H0(K∗,OK∗) = C.

The unique map

L(−K∗) � OP ′(2)|K∗ ,

must be a twisting of the canonical map associated to the embedding K∗ ⊂ L, in particular is
surjective. Since Ext1(P−1

OP ′ (L),OP ′) = 0, we can lift the composite map

P−1
OP ′ (OZ)→ L(−K∗)→ OP ′(2)|K∗ ,

to a diagram

(21)

where the short exact sequence below is the defining sequence of the inclusion K∗ ⊂ P ′. When
applying Φ, the vertical central map becomes a non-zero morphism F ′ → OM (2f). The inequality

μ(OM (2f)) = 2q(h, f) < 3q(h, f) = μ(F ′)

show that F ′ is destabilized by this map. �
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To obtain a stable bundle F ′′, we replicate the construction of F ′ with an additional P-twist
around the line bundle OM (2f). Namely, define

F ′′ := P−1
OM (2f)(F

′),

and note that

F ′′ � Φ
(
P−1
OP ′ (2)(P

−1(L))
)

by construction. A diagram chase in (21) shows that

Ker
(
P−1
OP ′ (L)→ OP ′(2)

)
= L(−2K∗).

Thus, defining G′ := Φ(OL(−2K∗)) we have a short exact sequence

0→ G′ → F ′ → OM (2f)→ 0.

From the spectral sequence in Proposition 4.11 we see that the pair E = OM (2f) and F =
L(−2K∗) satisfies the assumptions of § 4.1. Via the equivalence Φ, Corollary 4.4 provides a short
exact sequence

0→ OM (2f)→ F ′′ → G′ → 0, (22)

from which we deduce that F ′′ is a locally free sheaf of rank five. Note that μ(OM (2f)) < μ(F ′′),
so this sequence does not destabilize.

Remark 6.2. The bundles F , F ′ and F ′′ are all atomic, because they are obtained from OZ

by derived equivalences. They all have the same Mukai vector, because the P-twist acts as the
identity in cohomology.

6.1 Proof of stability
Our next goal is to show that F ′′ is slope-stable for some polarization h. Since it is modular by
Proposition 3.12, we can use the results in [O’G22] for slope-stability for modular sheaves.

We are interested in slope-stability for suitable polarizations (see [O’G22, Definition 3.5]).
Intuitively, a polarization h is suitable if it is very close to the nef divisor f . More precisely, as
shown in [O’G22, Section 3], for any modular sheaf F on a hyper-Kähler manifold X there is a
wall and chamber decomposition of the ample cone of X.

This decomposition depends only on the number

a(F ) :=
r(F )2 · d(F )

4cX
,

where d(F ) ∈ Q is defined by the equality

Δ(F )SH = d(F )q2.

We say that a polarization is a(F )-generic if it belongs in one of the chambers. When we want
to highlight that a(F ) depends only on the Mukai vector v = v(F ) and not on the sheaf itself,
we will say that a polarization is a(v)-generic.

At least in the case of a projective hyper-Kähler of Picard rank two, a polarization is suitable
if it lives in the chamber (of the ample cone) whose closure contains f . Stability with respect to
an a(F )-suitable polarization is special, because it allows us to study the stability of F by the
stability of the restriction to a general fiber, see [O’G21, Section 3.5].
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Remark 6.3. Using the computations in §§ 5.2 and 3.3 we can compute the number a(F ′′). By
Proposition 3.12 we have

d(F ′′) = 25q̃
(
α− 3

4β
)

+ 5
2 · 25 = 100,

and, thus,

a(F ′′) =
25 · 100

4
= 625.

In what follows, by a suitable polarization we mean a 625-suitable polarization in the sense
of [O’G21, Definition 3.5].

Proposition 6.4. Let h be a suitable polarization on M . If E ⊂ F ′′ is h-destabilizing, then
c1(E) = b · f for some b ∈ Z.

Proof. By [O’G21, Proposition 3.4] it is enough to show the statement for a rational ample class
in the same chamber as h, i.e. we can assume h = f + ελ for 0 < ε� 1. We write

c1(E) = bf + cλ,

with respect to the decomposition of (4). Let t ∈ (P2)∨ be a general point. Lemma 5.3 together
with the exact sequence (22), implies that for a general t

F ′′
t = OMt ⊕ Lt,1 ⊕ · · · ⊕ Lt,4,

where Li are line bundles of degree zero on Mt. Therefore, the restriction F ′′
t is semistable because

it is the sum of line bundles of degree 0. Thus, we have

2cε =
∫

Mt

c1(Et) ∪ ht ≤
∫

Mt

c1(F ′′
t ) ∪ ht = 0,

which gives c ≤ 0.
By definition, we have

μ(E) =
1

rk(E)

∫
M

(bf + cλ) ∪ h3,

where h3 = 3ε(f2 ∪ λ) + 3ε2(f ∪ λ2) + ε3λ3, because f3 = 0. The class f2 is Poincaré dual to a
general fiber, so we have ∫

M
f2 ∪ λ2 =

∫
Mt

λ2
t > 0.

In particular, in μ(E) there is a term in ε, namely μ(E) = 3cε
∫
M f2 ∪ λ2 + ε2(. . . ). On the other

hand, since c1(F ′′) = 15f and rk(F ′′) = 5, we have μ(F ′′) = 9ε2(. . . ). The assumption that h is
destabilizing gives the inequality

μ(E) ≥ μ(F ′′) ∀ε� 1.

Passing to the limit ε→ 0, we obtain that the term in ε must be non-negative, i.e. c ≥ 0.
Combining with the previous inequality we get c = 0. �

Assume that there exists A ⊂ F ′′ a destabilizing subsheaf. By definition, 0 < rk(A) < rk(F ′′)
and we can assume that A is saturated in F ′′, that is B := F ′′/A is torsion-free.

Lemma 6.5. With the above notation, either rk(A) = 1 or rk(A) = 4.
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Proof. On a general fiber Mt we can write

F ′′
t = Lt,0 ⊕ Lt,1 ⊕ · · · ⊕ Lt,4,

where Lt,0 = OMt , and Lt,i are non-trivial line bundles of degree zero. The restriction At has the
same slope as F ′′

t , hence it is a sub-sum of these line bundles,

At = Lt,i1 ⊕ · · · ⊕ Lt,ir .

Taking Φ−1, Lemma 5.3 gives

Φ−1(A)|Mt = iMt,∗Φ
−1
Pt

(At) = OMt,[Lt,i1
] ⊕ · · · ⊕ OMt,[Lt,ir ].

We deduce that over an open U ⊂ P2, the support Supp Φ−1(A) ⊆ Z and it is finite over the
base of degree r. Since r < 5, by assumption Supp Φ−1(A) it not equal to the whole Z. Hence,
it must be one of the two components, giving the dichotomy in the statement. �
Theorem 6.6. The bundle F ′′ is slope-stable with respect to any suitable polarization h.

Proof. Recall that rk(F ′′) = 5 and c1(F ′′) = 15f . Let

0→ A→ F ′′ → B → 0,

be a slope destabilizing short exact sequence. We assume A saturated, so B is torsion-free. By
Lemma 6.5 either rk(A) = 1 or rk(A) = 4.

Case 1. Assume that rk(A) = 1. Consider the following commutative diagram with exact rows
and columns.

The intersection A ∩ O(2f) is defined as the kernel of the map

A⊕O(2f)→ F ′′, (a, x) �→ a− x.

Restricting to the general fiber, both A and O(2f) become trivial, so we see that the intersection
is non-trivial, because F ′′|t has only one trivial summand. Since A has rank one, the quotient
sheaf A/(OM (2f) ∩A) has rank zero. It embeds into G′, which is locally free, so it is zero, which
gives

A ⊂ OM (2f).

Using that B is torsion-free, the same argument yields OM (2f) ⊂ A. We deduce that A =
OM (2f), which is not destabilizing.

Case 2. Assume that rk(A) = 4. The quotient B is a torsion-free rank-one sheaf, so it injects into
its double dual B∨∨, which is a line bundle on M by [Har80, Proposition 1.11]. By Proposition 6.4,
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it suffices to show that Hom(F ′′,O(kf)) = 0 vanishes for every k ≤ 3. By construction, we have

Hom(F ′′,O(2f)) = Hom
(
P−1
OM (2f)(F

′),OM (2f)
)

= 0.

It follows using h0(M,OM (f)) �= 0 that Hom(F ′′,OM (kf)) = 0 for every k ≤ 2. Hence, it remains
to show that Hom(F ′′,OM (3f)) = 0.

Let ϕ : F ′′ → OM (3f) be a morphism, and let D be its kernel. Restricting to a general fiber
Mt we see that Hom(OM (2f), D) = 0, because Dt splits as a sum of four non-trivial line bundles
of degree 0. This implies that the composition

OM (2f)→ F ′′ → OM (3f)

is not zero, hence it is injective. Applying Φ−1 we obtain a diagram

where Ol is the structure sheaf of a line l ⊂ P ′, i.e. of the zero locus of a section of OP ′(1). Since
l �⊆ L, the map L(−2K∗)→ Ol(3) is zero. Thus, the central map factors through OP ′(2), but
Hom(F ′′,O(2f)) = 0 is zero, hence ϕ is zero. �

We have now proved that F ′′ is stable for with respect to suitable polarizations. In order
to prove the main result, we need to deal with other polarizations; the next result allows us to
do so.

Lemma 6.7. Let X be a projective hyper-Kähler manifold, and F a modular vector bundle on X
with Mukai vector v. Assume that c1(F ) = 0 and that F is stable with respect to a a(F )-generic
polarization h. Let Y be a projective deformation of X, and let h′ be a(F )-generic. Then there
exists a vector bundle F ′ on Y which is h′-stable and with Mukai vector v.

Proof. The proof is simply a refinement of the proof of [Mar23, Theorem 3.4], where we also keep
track of the polarization. Recall that, if F is modular and ω ∈ K(X) is a Kähler class such that
F is ω-stable, we can deform F along the twistor line P1

ω spanned by ω by [Ver99, Theorem 3.19].
The assumption c1(F ) = 0 implies that even when we deform along a twistor line, the bundle
remains untwisted. The deformed bundle is stable with respect to the canonical Kähler class ωt

on every fiber Xt of the twistor line. Since the walls in the Kähler cone are defined by algebraic
classes, we can find a Kähler class ω with the following properties.

(1) The bundle F is slope-stable with respect to ω.
(2) The twistor line P1

ω is generic, in the sense that the general element has trivial Picard group.

We can do the same for h′, obtaining a Kähler class ω′ on Y with the same properties as above.
Now, we can deform F along the twistor deformation Xω → P1

ω. In particular, if we choose a
general element X1 ∈ P1

ω, we obtain a modular bundle F1 with the same invariants as F living
on X1. Since X1 has trivial Picard F1 is stable with respect to any Kähler class by [Mar20,
Lemma 6.15].

Denote by Xlast a general element of P1
ω′ . Up to the choice of markings on X1 and Xlast, we

can connect them through a chain of twistor lines whose intersection points have trivial Picard
group by [Ver96, Theorem 3.2 and 5.2e] (see also [Mar20, Theorem 6.14]). The bundle F1 deforms
on this chain of twistor lines to a bundle Flast on Xlast, which again is stable with respect to
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any Kähler class. Deforming Flast back along P1
ω′ we get the desired bundle F ′ on Y which is

ω′-stable. Since ω′ and h′ live in the same open chamber, F ′ is also h′-stable. �

Remark 6.8. Note that this works even if Y = X. In this way, starting from a stable bundle,
we can prove existence of a stable bundle for every generic polarization without the need to
understand wall-crossing.

Proof of Theorem 1.1. The vector bundle F ′′ constructed above is atomic and stable with respect
to a suitable polarization. By Proposition 5.1 we can twist F ′′ to obtain a stable atomic vector
bundle F0 with Mukai vector

v(F0) = 5
(
1− 3

4q2 + 9
32pt

)
.

Thus, F0 satisfies the assumptions of the above lemma, and we can deform it to a vector bundle
on any Kähler deformation of X, which is stable with respect to any v(F0)-generic polarization.

The Ext algebra remains constant along these deformations by [Ver08, Proposition 6.3].
The statement about the Ext groups is Corollary 5.6.

To prove smoothness of the deformation space we argue as follows. The main result in [MO23]
(or [Bec22, Theorem 6.1]) gives formality of the algebra RHom(F0, F0). Thus, the obstruction to
lifting a first-order deformation is the Yoneda square, which vanishes by Corollary 5.6. �

7. The moduli space

The sheaf F ′′ constructed in § 6 is slope- (hence, Gieseker-)stable for any suitable polarization on
M . Let M be the irreducible component of the moduli space of Gieseker-stable sheaves containing
F ′′. Clearly, this is birational to a component of the moduli space of F0. A priori, this component
could depend on the choice of the curve C ∈ |2H| used in the construction of F ′′, but we will
show in Proposition 7.2 that it is not the case.

Remark 7.1. The component M contains only Gieseker-stable sheaves; that is every Gieseker-
semistable sheaf in M is also stable. Since every P-twist acts as the identity in cohomology, the
Euler characteristic is unaffected by the semistable reduction. Example 4.10 gives that χ(G) =
−2. It follows that

χ(F ′′) = χ(F ) = χ(G) + χ(OM ) = 1,

which is coprime with the rank, which guarantees Gieseker-stability.

We generalize the construction of § 6 by considering certain line bundles of degree zero
supported on L ⊂M constructed from line bundles of degree zero on curves in |2H|. Line bundles
of degree zero supported on curves in |2H| are generic points of the singular moduli space
MS(0, 2H,−4). By a celebrated result by O’Grady [O’G99] the singularities of MS(0, 2H,−4)
are symplectic. The symplectic resolution M̃S(0, 2H,−4) is a hyper-Kähler variety of OG10 type,
and the composition

M̃S(0, 2H,−4)→MS(0, 2H,−4)→ |2H|

is a Lagrangian fibration.

Proposition 7.2. There is a birational map

θ : M̃S(0, 2H,−4) ��� M.
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Proof. Let LC be a line bundle of degree zero supported on a smooth curve C ∈ |2H|. Consider
the Σ2-equivariant line bundle

LC � LC ∈ Pic0(C × C).

Being equivariant, it descends along the quotient C × C → L. Denote by LC ∈ Pic0(L) descended
line bundle. The rational map in the statement is then given by

M̃S(0, 2H,−4) ��� M, LC �→ Θ(LC),

where Θ is the equivalence P−1
OM (2f) ◦ P−1

OM
◦ Φ, and LC denotes the gluing of LC with the struc-

ture sheaf of P ′. The fact that this is well defined on the opening of smooth curves is the content
of Theorem 1.1. The map θ is injective because the restriction of the line bundle LC to the
diagonal Δ ⊂ Sym2C recovers the original LC . �

7.1 Symplectic form
Moduli spaces of stable sheaves on holomorphic symplectic surfaces are naturally equipped with
a holomorphic symplectic form induced by Serre duality. This was first observed by Mukai in
[Muk84]. In the particular case of a smooth point in the moduli space MS(0, 2H,−4), the tangent
space to a point [LC ] is identified to

Ext1S(LC , LC) ∼= H1(C, C).

Then, via this isomorphism the symplectic form is the cup product on H1(C, C).
More recently, Kuznetsov and Markushevich [KM09] generalized this construction, and pro-

duced a closed 2-form the smooth locus of any moduli space of simple sheaves on an algebraic
variety, which is not necessarily non-degenerate. Here we briefly review the definition.

Recall that, for any F ∈ Db(M) and vector bundle E on M , there is a trace map

TrF : Extk(F, F ⊗ E)→ Hk(M, E).

This was used in [BF03] to define the semiregularity map for F :

σ : Ext2(F, F )→
⊕
p≥0

Hp+2(M, Ωp
M ), ϕ �→ TrF (exp(−At(F )) ◦ ϕ),

where At(F ) is the Atiyah class of F . Let [F ] ∈Msm be a smooth point. Its tangent space is
given by Ext1(F, F ) and the Yoneda pairing

Ext1(F, F )× Ext1(F, F )→ Ext2(F, F ), (a, b) �→ a ◦ b,

is skew-symmetric. In [KM09] the authors define, for every ω ∈ H∗(M, C), the following 2-form
on Msm:

(a, b) �→
∫

M
σ(a ◦ b) ∪ ω, (23)

and prove that it is closed.
We can write this form using the language of obstruction maps.

Definition 7.3. For every η ∈ HH2(M) we define the 2-form

αη(a, b) :=
∫

M
TrF (χF (η) ◦ a ◦ b) ∪ σ2

M , (24)

where σM ∈ H0(M, Ω2
M ) is the symplectic form.
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Lemma 7.4. For every η ∈ HH2(M) there is an ω ∈ H∗(X, C) such that

αη(a, b) =
∫

M
σ(a ◦ b) ∪ ω.

In particular, αη is a closed 2-form on Msm.

Proof. Under the Hochschild–Konstant–Rosenberg (HKR) isomorphism HH2(M) ∼= HT 2(M),
the obstruction map χF (−) becomes identified with

HT 2(M)→ Ext2(F, F ), η �→ (idF ⊗η) ◦ exp(At(F )),

by [Tod09, Proposition 6.1]. We have

TrF (χF (η) ◦ a ◦ b) = TrF ((idF ⊗η) ◦ exp(At(F )) ◦ a ◦ b)

= η ◦ TrF (exp(At(F )) ◦ a ◦ b),

by linearity of the trace map. Up to changing signs of the graded pieces of η, this is equal to
η ◦ σ(a ◦ b). Then, by Poincaré duality there is a class ω ∈ H∗(X, C), depending only on η, such
that ∫

M
(η ◦ σ(a ◦ b)) ∪ σ2

M =
∫

M
σ(a ◦ b) ∪ ω.

Closedness then follows from [KM09, Theorem 2.2]. �
Remark 7.5. On the 1-obstructed locus, there is an η ∈ HH2(M) such that αη is everywhere
non-zero. Indeed by [Bec22, Lemma 4.2] there is an inclusion

KerχF ⊆ Kerχcoh
F ,

which is an equality on the 1-obstructed locus. In particular, KerχF depends only on v(F ).
Thus, if χF (η) �= 0 for some 1-obstructed F , then is stays non-zero for all 1-obstructed sheaves
in M.

It follows that, on the 1-obstructed locus, there is a unique, up to a constant, 2-form of the
form αη. In Theorem 7.7 we prove that the image of θ consists of 1-obstructed sheaves. We fix
η ∈ HH2(M) such that αη is everywhere non-zero on the image of θ.

Conjecture. The irreducible component M is a smooth hyper-Kähler variety of type OG10,
with symplectic form given by αη.

The biggest roadblock to proving the conjecture is understanding the smoothness of M.
In [Bec22, Conjecture B], it is conjectured that, at least for vector bundles, 1-obstructedness
implies smoothness. On the intersection of the 1-obstructed and the locally free locus, the form
αη is also symplectic as explained in [Bec22, Section 8]. This is a generalization of the classical
result by Kobayashi [Kob86]. In this section, we make partial progress towards the conjecture
above by proving Theorem 1.3.

7.2 Obstruction map
In order to compare the symplectic forms on the source and target of θ, it becomes necessary to
understand the obstruction map for a sheaf in M. Our goal is to show that it is one dimensional,
and that under the isomorphism (18), it is the line spanned by the dual of the cup product on
H1(C, C).

Let C a smooth curve, and L ∈ Pic0(L) any degree-zero line bundle (they are all obtained
as symmetrization of a line bundle on C). The obstruction map is compatible with derived
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equivalences, so we need to compute

χL : HH2(M)→ Ext2(L,L).

Via the HKR isomorphism there is a direct sum decomposition

HH2(M) ∼= H0

(
M,

∧2
TM

)
⊕H1(M, TM )⊕H2(M,OM ).

The obstruction map vanishes on H2(M,OM ), because Z ⊂M is Lagrangian. The next lemma
deals with the first summand.

Lemma 7.6. Under χL, the image of H0(M,
∧2 TM ) is contained in the image of H1(M, TM ).

Proof. The idea is to compare the obstruction map of L with the obstruction map of F0 =
F ⊗OM (−3f). By construction, the equivalence

Θ′ = (−⊗O(−3f)) ◦Θ,

maps L to F0. There is an injective homomorphism

μ : HH2(M)→ H̃(X, C), η �→ mη(σ),

where mη denotes the action of η ∈ HH2(M) on H̃(X, C), see [Mar23, Section 6]. This action is
induced by the action of the LLV algebra via [Tae23, Theorem A]. If Φ is any equivalence, the
map ΦH̃ is a Hodge isometry compatible with the action of the LLV algebra. Hence, μ intertwines
the actions of Φ, that is there is the following commutative diagram.

A direct computation as in the proof of Proposition 5.1 shows

Θ′HH(σ∨) ∈ H1(M, TM )⊕H2(M,OM ),

Θ′HH(f) ∈ H2(M,OM ),

where σ∨ generates H0(M,
∧2 TM ). The vector bundle F0 deforms along every commutative

deformation, so
χF0 |H1(M,TM ) ≡ 0,

which implies
χL(Cσ∨) = χF0(Cσ) = χL(Cf),

where we are identifying f ∈ H1(M, Ω1
M ) with its image in H1(M, TM ) via the isomorphism

Ω1
M
∼= TM . �
All that is left is to compute the restriction of the obstruction map on H1(M, TM ). Recall that

an element η ∈ HH2(M) represents a natural transformation η : idM → [2], and the obstruction
map is the evaluation at an object. The naturality of η provides a commutative triangle

where the horizontal map is the cokernel morphism of Lemma 5.5.
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Theorem 7.7. The image of the obstruction map for L is one dimensional. Under the
isomorphism

Ext2(L,L) ∼=
∧2

H1(C, C)

it is spanned by the class representing the Poincaré pairing. In particular, θ maps the symplectic
form to αη.

Proof. By Lemma 7.6 it suffices to compute the image of the restriction map

H2(M, C)→ H2(L, C)

as explained in [Mar23, Remark 3.10], and map it into the quotient H2(L, C)/H0(C, C). The
restriction can be computed on the other birational model, that is

H2(S[2], C)→ H2(Sym2C, C) ∼= H2(C, C)⊕
∧2

H1(C, C).

The Künneth formula implies that the first summand in

H2(S[2], C) ∼= H2(S, C)⊕ Cδ

maps to H2(C, C). By definition, the class δ maps to a multiple of the class of the diagonal
ΔC ⊂ Sym2C. To conclude, note that, for every α, β ∈ H1(C, C), we have∫

ΔC

(π∗
1α ∧ π∗

2β − π∗
1β ∧ π∗

2α)|ΔC
= 2

∫
C

α ∧ β.

Hence, the image of [ΔC ] in
∧2 H1(C, C) represents the Poincaré pairing. Since αη is defined by

pairing two classes in Ext1(L,L) with the image of the obstruction map, under the identification
with H1(C, C) induced by θ, it corresponds to

αη(−,−) =
∫

C
− ∧−,

which is also the symplectic form on M̃H(0, 2H,−4). We conclude that θ preserves the 2-forms
and that αη is symplectic on the image. �
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