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We study the effect of a confined turbulent counter-current gas flow on the waviness
of a weakly inclined falling liquid film. Our study is centred on experiments in a
channel of 13 mm height, using water and air, where we have successively increased the
counter-current gas flow rate until flooding. Computations with a new low-dimensional
model and linear stability calculations are used to elucidate the linear and nonlinear wave
dynamics. We find that the gas pressure gradient plays an important role in countering
the stabilizing effect of the tangential gas shear stress at the liquid–gas interface. At
very low inclination angles, the latter effect dominates and can suppress the long-wave
Kapitza instability unconditionally. By contrast, for non-negligible inclination, the gas
effect is linearly destabilizing, amplifies the height of nonlinear Kapitza waves, and
exacerbates coalescence-induced formation of large-amplitude tsunami waves. Kapitza
waves do not undergo any catastrophic transformation when the counter-current gas flow
rate is increased beyond the absolute instability (AI) limit. On the contrary, we find that AI
is an effective linear wave selection mechanism in a noise-driven wave evolution scenario,
leading to highly regular downward-travelling nonlinear wave trains, which preclude
coalescence events. In our experiments, where Kapitza waves develop in a protected region
before coming into contact with the gas, flooding is eventually caused far beyond the AI
limit by upward-travelling short-wave ripples. Based on our linear stability calculations for
arbitrary wavenumbers, we have uncovered a new short-wave interfacial instability mode
with negative linear wave speed, causing these ripples.
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1. Introduction

Falling liquid films intervene in many engineering applications (Alekseenko et al. 2007;
Azzopardi et al. 2011; Lapkin & Anastas 2018). One example is rectification columns
containing structured packings for cryogenic air separation (Fair & Bravo 1990), where
the liquid film is subject to a turbulent counter-current gas flow within narrow channels
(Valluri et al. 2005). Surface waves, forming at the liquid–gas interface due to the
inertia-driven Kapitza instability (Kapitza 1948), which consist of large humps preceded
by several precursory capillary ripples, are known to greatly intensify inter-phase heat
and mass transfer (Yoshimura, Nosoko & Nagata 1996; Miyara 1999; Dietze 2019). At the
same time, they can trigger flooding events (Bankoff & Lee 1986) that are detrimental to
adequate process operation. Such events include obstruction of the channel cross-section
(Vlachos et al. 2001), wave reversal (Tseluiko & Kalliadasis 2011), fragmentation and
droplet entrainment (Zapke & Kröger 2000), and (partial) liquid reversal (Trifonov
2010b, 2019). In light of these two competing roles played by surface waves, numerous
experimental (Vlachos et al. 2001; Drosos, Paras & Karabelas 2006; Kofman, Mergui
& Ruyer-Quil 2017), numerical (Trifonov 2010a, 2019; Vellingiri, Tseluiko & Kalliadasis
2015; Schmidt et al. 2016; Lavalle et al. 2019) and modelling (Tseluiko & Kalliadasis
2011; Dietze & Ruyer-Quil 2013; Lavalle et al. 2020, 2021) works have been dedicated
to unravelling the effect of a counter-current gas flow on the linear and nonlinear
dynamics of wavy falling liquid films. Our current paper seeks to further contribute to
this task.

We study the configuration of a laminar falling liquid film sheared by a turbulent
counter-current gas flow confined in a rectangular channel of height H� ∼ 10 mm (the
star superscript denotes dimensional quantities throughout), according to the experimental
set-up sketched in figure 1. The confinement level chosen here is representative of
structured packings (Fair & Bravo 1990) and lies in between those used in the experiments
of Lavalle et al. (2019), H� ∼ 5 mm, where the gas flow was laminar, and those of
Kofman et al. (2017), H� ∼ 20 mm, where the confinement was weak and the gas flow was
turbulent. We have applied three different approaches to study this flow: (i) experiments,
where developed surface waves of prescribed frequency were produced within a protected
zone before being submitted to the counter-current gas flow; (ii) linear stability analysis
based on the full governing equations; and (iii) nonlinear numerical computations with a
new integral boundary layer model. Our study is guided by a set of experimental runs,
where we have successively increased the counter-current gas flow rate, starting from
conditions where the gas effect is weak, up until breakdown of the experiment due to
flooding. Computations with our low-dimensional model and linear stability calculations
have allowed us to elucidate the linear and nonlinear wave dynamics associated with this
transition.

We focus mainly (but not exclusively) on weakly inclined falling liquid films, which
allows us to investigate weakly supercritical flow regimes. According to Brooke Benjamin
(1957) and Yih (1963), the onset of the Kapitza instability for a liquid film falling in a
passive atmosphere is given by ReL = 5/6 cot(φ), where φ denotes the inclination angle,
and ReL = q�L/νL is the liquid Reynolds number based on the liquid flow rate per unit width
q�L and liquid kinematic viscosity νL. Thus the smaller φ, the more closely the instability
threshold can be approached while maintaining an experimentally realizable film thickness
h�0 = (3 ReL ν

2
L/g/ sin(φ))1/3, where the subscript 0 denotes the primary flow, and g is the

gravitational acceleration. Closer to the instability threshold, the interfacial dynamics are
less complicated, and surface waves are predominantly two-dimensional (Kofman, Mergui
& Ruyer-Quil 2014).

971 A37-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.670


Gas-sheared falling liquid films beyond absolute instability

Gas buffer box

PumpFlow meter Outlet tank

Inlet tank

Loudspeaker

Camera

Film thickness

measurement (CCI)

H

φ

Fan

y

xz

36.5 cm (protected region)

63.5 cm

Figure 1. Sketch of our experimental set-up. A falling liquid film of water flows down a glass plate inclined at
an angle φ = 5◦, and enters into contact with a counter-current turbulent air flow within a rectangular channel
of height H� = 13 mm and width W� = 27 mm. A loudspeaker is used to force Kapitza waves on the surface
of the liquid film, which grow and saturate within a protected region.

Our current work is inspired by several recent findings reported in the literature,
which we discuss next. Lavalle et al. (2019) demonstrated that the onset of the Kapitza
instability can be delayed significantly at low inclination angles, by strongly confining
the surrounding gas, as conjectured by Tilley, Davis & Bankoff (1994). Moreover,
they discovered that the gas-induced stabilization is strongest in the counter-current
configuration, and increases with increasing magnitude of the gas flow rate. Kushnir
et al. (2021) showed subsequently that stabilization also occurs in the case of a confined
recirculating gas, i.e. when the net gas flow rate is zero. In the above three studies, the
gas flow was considered laminar and the stabilization occurred for strong confinement, i.e.
H� ≤ 5 mm. As demonstrated by Lavalle et al. (2019), it is caused by the linear response of
the interfacial tangential gas shear stress TG to a perturbation of the liquid film thickness.
Potentially, gas-induced stabilization may thus be achieved for weaker confinement if the
gas flow is turbulent, as turbulence increases the magnitude of TG. In the current paper,
we have checked this hypothesis based on linear stability calculations. In particular, we
find that the Kapitza instability can be suppressed fully by a turbulent counter-current
gas flow for H� ∼ 10 mm when the inclination angle is very small (φ ∼ 1◦). By ‘full
suppression’ we mean that the falling liquid film becomes unconditionally stable to
long-wave disturbances, i.e. for all ReL. By contrast, at non-negligible inclination (φ ∼ 5◦),
the linear gas effect is destabilizing and the counter-current gas flow can render the
liquid film unconditionally unstable to long-wave disturbances, as reported previously for
laminar flow conditions (Trifonov 2017; Kushnir et al. 2021). We find that turbulence can
significantly delay the onset of this unconditional instability.
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Recent numerical (Lavalle et al. 2021) and experimental (Mergui et al. 2023)
investigations of weakly inclined falling liquid films have shown that a strongly confined
laminar counter-current gas flow can attenuate the amplitude of nonlinear travelling-wave
solutions (TWS), even though the linear gas effect is destabilizing. In our current
configuration, where the inclination angle is similar but the confinement is weaker and the
gas flow is turbulent, both the TWS amplitude and the linear spatial growth rate increase
with increasing counter-current gas flow rate, at least until the absolute instability (AI)
limit is reached.

Several works on gas-sheared falling liquid films in narrow (vertical) channels have
identified wave coalescence as a possible route towards flooding. For example, Drosos
et al. (2006) measured the probability density function of the wave height and found
that the dominant wave frequency strongly decreases as the flooding limit is approached.
Later, Dietze & Ruyer-Quil (2013) computed the noise-driven spatial evolution of Kapitza
waves sheared by a superconfined laminar gas flow, and showed that coalescence can
trigger an intermittent obstruction of the channel. Geometrical obstruction is not possible
in our current configuration, where H�, although smaller than the typical wavelength
Λ�, is much greater than h�0. Nonetheless, we find that the counter-current gas flow
exacerbates coalescence events, entailing very large waves that form via the successive
absorption of smaller waves. Such waves have been designated as tsunami waves (Meza
& Balakotaiah 2008), and we will employ this term throughout. In particular, the onset
of coalescence moves upstream significantly when the counter-current gas flow rate is
increased, precipitating the usual wave coarsening dynamics observed in liquid films
falling in a quiescent gas (Chang et al. 1996b).

The transition between convective instability (spatial growth) and AI (temporal growth),
which occurs when the counter-current gas flow rate is increased, has been suggested as
another potential cause for the onset of flooding. For example, Vellingiri et al. (2015)
showed that the AI limit predicted by their linear stability analysis lies not too far from
the flooding threshold reported in the experiments of Zapke & Kröger (2000), where
a vertically falling liquid film was sheared by a counter-current gas flow. However, the
trends of the two limits versus the liquid Reynolds number ReL were opposed, i.e. the
flooding onset, expressed in terms of the superficial gas velocity, increased with increasing
ReL, whereas the AI limit diminished. In the current work, we have thus explored the
spatio-temporal evolution of nonlinear Kapitza waves beyond the AI limit, based on
experiments and numerical computations. We find that AI is not necessarily dangerous in
our configuration, i.e. no catastrophic events occur until far beyond the AI limit. Moreover,
in the case of a noise-driven wave evolution scenario, AI can act as an effective linear
selection mechanism, leading to a regular train of downward-travelling nonlinear surface
waves, thus precluding dangerous coalescence events.

Lavalle et al. (2020) studied vertically falling wavy liquid films sheared by a
superconfined laminar counter-current gas flow, and discovered an oscillatory secondary
instability. This instability entails a regular spatial modulation of TWS generated
by coherent inlet forcing. We have performed computations for the same liquid-side
parameters, but with our moderate confinement, i.e. H� ∼ 10 mm. Although we do not
observe any oscillatory instability, wave amplitude modulations occur nonetheless, albeit
due to an entirely different mechanism, which sets in beyond the AI limit. There,
a competition between the forcing frequency and the absolute frequency can lead to
coalescence-induced tsunami waves that are separated by a long and thin residual film, on
which small-amplitude standing ripples form as a result of AI. These ripples continually
perturb the tsunami waves passing over them, similar to the effect of wall corrugations
(Dietze 2019).
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Several numerical works have suggested that a counter-current gas flow may provoke
the reversal of nonlinear Kapitza waves, which can be viewed as another manifestation
of flooding. Tseluiko & Kalliadasis (2011) observed this for a vertically falling liquid
film sheared by a weakly confined turbulent gas flow. However, in their computations,
the average film thickness h̄ was fixed instead of the liquid flow rate, which is more
representative of a sudden gas flow rate increase in an experiment. Trifonov (2017)
observed the reversal of travelling Kapitza waves in the case of an inclined falling liquid
film sheared by a laminar gas flow. However, the gas Reynolds number in his computations
was far greater than the turbulence threshold, i.e. |ReG| > 10 000. Lavalle et al. (2020)
observed wave reversal due to a gas-induced secondary instability of TWS in the case of
extreme confinement (H� ∼ 1 mm). In our current configuration, where the liquid flow
rate is imposed, the gas flow is turbulent and the confinement is moderate, we did not
observe any reversal of Kapitza waves, either in terms of TWS or in the case of spatially
evolving waves.

In our experiments, flooding is triggered (far beyond the AI limit) by upward-travelling
short ripples that first coexist with the initial Kapitza waves and then overpower the latter.
As soon as these ripples appear, liquid, in the form of small droplets, starts to accumulate
in the gas loop, eventually forcing a shutdown of the experiment. Such ripples were first
observed in the experiments of Kofman et al. (2017). In the current paper, we elucidate
their origin, which has remained an open question.

Kofman et al. (2017) pointed out that the ripples observed in their experiments have
wavelengths and amplitudes similar to those of ripples forming in horizontal liquid films
sheared by an unconfined co-current turbulent gas flow (Özgen, Carbonaro & Sarma
2002). Those ripples are caused by a short-wave interfacial instability mode (Miesen &
Boersma 1995). They have also been observed when the co-current gas flow is confined,
e.g. in the experiments of Hanratty & Engen (1957), where H� = 25.4 mm, and where
the ripples were seen to coalesce into fast-travelling slugs. The corresponding instability
mode was identified by McCready & Chang (1994). They showed that the dispersion
curve of the linear temporal growth rate kci, where k and ci denote the wavenumber and
complex celerity, originates at k = ci = 0, and displays two unstable (kci > 0) humps,
one at small and another at large k, the short-wave hump being dominant. However, no
short-wave instability mode has ever been identified for falling liquid films sheared by a
counter-current (turbulent) gas flow, despite several previous linear stability investigations.
And the ripples observed in our experiments move upstream, i.e. in the opposite direction
to the liquid.

Schmidt et al. (2016) applied the Chebyshev collocation approach (Orszag 1971; Barmak
et al. 2016a) to study this problem in the vertical configuration at |ReG| > 35 000, where
ReG = q�G/νG designates the gas Reynolds number based on the gas flow rate per unit
width q�G and the gas kinematic viscosity νG. Although the gas flow under these conditions
would be turbulent in an experiment, the laminar Navier–Stokes equations were used.
The authors identified four instability modes: (1) the long-wave Kapitza mode (Brooke
Benjamin 1957; Yih 1963), which is an interfacial mode; (2) the liquid-side short-wave
Tollmien–Schlichting mode (Floryan, Davis & Kelly 1987; Samanta 2020), which travels
in the direction of the liquid and occurs at very large ReL; (3) the gas-side short-wave
Tollmien–Schlichting mode; and (4) a so-called long-wave internal mode, which appears
at |ReG| ∼ 10 × 104 and can merge with the Kapitza mode. Trifonov (2017) applied
the same approach to the case of an inclined falling liquid film, and showed that the
gas-side Tollmien–Schlichting mode corresponds to the classical result for channel flow,
i.e. |ReG| = 4

3 × 5772 = 7696 (Orszag 1971). This mode always travels in the direction of
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the gas flow, but it does not perturb the liquid–gas interface meaningfully. Thus it cannot
generate the upward-travelling ripples observed in our experiment, which, moreover, occur
at |ReG| ∼ 6000.

The works of Schmidt et al. (2016) and Trifonov (2017) did not account for turbulence
in the primary flow, even though the gas Reynolds number |ReG| was far greater than
the experimental turbulence threshold |ReG| ∼ 1800 (Pope 2000). Following the seminal
work of Náraigh et al. (2011), this shortcoming was remedied by Vellingiri et al.
(2015), who represented the turbulent gas flow via the Reynolds averaged Navier–Stokes
(RANS) equations, using curvilinear coordinates and Prandtl’s mixing-length approach.
These authors observed a transition of the long-wave Kapitza instability from
downward-convective to upward-convective upon increasing the counter-current gas flow
rate qL0. However, as the liquid film thickness h0 and not qL0 was fixed in these
calculations, upward-travelling waves were associated with qL0 < 0. By contrast, qL0
is fixed and positive in our experiments. Vellingiri et al. (2015) did not identify any
short-wave instability mode. Nonetheless, they reported a non-monotonic variation of the
cut-off wavenumber kc upon increasing |ReG| for the long-wave instability mode, i.e. a
decrease followed by an increase in kc. Trifonov (2017) later made a similar observation.
We will show that this behaviour results from an interaction between the long-wave
Kapitza instability mode and a new short-wave interfacial instability mode, which we have
detected via temporal linear stability calculations at fixed qL0 > 0, using the Chebyshev
collocation approach.

This new short-wave mode emerges around the AI limit of the long-wave Kapitza
instability mode, upon increasing the counter-current gas flow rate. Initially, the long-wave
and short-wave modes coexist, but, at sufficiently large |ReG|, they merge to form a
two-humped dispersion curve originating at k = ci = 0, and the short-wave maximum
eventually becomes dominant. Linear waves corresponding to this maximum display
a negative wave celerity cr < 0, and both their wavelength Λ and cr agree well with
the upward-travelling ripples observed in our experiment. The wave celerity cr of the
new short-wave instability mode is always negative at the most-amplified wavenumber
k = kmax, but it can change sign at lower k. This is a fundamental difference with the
gas-side Tollmien–Schlichting mode. Conversely, when cr < 0, the liquid film surface
velocity is not necessarily negative. Thus ripples travel upwards, even when the liquid
travels downwards across the entire film thickness. This is a difference with the interfacial
mode observed in co-current liquid/gas flows (Miesen & Boersma 1995).

Nonlinear computations in the current paper have been performed with a new
low-dimensional model, which we introduce. Therein, the liquid film is represented
via the weighted residual integral boundary layer (WRIBL) approach of Ruyer-Quil &
Manneville (1998), leading to two coupled evolution equations for the local instantaneous
film thickness h and liquid flow rate qL. We develop these equations up to second order
in the long-wave parameter, and account for the effect of an adjacent gas via the gas
shear stress TG and the gas pressure PG, acting at the liquid–gas interface. Following
Camassa, Ogrosky & Olander (2017), we obtain these coupling quantities from a first-order
long-wave (LW) approximation of the gas-side RANS equations written in curvilinear
coordinates (Thorsness, Morrisroe & Hanratty 1978), while assuming a frozen liquid–gas
interface. Our thus obtained WRIBL-LW model represents several improvements with
respect to previous works, which we will discuss next.

Demekhin (1981) used the integral boundary layer approach of Shkadov (1967) to model
the liquid film, and accounted for the effect of a turbulent gas flow, via TG and PG,
through the linear response of the gas-side RANS equations to a waviness of the liquid–gas
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interface (assumed frozen). This linearized approach is valid in the limit h/H � 1, i.e.
assuming a large channel height versus the film thickness. Further, the authors invoked
the quasi-laminar assumption (Miles 1957; Brooke Benjamin 1959), where turbulence
enters only via the unperturbed flow and linear perturbations of the Reynolds stresses
are neglected, which is usually valid in gas-sheared wavy liquid films (Náraigh et al.
2011). However, the liquid-side integral boundary layer approach is known to significantly
over-predict the instability threshold of an inclined falling liquid film.

Tseluiko & Kalliadasis (2011) remedied this shortcoming by combining the gas-side
description of Demekhin (1981) with a WRIBL representation of the liquid film. However,
their liquid-side WRIBL model was developed only up to first order in the long-wave
parameter, thus in conjunction with the linear gas-side approach, the gas pressure PG
did not enter the problem. We will show that this changes the linear response of
the liquid film qualitatively in our configuration, and that a second-order liquid-side
WRIBL development, accounting for PG, is needed to capture accurately the effect of
the counter-current gas flow.

Such a liquid-side treatment was applied by Samanta (2014), but the author made
several simplifications in the gas-side description, i.e. PG was neglected altogether, and
TG was assumed constant. The latter assumption entails that the gas-induced stabilization
observed in superconfined falling liquid films (Lavalle et al. 2019), which relies on the
linear response of TG, cannot be captured.

Camassa et al. (2017) accounted for variations in PG and TG in their gas-side description.
Moreover, their gas-side description relies on a long-wave rather than low-amplitude
expansion of the RANS equations, thus finite confinement levels can be studied.
However, their description of the liquid film relied on the lubrication approach. Thus the
inertia-driven Kapitza instability, which is responsible for generating long waves in our
configuration but was irrelevant in theirs, cannot be captured.

By coupling the gas-side approach of Camassa et al. (2017) with a second-order WRIBL
description of the liquid film, our WRIBL-LW model remedies the different limitations
discussed above. Our model is aimed at moderate confinement levels, where the gas
flow is turbulent and the gas pressure is relevant. In that sense, it complements the
model of Dietze & Ruyer-Quil (2013), for superconfined laminar liquid–gas flows, and
the models of Demekhin (1981) and Tseluiko & Kalliadasis (2011), for weakly confined
falling liquid films sheared by a turbulent gas flow, where the effect of PG is negligible.
For completeness, we point out that our model does not rely on the quasi-laminar
assumption (Alekseenko et al. 2009; Trifonov 2010a; Tseluiko & Kalliadasis 2011;
Vellingiri et al. 2015). We will show that it predicts accurately the dynamics of Kapitza
waves under the effect of a counter-current turbulent gas flow, in good agreement with
experiments.

Our paper is structured as follows. In § 2, we introduce our experimental set-up
for studying surface waves in gas-sheared falling liquid films. In § 3, we present
our low-dimensional WRIBL-LW model (§§ 3.1 and 3.2), and the numerical methods
underlying our linear and nonlinear computations therewith (§ 3.4). Section 4 concerns
linear stability calculations based on the full RANS equations in the gas, where the
liquid-side description is based either on the WRIBL model (§ 4.1) or on the full
Navier–Stokes equations (§ 4.2). In § 5, we validate our WRIBL-LW model versus linear
stability calculations and experiments. Section 6 presents our results concerning the gas
effect on linear and nonlinear wave dynamics. We first focus on waves resulting from
the long-wave Kapitza instability (§ 6.1), and then discuss upward-travelling short-wave
ripples (§ 6.2). Conclusions are drawn in § 7, followed by Appendices A and B, containing
validation results, and Appendix C, where we justify one of our model assumptions.
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2. Experiments

Figure 1 sketches the set-up used for our experiments. A liquid film (index L) of water
flows down a glass plate inclined at φ = 5◦, and enters into contact with a counter-current
turbulent gas flow (index G) of air confined within a rectangular channel of height
H� = 13 mm and width W� = 27 cm. This set-up is a slightly modified version of the
set-up used in the work of Mergui et al. (2023), where H� = 5 mm and the gas flow was
laminar.

The liquid flow rate q�L is controlled through a gear pump and measured with error ±3 %
using a conductance flow meter (IFM electonic, SM6000). In the current paper, we focus
on two liquid-side regimes: ReL ∼ 33 and ReL ∼ 45. A loudspeaker integrated into the
upstream liquid reservoir enables the forcing of Kapitza waves with prescribed frequency
f �0 on the surface of the liquid film. These waves are allowed to grow and saturate within
a protected region spanning from x� = 0 to x� = 36.5 cm, before entering the gas-sheared
section of the set-up (36.5 cm ≤ x� ≤ 100 cm). In our experiments, f �0 is chosen such as
to maximize the linear growth rate of the Kapitza waves, yielding a train of regular waves
within the protected region. Also, the forcing amplitude is adjusted so that the waves reach
a saturated amplitude before entering the gas-sheared section.

The gas flow rate q�G is controlled through a fan, and quantified via a calibration curve
(relating the fan power to q�G) obtained from gas velocity measurements in the dry channel.
Details of the procedure are given in Mergui et al. (2023). An error on ReG of 3 % was
estimated for all our experiments. For a given liquid flow rate, the fan power was varied
from zero up until breakdown of the experiment due to flooding, when liquid droplets
accumulated in the gas buffer box. At zero fan power, the gas is subject to an aerostatic
pressure drop, which is imposed by the quiescent ambient air. In this case, which we will
designate as aerostatic configuration, the gas flows downwards under the shearing action
of the falling liquid film, i.e. q�G > 0. Conversely, in the case of a counter-current gas
flow, we have q�G < 0. Thus we consider q�G, and the gas Reynolds number ReG, as signed
quantities.

In our counter-current experimental runs, ReG was typically varied from ReG = −3000
to ReG = −6800, after an initial measurement under aerostatic conditions. Due to
evaporation, the liquid temperature typically decreased by a few Kelvin between the
aerostatic and counter-current configurations. As q�L remained fixed during each run, a
corresponding variation of ReL occurred due to changes in the fluid properties. To account
for this, we have monitored the liquid temperature Tinlet in the inlet tank over the course
of each experiment, using a thermocouple. The temperature decrease was observed as
soon as the counter-current air flow was imposed, but the temperature varied little upon
increasing the gas flow rate after that. Thus, when reporting experimental data, we will
give Reas

L , which corresponds to the aerostatic configuration, and ReL, which corresponds
to the counter-current configuration.

Representative values of the density and kinematic viscosity of water and air for
our counter-current experiments (Tinlet � 19 ◦C) are ρL = 998.3 kg m−3, νL = 1.03 ×
10−6 m2 s−1 and ρG = 1.21 kg m−3, νG = 14.9 × 10−6 m2 s−1. The surface tension of
our water was measured once and for all at T = 19.9 ◦C with a drop shape analyser
(Krüss), yielding σ = 71 mN m−1. Based on this, we obtain Ka = σ/(ρLg1/3ν

4/3
L ) = 3174

for the Kapitza number. Conversely, for our experiments in the aerostatic configuration
(Tinlet � 21 ◦C), we obtain Ka = 3394.

Two methods were applied to characterize the gas effect on the dynamics of nonlinear
surface waves (for details, see Kofman et al. 2014; Mergui et al. 2023): (1) shadowgraphy
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Figure 2. Transition of the wavy falling liquid film under a counter-current gas flow: water/air, Reas
L = 44.7,

ReL = 43.1, f �0 = 3 Hz. Shadowgraphs of the liquid–gas interface for increasingly strong fan power: (a) zero fan
power (aerostatic configuration), regularly-spaced Kapitza waves; (b) ReG = −5830, coalescence of Kapitza
waves; (c) ReG = −6760, coexistence of Kapitza waves with upward-travelling short ripples.

of the wavy liquid–gas interface, using an sCMOS camera (PCO, pco.edge 5.5) with
100 Hz frame rate; (2) pointwise measurements of the film thickness time trace, using a
confocal chromatic imaging (CCI) technique (Cohen-Sabban, Gaillard-Groleas & Crepin
2001; Lel et al. 2005) with 400 Hz acquisition frequency and accuracy ±1 μm (Stil S.A.,
CL-MG CL4 line sensor).

Figures 2 and 3 show typical data obtained with these two methods. Figure 2 represents
shadowgraphs for an experiment, where the fan power was increased step by step (from
left to right), while maintaining q�L and f �0 = 3 Hz fixed. Each shadowgraph represents the
entire width of the channel and almost the entire length of the gas-sheared section of the
set-up, i.e. 44 cm ≤ x� ≤ 100 cm. At zero fan power (figure 2a), regularly spaced Kapitza
waves with quasi-two-dimensional wave fronts are observed. Applying and increasing
a counter-current gas flow rate causes first coalescence events (figure 2b) and then the
emergence of upward-travelling short ripples that coexist with the long Kapitza waves
(figure 2c). This dynamics will be the focus of § 6.

Figure 3 represents measurement data obtained with the CCI technique for the aerostatic
configuration at Reas

L = 33.7 and f �0 = 2.8 Hz. In figure 3(a), we have plotted time traces
of the film thickness h� at streamwise positions representative for the regimes of linear
growth, nonlinear growth and saturation of Kapitza waves. These time traces evidence
the formation of characteristic precursory capillary ripples. Figure 3(b) represents spatial
profiles of the ensemble-averaged (over at least 100 waves) maximum film thickness h�max,
minimum film thickness h�min, and time-averaged (over at least 100 wave periods) film
thickness h̄�. Error bars illustrate the standard deviation. To obtain these profiles, the CCI
probe was displaced incrementally using a rail (see figure 1).

3. Low-dimensional WRIBL-LW model

We consider the flow in figure 4. A two-dimensional laminar falling liquid film of thickness
h(x, t) flows along an inclined plane under the action of gravity, while being sheared by a
counter-current turbulent gas flow. The gas flow is confined by a second wall at y� = H�

(the star superscript denotes dimensional quantities throughout), which is not represented.
We impose a symmetry condition at the centreline of the average gas layer, i.e. y� = D�.
In the case of a symmetrical vertical configuration with liquid films lining both walls
(Vlachos et al. 2001), this condition is satisfied analytically, and we have D� = H�/2. In
the case of an inclined configuration with a dry upper wall, which is the one considered
here, the symmetry condition remains a reasonable approximation, provided that the liquid
holdup h̄�/H�, where h̄� designates the average film thickness, is not too large. In the

971 A37-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.670


M. Ishimura, S. Mergui, C. Ruyer-Quil and G.F. Dietze

(a)

(b)

300

500

700

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80

ℎ
  (

µ
m

)
ℎ

  (
µ

m
)

x  (cm)

t  (s) t  (s) t  (s) t  (s)

Figure 3. Typical CCI film thickness measurements in the aerostatic configuration: water/air, Reas
L = 33.7,

f �0 = 2.8 Hz. (a) Film thickness time traces measured at different positions. From left to right: x� = 13.5, 27.5,
49.5 and 62.5 cm. (b) Spatial profiles of averaged quantities (at least 100 waves). Open/filled circles indicate
ensemble-averaged wave height h�max and minimum film thickness h�min; crosses indicate time-averaged film
thickness h̄�. Error bars indicate standard deviation, and red arrows mark positions for the traces in (a).

current work, h̄�/H� < 0.1, thus the symmetry condition is acceptable. In that case, D� =
(H� + h̄�)/2. Moreover, due to the inter-phase coupling conditions that we will apply in
our gas-side description (frozen-interface assumption), and the nature of our calculations
(linear stability analysis and long-wave asymptotic expansion), the symmetry condition at
y� = D� holds analytically, even when the upper wall is dry. This will be explained further
in §§ 3.2 and 4.1.

Following previous works (Halpern & Grotberg 2003; Tseluiko & Kalliadasis 2011;
Samanta 2014; Camassa et al. 2017), we relax the inter-phase coupling conditions and
apply a weakly coupled treatment of the two-phase flow. The liquid film (§ 3.1) is modelled
with the WRIBL method (Kalliadasis et al. 2012), where the effect of the gas enters via
the tangential gas shear stress TG and the gas pressure PG acting at the film surface y� =
h� (figure 4), neglecting the normal gaseous viscous stress. These inter-phase coupling
quantities are obtained from the gas-side model (§ 3.2), which is derived via long-wave
asymptotic expansion, following Camassa et al. (2017).

3.1. Liquid-side WRIBL model
The liquid film (subscript L), with density ρL, dynamic viscosity μL and surface tension
σ , is governed by the dimensionless continuity and Navier–Stokes equations written in
Cartesian coordinates x and y (figure 4):

∂xuL + ∂yvL = 0, (3.1a)
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ξ,ũG

η,ṽG
φ

ρG, μG

ρL, μL

σ

Turbulent gas flow

PG

x,uL

x,uG

g
gy

gx

y,vL

y,vG

Dd

TG

hh̄

Figure 4. Falling liquid film (subscript L) on an inclined wall subject to a counter-current turbulent gas
flow (subscript G). The flow is confined by an upper wall (not shown) at y� = H� (stars denote dimensional
quantities), and a symmetry condition is imposed at the centreline of the average gas layer y� = D�. Gas–liquid
coupling is expressed via the tangential gas shear stress TG and the gas pressure PG at the film surface y� = h�.
Red dashed lines illustrate the orthogonal curvilinear coordinate system (η, ξ), where η = yd̄/d.

ε(∂tuL + uL ∂xuL + vL ∂yuL) = −ε ∂xp + 1
ReL

(ε2 ∂xxuL + ∂yyuL)+ sin(φ)
Fr2 , (3.1b)

ε3(∂tvL + uL ∂xv + vL ∂yvL) = −ε ∂ypL + 1
ReL

(ε4 ∂xxvL + ε2 ∂yyvL)− ε
cos(φ)

Fr2 ,

(3.1c)

where ReL = ρLULL/μL and Fr = UL/
√
Lg denote the liquid Reynolds number and

Froude number, and where we have applied the scaling

uL = u�L
UL
, vL = v�L

εUL
, x = ε

x�

L , y = y�

L , t = εt�
UL

L , pL = p�L
ρLU2

L
. (3.1d)

Here, we have introduced the long-wave parameter ε = L/Λ�, which relates the
cross-stream length scale L to the streamwise length scale given by the wavelength Λ�.
For the purpose of the current derivation, it suffices to say that the scales L and UL are
representative of the film thickness h� and streamwise liquid velocity u�L. In § 3.3, we will
rescale our problem and make the final choice for L and UL.

The system is closed with the boundary conditions at y = 0

uL = vL = 0, (3.1e)

the kinematic condition
vL|y=h = uL|y=h ∂xh + ∂th, (3.1f )

and the inter-phase stress coupling conditions at y = h

− ∂yuL
1

1 + ε2 ∂xh2 (−ε4 ∂xh2 ∂xvL − 4ε2 ∂xh ∂xuL + ε2 ∂xvL) = ΠμΠu

ΠL
TG, (3.1g)

εPL + 2
1 + ε2 ∂xh2

1
ReL

(ε4 ∂xh2 ∂xuL − ε4 ∂xh ∂xvL − ε2 ∂xuL − ε2 ∂xh ∂yuL)

− ε3 We ∂xxh = 1
ReG

ΠρΠ
2
u

ΠL
PG, (3.1h)
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where We = σ/(ρLLU2
L) denotes the Weber number. The liquid–gas coupling enters

through TG and PG, which are scaled as follows:

TG = LG

μGUG
T�G, PG = ε

LG

μGUG
P�G, (3.2a,b)

where LG, UG and ε = LG/Λ
� = εΠL denote the gas-side cross-stream length scale,

velocity scale and long-wave parameter, which will be defined in § 3.2. As a result, the
gas Reynolds number ReG = ρGUGLG/μG, the velocity scale ratio Πu = UG/UL, the
length scale ratio ΠL = LG/L, and the viscosity and density ratios Πμ = μG/μL and
Πρ = ρG/ρL enter (3.1g) and (3.1h).

Next, we apply the WRIBL approach to derive two evolution equations involving the
local instantaneous liquid flow rate q(x, t) and the film thickness h(x, t). In principle, we
follow the same steps as Samanta (2014), except that we account for the gas pressure PG,
which plays an important role in our current configuration, allow PG and TG to vary in
space and time, and account for turbulence in the gas.

First, the governing equations (4.1a,b) are truncated at O(ε2), except for inertial terms,
which are truncated at O(ReL ε). Next, we eliminate p from (3.1b) via an integrated form
of (3.1c) using (3.1h). Then we substitute for the streamwise velocity u (v is obtained from
(3.1a)) the decomposition

uL = ûL + εu(1)L , (3.3)

where the base profile ûL is governed by

∂yyûL = const., ∂yûL
∣∣
y=h = ΠμΠu

ΠL
TG, ûL

∣∣
y=0 = 0,∫ h(x,t)

0
ûL dy = qL(x, t).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.4)

Finally, the unknown O(ε) velocity correction εu(1)L is eliminated from the problem by
multiplying the truncated form of (3.1b) with a weight function w( y), integrating the result
across the film thickness h(x, t), and applying the tangential inter-phase coupling condition
(3.1g). The weight function w satisfies

∂yyw = const., w|y=0 = 0, ∂yw|y=h = 0. (3.5a–c)

As a final result, we obtain the integral momentum equation for the liquid film,

∂tqL + 17
7

qL

h
∂xqL − 9

7
q2

L
h2 ∂xh = 5

6
We h ∂xxxh + 5

6
Fr−2 h {sin (φ)− cos(φ) ∂xh}

+ Re−1
L

{
−5

2
qL

h2 + 4
qL

h2 ∂xh2 − 9
2h
∂xqL ∂xh − 6

qL

h
∂xxh + 9

2
∂xxqL

}
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+ ΠμΠu

ΠL
TG

{
Re−1

L

[
5
4

+ h
6
∂xxh + 1

2
∂xh2

]
− 5

112
qL ∂xh − 19

336
∂xqLh

}
− 19

672

Π2
μΠ

2
u

Π2
L

h2 ∂xhT2
G − 5

6
Re−1

G
ΠρΠ

2
u

ΠL
h ∂xPG

+ ΠμΠu

ΠL

{
∂xTG

[
Re−1

L
3
4

h ∂xh − 15
224

hqL

]
− 25

1344
ΠμΠu

ΠL
h3TG ∂xTG − h2

48
∂tTG

}
,

(3.6a)

to which is added an integral continuity equation obtained by integrating (3.1a) across the
liquid film and applying (3.1f ):

∂th + ∂xqL = 0. (3.6b)

In the limit TG = ∂xPG = 0, (3.6a) reduces to (41) from Ruyer-Quil & Manneville (2000).
In the limit ∂xTG = ∂tTG = ∂xPG = 0, it collapses with (3.9) from Samanta (2014), except
for a typo in the TG ∂xh2 term of that reference. Here, we will neglect the terms involving
∂xTG and ∂tTG, but we will account for the space and time variation of TG(x, t) and PG(x, t)
in the remaining terms. This amounts to a quasi-developed approach. See Appendix C for
a justification of this approximation.

Versus the model of Tseluiko & Kalliadasis (2011), which is based on a linear
representation of the gas response, our model accounts for the gas pressure PG, which
plays a role for the confinement considered here. It also accounts for streamwise viscous
diffusion in the liquid, which is known to affect the dynamics of precursory capillary
ripples (Ruyer-Quil & Manneville 2002).

3.2. Gas-side asymptotic long-wave model
We represent the turbulent flow of the gas (subscript G), with density ρG and dynamic
viscosity μG, in two dimensions via the (dimensionless) Reynolds-averaged continuity
and steady Navier–Stokes (RANS) equations, written here in the Cartesian gas-side
coordinates x and y (see figure 4) as

∂xuG + ∂yvG = 0, (3.7)

ε(uG ∂xuG + vG ∂yuG) = − 1
ReG

∂xpG + ΠL

Π2
u

sin(φ)
Fr2 + 1

ReG

{
∂yyuG + ε2 ∂xxuG

}
+ 1

ReG

{
∂y

(
μt

μG
∂yuG

)
+ ε2 ∂x

(
μt

μG
∂xuG

)}
, (3.8a)

ε3(uG ∂xvG + vG ∂yvG) = − 1
ReG

∂ypG + ε
ΠL

Π2
u

cos(φ)
Fr2 + 1

ReG

{
ε2 ∂yyvG + ε4 ∂xxvG

}
+ 1

ReG

{
ε2 ∂y

(
μt

μG
∂yvG

)
+ ε4 ∂x

(
μt

μG
∂xvG

)}
, (3.8b)

whereμt denotes the turbulent viscosity, ReG = ρGUGLG/μG is the gas Reynolds number,
and we have applied the scaling

uG = u�G
UG
, vG = v�G

εUG
, x = ε

x�

LG
, y = y�

LG
, pG = p�G

εLG

μGUG
, (3.9a–e)
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introducing the gas-side long-wave parameter ε = LG/Λ
�. For the gas-side reference

scales, we choose once and for all

LG = H�, UG = q�G0
H�

, (3.10a,b)

where q�G0 is the nominal gas flow rate per unit width of the primary flow (subscript 0), thus
UG corresponds to the superficial gas velocity. We have scaled pressure with a measure for
the viscous shear stress, in contrast to (3.1d), where the dynamic pressure was used.

The turbulent viscosity μt is formulated via the mixing-length approach (Prandtl 1925):
μt

μG
= ReG l2t

∣∣∣∂yuG

∣∣∣ , (3.11)

where lt = l�t /LG denotes the dimensionless mixing length. At this point, a remark about
choosing a turbulent viscosity model, such as (3.11), is in order. Luchini & Charru (2019)
have shown that such models cannot fully reproduce the momentum redistribution induced
by wall perturbations to a parallel turbulent flow. Nonetheless, comparisons with different
experiments (Zilker, Cook & Hanratty 1977; Frederick & Hanratty 1988) have shown that
turbulent viscosity models based on the van Driest equation, which will be introduced in
(3.22), capture satisfactorily the linear (Russo & Luchini 2016) and nonlinear (Tseluiko &
Kalliadasis 2011; Camassa et al. 2017) responses of the wall shear stress. Thus such models
allow us to account adequately for the inter-phase coupling in our current configuration.

We assume a large gas/liquid velocity contrast Πu � 1, which warrants two
simplifications. First, we have neglected time derivatives in (3.8), as

O
{

∂t�u�G
u�G ∂x�u�G

}
= 1
Πu

� 1, (3.12)

assuming that the time scale is dictated by the waviness of the liquid film, i.e. T = Λ�/UL.
Second, we set zero-velocity conditions at the film surface y = d:

uG = vG = 0. (3.13a)

Thus, from the point of view of the gas, the film surface is represented as a frozen wavy
wall (Tseluiko & Kalliadasis 2011). Our system is closed via a symmetry condition at
y = 0:

∂yuG = vG = 0. (3.13b)

The ultimate aim of the gas-side model, to be derived next, is to obtain the inter-phase
coupling quantities in (3.6a), which are evaluated at y = d, implying lt = 0:

PG = pG, (3.14a)

TG = T�G
μGUG/LG

= −∂yuG −
{
ε2 ∂xd2 − 1

}−1 {
2ε2 ∂xd ∂yvG

+ 2ε2 ∂xd ∂xuG + ε2 ∂xvG − ε4 ∂xd2 ∂xvG

}
. (3.14b)

Following Camassa et al. (2017), we introduce the curvilinear coordinates η and ξ (see
figure 4), which will facilitate the account of turbulence:

η = y
d̄
d
, ξ = x + ε F(ξ, η), (3.15a,b)
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where d̄ denotes the spatial average of d, and orthogonality implies

∂ηF = ε
d
d̄2
∂ξd

1
ε ∂ξF − 1

. (3.16)

Red dashed lines in figure 4 represent curves of constant η and ξ , where

∂xy
∣∣∣
η

= − ∂yx
∣∣∣
ξ

= y

d̄
∂xd. (3.17)

Next, we recast the governing equations (3.8) and (3.13) in the curvilinear coordinate
system (tilde symbol), using the projection rules

uG = ũG + O(ε2), vG = ṽG + ∂ξd
d̄
ηũG + O(ε), (3.18a,b)

∂x = ∂ξ − η
∂ξd
d
∂η + O(ε), ∂y = d̄

d
∂η + O(ε2), (3.19a,b)

and truncate the result at O(ε1). Upon eliminating the pressure variable p in (3.8a) via an
appropriate integration of (3.8b), we obtain

∂ξd
d
∂ξ ũG + ∂ξ ũG + d̄

d
∂ηṽG = 0, (3.20a)

εũG ∂ξ ũG + ε
d̄
d
ṽG ∂ηũG = − 1

ReG
∂ξPG + ΠL

Π2
u

1
Fr2

(
sin(φ)+ ε cos(φ) ∂ξd

)
+ 1

ReG

d̄2

d2

{
∂ηηũG + ∂η

[
μ̃t

μG
∂ηũG

]}
, (3.20b)

where PG = pG|η=d̄, and μ̃t satisfies

μ̃t

μG
= d

d̄
ReG l̃2t

∣∣∂ηũG
∣∣ , (3.21)

with l̃t = ltd̄/d.
In this curvilinear formulation, the variation of the mixing length l̃t is expressed in

terms of η, i.e. normal to the film surface, thus correlations for parallel flows can be used.
Following Tseluiko & Kalliadasis (2011), we employ the van Driest equation (Van Driest
1956)

l̃t = κ
(
d̄ − η

) {
1 − exp

[√
|TG0| ReG

η − d̄
A

]}
, (3.22)

where A = 26, κ = 0.41 is the von Kármán constant, and TG0 denotes the primary-flow
tangential stress, obtained by evaluating (3.30) in the limit ε = 0, which intervenes in the
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traditional scaling based on the friction velocity U+:

U+=
{
ρ−1

G

∣∣T�G0
∣∣}1/2

, L+= μG

ρGU+ . (3.23a,b)

Finally, the boundary conditions (3.13) become

ũG|η=d̄ = ṽG|η=d̄ = 0, ∂ηũG|η=0 = ṽG|η=0 = 0. (3.24a,b)

The boundary-value problem (BVP) given by (3.20) and (3.24a,b) is solved order by
order based on a regular expansion in ε around ε = 0 (Camassa et al. 2017):

ũG = ũ(0)G + εũ(1)G + O(ε2), (3.25a)

ṽG = ṽ
(0)
G + εṽ

(1)
G + O(ε2), (3.25b)

PG = P(0)G + εP(1)G + O(ε2). (3.25c)

The zeroth-order problem is obtained by inserting (3.25a) into (3.20) and (3.24a,b), and
then truncating at O(ε0). We anticipate a solution in the form of the product ansatz

ũ(0)G = g0(ξ)U0(η) = d̄
d

U0(η), (3.26)

which leads to the variable-separated zeroth-order momentum equation

d3

d̄3

{
1

ReG
∂ξP(0)G − ΠL

Π2
u

1
Fr2 sin(φ)

}
= 1

ReG
∂ηηU0 + ∂η

{
l̃2t sgn

(
∂ηU0

) (
∂ηU0

)2
}

= C0,

(3.27a)
subject to the boundary conditions

U0|η=d̄ = ∂ηU0|η=0 = 0, (3.27b)

where we have employed the signum function sgn to substitute |∂ηU0| = sgn(∂ηU0) ∂ηU0,
and the separation constant C0 is obtained from the gauge condition∫ d

0
ũ(0)G dỹ =

∫ d̄

0
U0 dη = qG0

2
= 1

2
. (3.27c)

At the next order, i.e. O(ε1), we obtain in a similar way

d2

d̄2

{
1

ReG
∂ξP(1)G

d
∂ξd

− ΠL

Π2
u

1
Fr2 cos(φ) d

}
= U2

0 + 1
ReG

∂ηηU1

+ ∂η

{
l̃2t sgn

(
∂ηU0

)
∂ηU0 ∂ηU1

}
= C1, (3.28a)

U1|η=d̄ = ∂ηU1|η=0 = 0, (3.28b)∫ d

0
ũ(1)G dỹ =

∫ d̄

0
U1 dη = 0, (3.28c)

where we have employed the product ansatz

ũ(1)G = g1(ξ)vU1(η) = ∂ξd
d

U1(η), (3.29)

and the separation constant C1 is obtained from (3.28c).
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Gas-sheared falling liquid films beyond absolute instability

The two BVPs (3.27) and (3.28) are solved numerically for U0, U1, C0 and C1 via the
continuation software Auto07P (Doedel 2008). The solution is obtained for a given d̄ on
a fixed domain spanning 0 ≤ η ≤ d̄. Based on this, the coupling quantities TG and ∂xPG,
which appear in the liquid-side model (3.6a), are constructed readily at O(ε1):

TG = − d̄
d
∂ηũG

∣∣
η=d̄ + O(ε2) = − d̄

d

{
∂ηũ(0)G

∣∣∣
η=d̄

+ ε ∂ηũ(1)G

∣∣∣
η=d̄

}
+ O(ε2),

= − d̄2

d2

{
∂ηU0

∣∣
η=d̄ + ∂x�d�

d̄
∂ηU1

∣∣
η=d̄

}
+ O(ε2), (3.30a)

∂xPG = ∂ξP(0)G + ε ∂ξP(1)G + O(ε2)

= ReG

{
d̄3

d3

(
C0 + C1

∂x�d�

d̄

)
+ ΠL

Π2
u

1
Fr2

(
sin(φ)+ cos(φ) ∂x�d�

)} + O(ε2),

(3.30b)

where we have used the velocity expansion (3.25a):

ũG = d̄
d

U0 + ∂x�d�

d
U1 + O(ε2). (3.31)

Importantly, at fixed d̄, TG and ∂xPG in (3.30) depend only on d = D − h/ΠL, which varies
with x and t. By contrast, Samanta (2014) assumed TG = const and ∂xPG = 0.

In contrast to the gas-side description of Demekhin (1981) and Tseluiko & Kalliadasis
(2011), (3.30) is obtained from a long-wave not small-wave amplitude expansion. Thus it
works better when the liquid holdup is larger, whereas the cited models work better when
the liquid holdup is small, i.e. h�/d̄� → 0.

As a result of our frozen-interface assumption (Πu�1) expressed via (3.13), one
would obtain exactly the same relations for the functions U0 and U1 appearing in (3.30)
should one apply no-slip and no-penetration conditions at y� = H� instead of a symmetry
condition at y� = D�. This is because the BVPs for U0 (3.27) and U1 (3.28) would remain
symmetrical in that case. Thus, up to the order of expansion of our WRIBL-LW model,
our symmetry condition (3.13b) is valid without loss of generality.

3.3. Rescaling
For the remainder of the paper, we rescale streamwise lengths by setting ε = ε = 1, and
we choose

L = LG = H�, UL = q�L0
H�
, UG = q�G0

H�
. (3.32a–c)

This implies ΠL = 1, i.e. all lengths are now scaled with the channel height H�. We recall
that q�L0 and q�G0 are the primary-flow liquid and gas flow rates per unit width, thus UL and
UG are the superficial velocities. The corresponding Reynolds numbers are

ReL = q�L0
νL
, ReG = q�G0

νG
, (3.33a,b)

where νL = μL/ρL and νG = μG/ρG.
At some places, we will rescale quantities with the natural scales

Lν = ν
2/3
L g−1/3, Uν = (νLg)1/3, Tν = Lν

Uν
= ν

1/3
L g−2/3. (3.34a–c)
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3.4. Model computations
We perform three types of numerical computations based on our WRIBL-LW model
(3.6), (3.30): linear stability calculations, nonlinear computations of TWS, and nonlinear
computations of spatially evolving falling liquid films.

To obtain the linear stability formulation, we perturb the dependent variables qL and h
around their primary flow values qL0 and h0:

qL = qL0 + q̌L(x, t) = q0 + q̂ exp{i(kx − ωt)}, (3.35a)

h = h0 + ȟ(x, t) = h0 + ĥ exp{i(kx − ωt)}, (3.35b)
where the check mark denotes infinitesimal perturbations, ω denotes the angular
frequency, and q̂L = ĥω/k follows from (3.6b). Surface waves resulting from the Kapitza
instability grow spatially, but a counter-current gas flow can cause the onset of AI. Both
phenomena can be captured via a spatial stability formulation (Vellingiri et al. 2015). Thus
we will usually (but not exclusively) assume k ∈ C and ω ∈ R, with

k = kr + iki, (3.36)
where kr = 2π/Λ is the physical wavenumber, and −ki is the spatial growth rate.

The film surface perturbation (3.35b) translates to the gas-side problem via

d = d0 + ď = d0 + d̂ exp{i(kx − ωt)}, d̂ = − ĥ
ΠL
. (3.37)

Inserting this in (3.30) and then linearizing yields the linear responses of the inter-phase
coupling quantities:

TG = TG0 + ŤG = TG0 + T̂G exp{i(kx − ωt)}, (3.38a)

PG = PG0 + P̌G = PG0 + P̂G exp{i(kx − ωt)}, (3.38b)

with

TG0 = −∂ηU0|d0, T̂G = d̂
d0

{
2 ∂ηU0|d0 +ΠLik ∂ηU1|d0

}
, (3.39a,b)

∂xPG0 = ReG

{
C0 + ΠL

Π2
u

sin(φ)
Fr2

}
, P̂G = −ReG

d̂
ik

{
3

C0

d0
−ΠL

C1

d0
− Π2

L
Π2

u

cos (φ)
Fr2

}
.

(3.40a,b)
Introducing (3.35) and (3.38) into (3.6), and linearizing once again, yields the dispersion
relation for the spatial stability problem:

DR = −iω2 + ikω
17
7

qL0

h0
− ik2 9

7
q2

L0

h2
0

+ 5
6

Fr−2
{

ik2 cos(φ) h0 − k sin(φ)
}

− i3k4 5
6

We h0 + 5
2

1
ReL

1
h2

0

{
ω − 2k

qL0

h0

}
+ i2k3 6

ReL

qL0

h0
− i2k2ω

9
2

1
ReL

+ ΠμΠu

ΠL

{
TG0

[
ikω

19
336

h0 − i2k3 1
6

1
ReL

h0 + ik2 5
112

qL0

]
+ k

5
4

1
ReL

1
ΠL

T̂G

d̂

}

+ ik2 19
672

Π2
μΠ

2
u

Π2
L

h2
0T2

G0 + k
5
6
ΠρΠ

2
u

ΠL

1
ReG

{
∂xPG0 − h0

ΠL
ik

P̂G

d̂

}
= 0, (3.41)

971 A37-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.670


Gas-sheared falling liquid films beyond absolute instability

where d̂ will cancel, due to T̂G ∝ d̂ and P̂G ∝ d̂, according to (3.39a,b) and
(3.40a,b).

To compute nonlinear TWS, we recast (3.6a) into an ordinary differential equation in
terms of the wave coordinate γ = x − ct:

h′′′ = NL(h, h′, h′′; h̄, c, qMF
L ), (3.42a)

qMF
L = qL − hc = q̄L − h̄c, (3.42b)

where primes denote differentiation with respect to γ , bars signify averaging over the
wavelength Λ in terms of γ , c denotes the nonlinear wave speed, and the superscript
MF refers to the moving reference frame. Further, (3.42b) is the integral form of (3.6b),
which we have used to eliminate q from (3.42a). The system is closed through periodicity
boundary conditions

h(j)
∣∣∣
γ=0

= h(j)
∣∣∣
γ=Λ

, j = 0, 1, 2, (3.42c)

and it is solved for a fixed value of q̄L, enforced through the integral condition

Λ−1
∫ Λ

0
qL dγ = q̄L. (3.43)

We do this numerically via the continuation software Auto07P, after recasting (3.42a) into
a dynamical system. First, we continue the fixed-point solutions (h′ = h′′ = h′′′′ = 0) of
(3.42a) at qL = qL0 and h = h0 in terms of c, until reaching the Hopf bifurcation of the
Kapitza instability. Then, starting from this point, periodic solutions are continued in
terms of a selected control parameter, e.g. the liquid Reynolds number ReL. The BVPs
associated with the turbulent gas flow, (3.27) and (3.28), are solved simultaneously. In
addition, we solve the linear dispersion relation (3.41) for the spatially most-amplified
angular frequency ωmax:

DR(ωmax, k) = 0, ∂ωki|ω=ωmax = 0. (3.44a,b)

By imposing f = fmax = ωmax/2/π, TWS most likely to emerge in an experiment can be
tracked.

To compute the spatial evolution of nonlinear Kapitza waves, we solve (3.6a) and
(3.6b) numerically on an open domain with inlet/outlet conditions. Details of the
numerical scheme are given in Appendix F3 of Kalliadasis et al. (2012). In particular,
we apply a second-order central-differences spatial discretization and a quasi-linearized
Crank–Nicolson time integration. At the liquid outlet, we impose the soft boundary
conditions of Richard, Ruyer-Quil & Vila (2016). At the liquid inlet, we prescribe explicitly
h and q at the first two grid points (ix = 1, 2), based on the primary flow:

h|ix=1 = h|ix=2 = h0, (3.45a)

qL|ix=1 = qL|ix=2 = qL0 [1 + F(t)] , (3.45b)

where the function F(t) allows us to apply a tailored inlet forcing,

F(t) = ε1 sin(2πft)+ ε2

N∑
k=1

sin(2πk Δf t + ϕrand), Δf = 2fc/N. (3.46)
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The first RHS term in (3.46) constitutes a harmonic perturbation of frequency f , and the
second RHS term mimics white noise through a series of N = 1000 Fourier modes that are
shifted by a random phase shift ϕrand = ϕrand(k) ∈ [0, 2π] and span a frequency range of
twice the linear cut-off frequency fc (Chang, Demekhin & Kalaidin 1996a). When ε1 = 0,
the inlet perturbation consists of only white noise. This setting will be used to simulate the
natural, noise-driven evolution of a wavy film as it would occur in a real system. In other
computations, we will apply additional coherent inlet forcing by setting ε1 > 0.

4. Linear stability analysis based on full RANS equations

The long-wave asymptotic expansion underlying the gas-side representation (3.30) in our
WRIBL-LW model is truncated at order ε1, whereas our liquid-side representation (3.6)
is consistent up to order ε2. To validate linear stability predictions based on this model,
and to go beyond its limitations, we introduce two linear stability formulations that are
based on the full RANS equations in the gas (4.3). The first formulation (§ 4.1) relies on
the WRIBL model in the liquid (3.6), and we designate this approach as WRIBL-OS,
where OS refers to the Orr–Sommerfeld equation. The second formulation (§ 4.2) relies
on the full Navier–Stokes equations in the liquid (4.1a,b), and we designate that approach
as OS-OS.

4.1. The WRIBL-OS approach
In our WRIBL-OS approach, the linear response of the liquid film is governed by the
dispersion relation (3.41), but the perturbation amplitudes T̂G and P̂G are now obtained
from the full (steady) RANS equations (3.8). For this, we recast (3.8) in terms of the
curvilinear coordinates (3.15a,b) and introduce the gas stream function Ψ ,

ũ = d̄
d
∂ηΨ, ṽ = −∂ξΨ, (4.1a,b)

which we perturb, along with pG and d, around the primary flow (subscript 0):

Ψ = Ψ0 + Ψ̌ = Ψ0 + ψ(η) exp {i(kξ − ωt)} , (4.2a)

pG = pG0 + p̌G = pG0 + p̂G(η) exp {i(kξ − ωt)} , (4.2b)

d = d0 + ď = d0 + d̂ exp {i(kξ − ωt)} , (4.2c)

where k = kr ∈ R, and the time dependence is included formally to account for the
unsteadiness of the liquid film. Upon linearization and subtraction of the primary flow,
we obtain the linearized curvilinear RANS equations OSξ in the ξ direction,

ReG ik

{
ψ ′Ψ ′

0 − d̂
d0
Ψ ′2

0 − ψΨ ′′
0

}
+ ReG l̃t

∣∣Ψ ′′
0
∣∣ {l̃′t

[
k2

(
−2ψ + 3

d̂
d0
ηΨ ′

0

)

− 4ψ ′′ + 6
d̂
d0
Ψ ′′

0

]
+ l̃t

[
−2ψ ′′′ + 6

d̂
d0
Ψ ′′′

0 − 2
Ψ ′′′

0
Ψ ′′

0
ψ ′′

+ k2

(
−ψ ′ + 3

2
d̂
d0
Ψ ′

0 + 3
2

d̂
d0
ηΨ ′′

0 − Ψ ′′′
0
Ψ ′′

0
ψ + 3

2
d̂
d0
η
Ψ ′′′

0 Ψ
′
0

Ψ ′′
0

)]}

= −i kp̂G + ψ ′′′ − 3
d̂
d0
Ψ ′′′

0 − k2

{
ψ ′ − d̂

d0
Ψ ′

0 − d̂
d0
ηΨ ′′

0

}
, (4.3a)
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Gas-sheared falling liquid films beyond absolute instability

and OSη in the η direction,

ReG k2

{
ψΨ ′

0 − d̂
d0
ηΨ ′2

0

}
+ ReG l̃t

∣∣Ψ ′′
0
∣∣ ik

{
2l̃′t

d̂
d0
ηΨ ′′

0 + l̃t

[
−2ψ ′′ + 2

d̂
d0
Ψ ′′

0

+ 2η
d̂
d0
Ψ ′′′

0 + k2

(
−ψ + 3

2
d̂
d0
ηΨ ′

0

)]}
= −p̂′

G − ik3

{
−ψ + d̂

d0
ηΨ ′

0

}

− ik

{
ψ ′′ − 2

d̂
d0
Ψ ′′

0 − d̂
d0
ηΨ ′′′

0

}
, (4.3b)

where primes denote differentiation with respect to η. The pressure perturbation amplitude
p̂G can be removed from (4.3a) and (4.3b) via the final gas-side Orr–Sommerfeld equation

∂ηOSξ − ik OSη, (4.3c)

involving only ψ and its derivatives. The problem is closed with the boundary conditions
(3.24a,b):

ψ ′′|η=0 = 0, ψ |η=0 = 0, ψ ′|η=d0 = 0, ψ |η=d0
= 0. (4.3d)

We solve (4.3) numerically for ψ with the continuation software Auto07P, starting from
the analytically tractable laminar long-wave limit (l̃t = k = 0). The amplitudes of the
linear perturbations of the inter-phase coupling quantities,

ŤG = T̂G exp {i(kξ − ωt)} , P̌G = P̂G exp {i(kξ − ωt)} , (4.4a,b)

can be obtained readily by recasting (3.14) in curvilinear coordinates, inserting (4.2), and
linearizing:

T̂G = − ψ ′′∣∣
η=d0

+ 2
d̂
d0
Ψ ′′

0
∣∣
η=d0

, (4.5a)

ikP̂G =
{
ψ ′′′∣∣

η=d0
− 3

d̂
d0
Ψ ′′′

0
∣∣
η=d0

+ k2d̂ Ψ ′′
0
∣∣
η=d0

}
. (4.5b)

We point out that ψ ∝ d̂, thus d̂ once again cancels from (3.41), as it should. Also, the
spatial variations prescribed in (3.37) and (4.2) are equivalent in the linear limit d̂ → 0,
where the curvilinear coordinates collapse with the Cartesian ones. Thus ∂xP̌G = ∂ξ P̌G.

Figures 5(a) and 5(b) represent spatial linear stability predictions obtained with our
WRIBL-OS approach, based on (3.41) and (4.3c), for parameters according to the
experiments of Kofman et al. (2017) in an H� = 19 mm channel. According to figure 5(a),
the maximum of the growth rate dispersion curve increases with increasing counter-current
gas flow rate, until forming a pinch point at ReG = −8490, where the AI limit is reached
(curve with crosses).

This destabilization of the liquid film is caused by the inter-phase pressure coupling, as
can be deduced by confronting figure 5(a) with figure 5(b), where we have represented
corresponding growth rate curves in the limit Πρ = 0. In that case, the gas effect enters
only via TG, and we observe a stabilization of the liquid film at large |ReG| (compare
crosses and pentagons). Models that do not account for the gas pressure PG – e.g. the
weak-confinement first-order WRIBL model of Tseluiko & Kalliadasis (2011) – may thus
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Figure 5. Spatial linear stability calculations with the WRIBL-OS approach. Parameters based on
experiments of Kofman et al. (2017): Ka = 3174 (water and air I in table 1), φ = 5◦, ReL = 45.
Circles: passive-gas limit, Πρ = Πμ = 0 in (3.41). Values of |ReG| increase in the order diamonds,
squares, crosses, pentagons. (a,c) Full model, (b,d) Πρ = 0 in (3.41), with (a,b) H� = 19 mm, (c,d)
H� = 40 mm. Here: (a) ReG = [−6234,−8145,−8490 (AI)], dashed line ReG = −8500; (b) ReG =
[−6234,−8145,−8490,−15 000]; (c) ReG = [−8145,−15 000,−20 430 (AI limit)], dashed line ReG =
−20 440; (d) ReG = [−8145,−15 000,−20 430,−35 000]. We have rescaled ω with Tν = 2.207 × 10−3 s (see
(3.34a–c)).

Fluids ρ (kg m−3) ν (m2 s−1) σ (N m−1) Ka T (◦C) figures

Water 998.3 1.03 × 10−6 0.071 3174 19 5, 6, 8, 9, 11–13,
Air I 1.209 14.9 × 10−6 — — 19 18–21, 24–27

DMSO(83 %)–water 1098.3 2.85 × 10−6 0.0484 509.5 25 22, 23
Glycerol(54 %)–water 1000 2.3 × 10−6 0.0626 963 22 7
Air II 1.185 15.6 × 10−6 — — 25 7, 22, 23

Methanol 791 0.73 × 10−6 0.022 1988 25 28, 29(a)
Helium 0.165 12.1 × 10−5 — — 25

Table 1. Fluid combinations used in our computations. The Kapitza number is defined as Ka =
σ/(ρLg1/3ν

4/3
L ), where σ , ρL and νL denote the surface tension, density and kinematic viscosity of the liquid,

and g designates the gravitational acceleration.
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Gas-sheared falling liquid films beyond absolute instability

give qualitatively incorrect linear stability predictions for the current configuration. The
same observation also holds at weaker confinement, as shown by confronting figures 5(c)
and 5(d), where we have chosen H� = 40 mm.

As a result of our frozen-interface assumption (Πu�1) expressed through the last two
equations in (4.3d), one would obtain exactly the same linear stability problem (4.3)
should one apply no-slip and no-penetration conditions at y� = H� instead of a symmetry
condition at y� = D�. This is because the primary gas flow would remain symmetrical
about the centreline of the gas layer. Thus for all linear stability calculations based on the
gas-side OS BVP (4.3), our symmetry condition (4.3d) is valid analytically.

4.2. The OS-OS approach
Linear stability calculations based on our WRIBL-LW and WRIBL-OS approaches may
be limited to long-wave instability modes. To capture short-wave instability modes (§ 6.2),
we introduce a stability formulation based on the full Navier–Stokes equations (4.1a,b) in
the liquid and the full RANS equations (4.3) in the gas.

The gas-side linear response is governed by the same equations as in the WRIBL-OS
approach, i.e. (4.3) and (4.5), and we focus here on deriving the equations governing the
liquid-side linear response. For this, we perturb the film thickness as

h = h0 + ȟ = h0 + ĥ exp {ik(x − ct)} , (4.6)

assuming a temporal stability formulation this time, i.e. k ∈ R and c = cr + ici ∈ C, where
cr denotes the wave speed, and kci is the temporal growth rate.

We start with the full governing equations (4.1a,b). Considering these in the limit of
fully developed flow with h = h0 yields the liquid primary flow

uL0 = 1
2

ReL

{
Πρ ∂xpG0 − sin(φ)

Fr2

}
(y2 − 2yh0)+ ΠμΠu

ΠL
TG0y, (4.7a)

∂ypL0 = −cos(φ)
Fr2 . (4.7b)

Next, we introduce the liquid stream function Φ,

uL = ∂yΦ, vL = −∂xΦ, (4.8a,b)

which we perturb around the primary flow:

Φ = Φ0 + Φ̌ = Φ0 + φ( y) exp {ik(x − ct)} . (4.9)

Substituting (4.8a,b) and (4.9) into (4.1a,b), linearizing with respect to Φ̌, subtracting
the primary flow, and applying standard manipulations, we obtain the liquid-side
Orr–Sommerfeld equation

φiv − 2k2φ′′ + k4φ = ik ReL

{
(c − uL0)

(
k2φ − φ′′

)
− φu′′

L0

}
, (4.10a)

the boundary conditions at y = 0

φ′′ = φ = 0, (4.10b)
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and the inter-phase coupling conditions at y = h0,

φu′′
L0 + c̃

{
φ′′ + k2φ

}
= ΠμΠuc̃T̂G, (4.10c)

− 1
ReL

{
2k2φu′

L0 + c̃
[
3k2φ′ − φ′′′

]}
− ikc̃

{−c̃φ′ − φuL0
}

+ ikφp′
L0 = ik

ΠρΠ
2
u

ReG
c̃P̂G + ik3 Weφ, (4.10d)

where primes denote differentiation with respect to y, and we have introduced c̃ = c −
uL0|y=h0 . The nonlinearity involving c̃ in (4.10d) can be eliminated via (4.10c). Further,
T̂G and P̂G are rescaled versions of the amplitudes in (4.5):

T̂G = −ĥ
T̂G

d̂
, P̂G = ĥ

P̂G

d̂
, (4.11a,b)

where d̂ is an arbitrary deflection amplitude used in the solution of the gas-side problem
(4.3), and ĥ is linked directly to φ via the kinematic condition (3.1f ),

ĥ = φ|y=h0

c̃
. (4.12)

The rescaling in (4.11a,b) allows us to solve the gas- and liquid-side problems sequentially.
We solve the two-phase BVP comprising (4.3) and (4.10) by expanding the stream

function amplitudes φ and ψ in terms of Chebyshev polynomials (Boomkamp et al. 1997;
Barmak et al. 2016b):

φ(ζ ) = cL0 +
Np∑
j=1

clj Tj(ζ ), ψ(ζ ) = cG0 +
Np∑
j=1

cgj Tj(ζ ), (4.13a,b)

where Tj are jth-degree Chebyshev polynomials of the first kind, defined on the interval
ζ ∈ [−1, 1], with

ζ = 2
y
h0

− 1 for 0 ≤ y ≤ h0, (4.14)

ζ = 1 − 2
η

d0
for 0 ≤ η ≤ d0. (4.15)

Thus there are 2(Np + 1) unknown coefficients ckj, which are fixed by the eight
conditions in (4.10b), (4.10c), (4.10d) and (4.3d), and 2(Np + 1)− 8 additional constraints
obtained by evaluating the ordinary differential equations (4.10a) and (4.3c) at the inner
collocation points ζ2, . . . , ζNp−2, defined according to

ζi = cos
[

iπ
Np

]
for all i ∈ [0,Np]. (4.16)

Instead of solving for the coefficients ckj, we solve directly for the 2(Np + 2) unknowns
φ(ζi) and ψ(ζi), arranged into the solution vectors

φ = [
φ(ζ0), . . . , φ(ζNp)

]T
, ψ = [

ψ(ζ0), . . . , ψ(ζNp)
]T
. (4.17a,b)
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Figure 6. Temporal stability predictions from the OS-OS (solid curves) and WRIBL-OS (open symbols)
approaches. Parameters similar to those in figure 5(a): Ka = 3174, H� = 19 mm, φ = 5◦, ReL = 32.7. Circles
indicate passive-gas limit (Πρ = Πμ = 0 in (3.41)); pentagons indicate ReG = −4123; squares indicate
ReG = −6173; diamonds indicate ReG = −8220. (a) Growth rate; (b) wave speed.

Then, by making use of the Chebyshev differentiation matrix D (Trefethen 2000),[
φ(i)(ζ0), . . . , φ

(i)(ζNp)
]T = Di [φ(ζ0), . . . , φ(ζNp)

]T
, (4.18)[

ψ(i)(ζ0), . . . , ψ
(i)(ζNp)

]T = Di [ψ(ζ0), . . . , ψ(ζNp)
]T
, (4.19)

where i = 1, 2, 3, 4, and (i) indicates the order of differentiation with respect to ζ , (4.10)
is cast into a generalized eigenvalue problem in matrix form,

Aφ = c̃Bφ, (4.20)

and (4.3) is cast into a linear system of equations,

Cψ = b, (4.21)

introducing the coefficient matrices A, B and C, and the inhomogeneity b. With the help
of MATLAB (2015), we first solve (4.21) for ψ by numerical inversion via the / operator
and then (4.20) for the eigenvalues c̃ and eigenvectors φ via the eig function.

Using this approach, the full set of eigenmodes is computed at once. Thus short-wave
instability modes, i.e. modes with ci /= 0 at k = 0, can be obtained readily. Once a mode
has been identified at a given wavenumber k, it can be tracked by advancing k, using the
function eigs, which searches for eigenvalues in the vicinity of a previous solution.

In Appendix A, we validate our OS-OS approach, (4.20) and (4.21), versus Vellingiri
et al. (2015) and Schmidt et al. (2016). Figure 6 confronts temporal linear stability
predictions from this approach (solid lines) with predictions from our WRIBL-OS
approach (symbols), for parameters similar those in figure 5(a). Agreement is good up to
|ReG| ∼ 8000. Thus our liquid-side WRIBL description suffices to predict the gas effect
on the long-wave Kapitza instability.

5. Model validation

To evaluate the linear and nonlinear predictions of our WRIBL-LW model, we confront
these with stability predictions from Vellingiri et al. (2015) and Samanta (2014), our
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own stability calculations using the WRIBL-OS approach, and experiments from Kofman
(2014).

By design, our WRIBL-LW model predicts exactly the neutral linear stability bound of
the long-wave Kapitza instability. We consider a temporal linear stability formulation and
expand the complex wave speed c = ω/k in terms of k ∈ R around the limit k = 0:

c = c0 + kc1 + O(k2). (5.1)

Inserting this into (3.41), and truncating order by order, we obtain c0 and c1:

c0 = 2 uL0|h0 +ΠμΠuTG0

{
−h0 + h2

0
d0

}
+ ReLΠρΠ

2
u

h3
0

d0

{
−∂xPG0

ReG
+Π−4

u
sin(φ)

Fr2

}
,

(5.2a)

c1 = iR, (5.2b)

where R∈R is written out in Appendix B, and the primary flow yields

uL0|h0 = 1
2

ReL

Fr2 sin(φ)h2
0 +ΠμΠuTG0h0 − 1

2
ΠρΠ

2
u

ReL

ReG
∂xPG0h2

0. (5.3)

Thus the asymptotic wave speed is given by c0, the (temporal) growth rate by kc1, and the
neutral stability bound by R = 0.

In the zero-confinement limit h0/d0 → 0, c0 (5.2a) and c1 (5.2b) should collapse with
the expressions in (B4b) and (B7b) of Vellingiri et al. (2015). Applying this limit to (5.1)
and rescaling appropriately, we obtain

c = c0 + kc1 + O(k2) = 2 + TG0 + ik

{
4
15

ReL
(
2 + TG0

) − 2
3

cot(φ)
[
1 −Πρ

]
+ 1

3
Πρ

ReL

Π2
μ

C1
d0

+ 1
2
Πμ

1
d0
∂ηU1

∣∣∣
d0

}
+ O(k2), (5.4)

where the underline refers to the scaling of Vellingiri et al. (2015), i.e. L = h�0 and
U = UG = 1

2ν
−1
L g sin(φ) h�20 . Our result matches that in Vellingiri et al. (2015), except

for three additional terms: the gas-density correction in the cot(φ) term, and the last two
terms within the accolades, which stem from the linear perturbations of PG and TG. In the
laminar limit,

C1 = 6
35

d2
0T2

G0, ∂ηU1

∣∣∣
d0

= 4
105

Πρ ReL

Π3
μ

d3
0T2

G0, (5.5a,b)

thus these terms do not necessarily vanish for 1/d0 → 0. Thus the gas pressure PG can
affect stability even under weak confinement, in line with observations in figures 5(c)
and 5(d).

Figure 7 compares spatial linear stability predictions of our WRIBL-LW model
(symbols) with calculations using the WRIBL-OS approach (solid lines), for parameters
based on figure 3 in Samanta (2014), which are inspired by the experiments of Liu &
Gollub (1994) in a water–glycerol film. We fix the channel height at H� = 15 mm, and
apply a co-current turbulent gas flow with ReG = 2000. Figure 7(a) represents dispersion
curves of the linear wave speed cr = kr/ω around the long-wave limit. We see that the two
data sets converge as k → 0. Further, our WRIBL model captures accurately the long-wave
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Figure 7. Spatial linear stability predictions obtained from WRIBL-LW (symbols) and WRIBL-OS (lines)
calculations. Inclined falling liquid film sheared by a co-current gas based on parameters in Samanta
(2014): Ka = 963 (glycerol–water and air II in table 1), φ = 4◦, H� = 15 mm, ReG = 2000. S/U indicate
stable/unstable regions. Circles indicate full formulation; squares indicateΠρ = 0 in (3.41); diamonds indicate
TG = TG0, Πρ = 0; crosses indicate Πμ = Πρ = 0. (a) Wave speed cr = ω/kr around the long-wave limit
kr → 0; (b) neutral stability bound, ki = 0.

instability threshold, as evidenced by the neutral stability bounds plotted in figure 7(b).
Comparing the circles (full model) with the diamonds (passive-gas limit Πρ = Πμ = 0),
we see that the gas effect is destabilizing, and this is maintained in the limit Πρ = 0
(squares). By contrast, assuming TG = const and Πρ = 0 (crosses), according to the
model of Samanta (2014), results in a qualitatively incorrect prediction of gas-induced
stabilization.

We now turn to the experimental conditions of Kofman (2014), who considered a falling
liquid film sheared by a turbulent counter-current gas flow. Figure 8 confronts linear
spatial growth rate dispersion curves from our WRIBL-LW model (figures 8a,c) with
calculations based on our WRIBL-OS approach (figures 8b,d). Comparing figures 8(a)
and 8(b), we see that our WRIBL-LW model predicts the gas effect on the maximum
growth rate {−ki}max and on the associated angular frequency {ω}max reasonably well. And
the AI limit is predicted with precision 10 %, i.e. ReAI

G = −9157 from WRIBL-LW versus
ReAI

G = −8220 from WRIBL-OS. Figures 8(c) and 8(d) represent corresponding stability
calculations in the limit Πρ = 0. Versus figures 8(a) and 8(c), we observe a qualitative
change in the gas effect from destabilizing to stabilizing (similar to figure 5), and our
WRIBL-LW model captures this feature accurately. In contrast to Tseluiko & Kalliadasis
(2011), our WRIBL-LW model can thus be applied to confinement levels, where the gas
pressure plays a role.

On the downside, our WRIBL-LW model cannot reproduce the strong gas-induced
reduction of the cut-off frequency predicted by the WRIBL-OS calculation in figure 8(b).
This is due to truncating our asymptotic gas-side description (§ 4.2) at O(ε1). However, it
is almost inconsequential for the prediction of nonlinear Kapitza waves. Figure 9 compares
film thickness time traces at a fixed streamwise position x, as obtained from open-domain
(dashed black) and TWS (solid green) computations with our WRIBL-LW model, with
experimental data (red open circles) from Kofman (2014). In these experiments, the
counter-current gas flow rate was increased up to |ReG| ∼ 7000. Our WRIBL-LW model
accurately captures the gas effect on both the wave height and the number of precursory
capillary ripples. The wavenumber k of precursory ripples is several tenfold greater than
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Figure 8. Spatial linear stability predictions from (a,c) WRIBL-LW and (b,d) WRIBL-OS approaches.
Parameters according to experiments of Kofman (2014): Ka = 3174 (water and air I in table 1), H� =
19 mm, φ = 5◦, ReL = 32.7. Open circles indicate passive-gas limit, Πρ = Πμ = 0 in (3.41). Values of
|ReG| increase in the order diamonds, squares, crosses/asterisks, pentagons, pluses. (a,b) Full model; (c,d)
Πρ = 0 in (3.41). Here: (a) ReG = [−4123,−6713,−9157]; (b) ReG = [−4123,−6713,−8220]; (c) ReG =
[−6713,−9100,−11 000,−15 000]; (d) ReG = [−6713,−9100,−11 000,−15 000]. Red dot-dashed curves
track growth rate maximum {−ki}max. We have rescaled ω with Tν = 2.207 × 10−3 s (see (3.34a–c)).

the cut-off wavenumber kc of the Kapitza instability (Dietze 2016; Zhou & Prosperetti
2020). As a result, over-prediction of the linear cut-off (figure 8a) does not translate to a
significant nonlinear error (figure 9).

6. Results

Figure 10 shows top-view snapshots of one of our experiments, where we have successively
increased the counter-current gas flow rate from the second snapshot onwards. Guided
by this experiment, using the different linear stability calculations as well as nonlinear
computations with our WRIBL-LW model, we wish to understand how the waviness of the
falling liquid film is altered under the effect of the gas flow. In particular, we are interested
in the transition from a regular train of long waves (first snapshot), via an increasingly
disordered wave pattern (e.g. tenth snapshot), until the occurrence of upward-travelling
short ripples, which lead to a breakdown of our experiment (last snapshot).

6.1. Gas effect on Kapitza waves
This subsection is concerned with the linear (§ 6.1.1) and nonlinear (§§ 6.1.2 and 6.1.3)
gas effects on the long-wave Kapitza instability. Waves resulting from this instability are

971 A37-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.670


Gas-sheared falling liquid films beyond absolute instability

(a)

0

0.2
0.4
0.6
0.8
1.0
1.2

(b)

0

0.2
0.4
0.6
0.8
1.0
1.2

(c)

0

0.2
0.4
0.6
0.8
1.0
1.2

1 2

f0t
3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

h 
 (

m
m

)
h 

 (
m

m
)

h 
 (

m
m

)

Figure 9. Nonlinear computations (solid and dashed lines) with our WRIBL-LW model (3.6) versus
experiments (symbols) of Kofman (2014): Ka = 3174 (water and air I in table 1), H� = 19 mm, φ = 5◦,
ReL = 32.7, f �0 = 2.8 Hz (ω�0Tν = 0.039). Film thickness time traces at fixed streamwise position. Solid green
lines indicate TWS from numerical continuation; dashed black lines indicate open-domain computations
with coherent inlet forcing (ε1 = 0.01, ε2 = 0). (a) Quiescent gas (Πρ = Πμ = 0 in computations);
(b) ReG = −4123; (c) ReG = −6713.

dominant at weaker counter-current gas flow rates in figure 10, i.e. |ReG| � 6200 (first ten
snapshots), and the linear instability becomes absolute in this range, as will be shown in
figure 12.

6.1.1. Linear gas effect
We start by discussing the gas effect on the threshold of the Kapitza instability.
Figure 11(a) represents the neutral stability bound, c1 = 0 according to (5.2b), in terms
of ReL and ReG, for two inclination angles, i.e. φ = 5◦ (black curves with circles), which
corresponds to our experiment in figure 10, and φ = 1◦ (red curves with diamonds).
For each φ, we have plotted two curves, one obtained from our WRIBL-LW model for
turbulent gas flow conditions (filled symbols), and another obtained from the fully coupled
governing equations (Tilley et al. 1994) for laminar gas flow conditions (open symbols).
Only the curve segments within the appropriate ReG range are represented with solid lines,
and the laminar/turbulent transition is highlighted via the shaded region.

For φ = 5◦ (black curves with circles), the linear effect of the counter-current gas flow
is destabilizing. Further, when the counter-current gas flow rate is sufficiently large, the
falling liquid film becomes unconditionally unstable (limit point marked by filled circle),
i.e. for all ReL, in agreement with previous works (Trifonov 2017; Kushnir et al. 2021).
We find that turbulence in the gas greatly delays this limit versus a laminar prediction
(compare filled and open circles).

By contrast, for φ = 1◦ (red curves with diamonds), we find a change in nature of the
gas effect, as a result of gas-side turbulence. While the gas effect remains destabilizing in
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Figure 10. Top view snapshots from one of our experiments. Falling water film sheared by a counter-current
air flow and subject to coherent inlet forcing: H� = 13 mm, φ = 5◦, Reas

L = 44.7, ReL = 43.1, f �0 = 3.0 Hz.
The first snapshot indicates aerostatic configuration; the second snapshot and onwards indicate counter-current
turbulent gas flow with increasing |ReG|. Absolute instability limit from linear stability calculation in figure 12:
ReAI

G = −5182.

the laminar limit (red curve with open diamond), it switches to stabilizing when turbulence
is accounted for (red curve with filled diamond). This is illustrated further in figure 11(b),
which represents dispersion curves of the linear spatial growth rate for increasing |ReG| at
ReL = 1.5 (5/6) cot(φ). Thus turbulence allows us to achieve a gas-induced suppression
of the Kapitza instability for the current confinement, H� ∼ 10 mm, which is much weaker
than the confinement studied in Lavalle et al. (2019), namely H� ∼ 1 mm, where the gas
flow was laminar. And the counter-current gas flow can render the falling liquid film
unconditionally stable to long-wave disturbances at the limit point marked by a filled

971 A37-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.670


Gas-sheared falling liquid films beyond absolute instability

US

SSU

0

0.5

Re
L/

(5
/6

 c
o
t 
φ

)

1.0

1.5

2.0

2.5

–4000 –3000 –2000 –1000 0

U

ReG

–ki

–0.01

0

0.01

0.02

10–5 10–4 10–3 10–2 10–1

ω	Tv

(b)(a)

Figure 11. Gas effect on threshold of long-wave Kapitza instability. Linear stability predictions for a falling
liquid film sheared by a counter-current gas flow: Ka = 3174 (water and air I in table 1), H� = 13 mm.
(a) Neutral stability bounds. Black curves with circles indicate φ = 5◦; red curves with diamonds indicate
φ = 1◦. Curves with filled symbols indicate WRIBL-LW/WRIBL-OS prediction for turbulent gas flow; curves
with open symbols indicate fully coupled prediction for laminar gas flow (Tilley et al. 1994); dot-dashed
magenta curve indicates short-wave instability mode (§ 6.2) at φ = 1◦; shaded zone indicates turbulence
transition, ReG ∈ [−1800,−1300]. S/U denote stable/unstable regions. (b) Spatial growth rate dispersion
curves from WRIBL-OS: φ = 1◦, ReL = 1.5 (5/6) cot(φ). Pentagons indicateΠρ = Πμ = 0 in (3.41); squares
to pluses indicate ReG = −1000,−2000,−3000,−3600.

diamond in figure 11(a). However, as we will discover in § 6.2, the film can become
unstable to a short-wave instability mode at small φ, and the threshold for this mode
(dot-dashed curve in figure 11a) lies below the neutral stability bound of the Kapitza
instability for the parameters considered here. Thus the falling liquid film cannot be fully
stabilized in this case.

Gas-induced stabilization of the Kapitza mode is limited to small inclination angles,
and plays no role in our current experiments, where the effect of the counter-current gas
flow on the falling liquid film is destabilizing. In this case, it is interesting to determine
the AI limit and to confront it with the ReG range of our experiments. Figure 12 represents
WRIBL-OS spatial linear stability predictions for the experimental parameters in figure 10.
Upon increasing the counter-current gas flow rate (from circles to crosses), the −ki versus
ω curve in figure 12(a) and the cr versus ω curve in figure 12(b) develop a cusp at
ReG = −5114. This cusp corresponds to a pinch point in the −ki versus kr curve (inset
of figure 12a), which indicates the AI limit (Kupfer, Bers & Ram 1987). Thus the falling
liquid film in figure 10 is absolutely unstable from the fifth snapshot onwards, i.e. well
before the breakdown of our experiment due to upward-travelling ripples (ReG ∼ −6800).
Consequently, AI does not seem to play a role in the flooding onset. On the contrary,
well-defined downward-travelling Kapitza waves persist far beyond the AI limit (up to the
tenth snapshot in figure 10), and we will discuss the nonlinear dynamics of these waves in
the following subsections.

6.1.2. Nonlinear gas effect: TWS
We wish to know whether the nonlinear response of the wavy falling liquid film is
in line with the linear gas effect discussed in the previous subsubsection. Figure 13
compares the wave height (figures 13a,c) and wave speed (figures 13b,d) of nonlinear TWS
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Figure 12. Transition to AI predicted by spatial linear stability analysis with our WRIBL-OS approach.
Parameters according to experiment in figure 10: Ka = 3174 (water and air I in table 1), H� = 13 mm,
φ = 5◦, ReL = 43.1. Circles indicate Πρ = Πμ = 0 in (3.41); diamonds indicate ReG = −4000; crosses
indicate ReG = −5181. (a) Growth rate −ki versus ω. Inset shows −ki versus kr. Dot-dashed line indicates
ReG = −5180; dot-dot-dashed line indicates ReG = ReAI

G = −5182. (b) Wave speed cr = ω/kr. Vertical dashed
line indicates forcing frequency f �0 = 3 Hz from figure 10. We have rescaled ω with Tν = 2.207 × 10−3 s (see
(3.34a–c)).

obtained from our WRIBL-LW model at fixed frequency f (solid curves), with experiments
(symbols) from our current work (figures 13a,b), where H� = 13 mm, and from Kofman
et al. (2017) (figures 13c,d), where H� = 19 mm. The experimental wave height data in
figure 13(a) were selected from film thickness time trace measurements performed over
the entire channel length, which will be discussed in § 6.1.3 (see figure 14). The wave
speed data in figure 13(b) were obtained via video image processing from our experiment
in figure 10, where the ReL value is slightly different to that in figure 13(a).

Different solid curves in figure 13 correspond to different branches of TWS, which are
associated with different numbers of precursory capillary ripples (CR) and distinguished
by different filled symbols. For the experimental data points, the number of CR is
distinguished via corresponding open symbols. Error bars in figure 13(a) represent the
standard deviation of experimental film thickness time traces, which increases with
increasing |ReG| as a result of wave coalescence events (§ 6.1.3). Beyond a certain |ReG|,
coalescence destroys entirely the coherence of the wave train, and comparison with TWS
is futile.

Overall, our WRIBL-LW predictions in figures 13(a), 13(b), 13(c) and 13(d) are in
reasonable agreement with the experimental data. Both the gas effect on the wave height
and the wave speed are captured quantitatively, when accounting for the number of CR.

Based on these predictions, we may make the following observations. Downward-
travelling TWS exist far beyond the AI limit, marked by open (WRIBL-LW calculation)
and filled (WRIBL-OS calculation) red arrows in figures 13(a) and 13(c). Below the AI
limit, the wave height hmax increases with increasing |ReG|, while the wave speed mainly
decreases. And we have checked that the relative wave amplitude hmax/h̄ (not shown here)
also increases. Thus the nonlinear gas effect is destabilizing, in line with the linear effect
discussed in § 6.1.1.

For the 0-CR, 1-CR and 2-CR branches, the hmax versus |ReG| trend in figures 13(a)
and 13(c) changes beyond the AI limit, i.e. hmax now decreases with |ReG| (except for
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Figure 13. Gas effect on nonlinear TWS obtained with our WRIBL-LW model (curves) versus experiments
(empty symbols). Inclined falling liquid film sheared by counter-current turbulent gas flow: Ka = 3174 (water
and air I in table 1), φ = 5◦. Filled/open symbols distinguish number of capillary ripples (CR): diamonds
indicate 0-CR; squares indicate 1-CR; triangles indicate 2-CR; circles indicate3-CR; dashed line indicates
>3-CR. Solid curves indicate f � = f �0 ; dot-dashed curves indicate f � = f �max. Crosses indicate AI limit; asterisks
indicate nonlinear limit points. Open/filled red arrows mark AI limits obtained from WRIBL-LW/WRIBL-OS.
(a,c) Wave height; (b,d) wave speed scaled with û�Nu = (3/2)q�L0/h

�
Nu, where h�Nu = (3q�L0νL/(g sin(φ)))1/3.

(a,b) Versus our experiments: H� = 13 mm, f �0 = 3.0 Hz, with (a) ReL = 44.2 ± 0.3, (b) ReL = 43.1. Filled
arrow indicates ReAI

G = −5194; empty arrow indicates ReAI
G = −5366. (c,d) Versus experiments of Kofman

et al. (2017): H� = 19 mm, ReL = 45, f �0 = 3.05 Hz. Filled arrow indicates ReAI
G = −8490; empty arrow

indicates ReAI
G = −9633.

small non-monotonic regions). For the 3-CR branches (solid curves with filled circles),
the trend beyond the AI limit is more complicated, i.e. hmax first decreases with |ReG|,
and then increases, beyond |ReG| = 8000 in figure 13(a), and beyond |ReG| = 16 000 in
figure 13(c). This increase is associated with the formation of an increasing number of
additional CR (dashed curve segments), and a strong increase of the wave speed c is
observed in figures 13(b) and 13(d), whereas c mostly decreases with |ReG| for the other
solution branches (solid curves with filled diamonds, squares and triangles).

Focusing now on the experimental data points (open symbols in figures 13a,b), we
observe that the number of CR decreases when increasing |ReG| (from open circles to open
diamonds). According to the computations with our WRIBL-LW model (solid curves), this
corresponds to a switching of TWS branches in the direction of lowest wave speed. This is
surprising, because one would expect the fastest TWS to persist in an experiment at fixed
ReG. Additional effects must thus play a role in the wave selection.
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Figure 14. Gas effect on streamwise evolution of the wavy liquid film. Compilation of our
experiments: water/air, H� = 13 mm, φ = 5◦, Reas

L = 46, ReL = 44.2 ± 0.3, f �0 = 3 Hz, ReAI
G = −5194.

(a) Ensemble-averaged wave height h�max. Error bars represent standard deviation, and check marks mark
the start of the coalescence-dominated region. Filled symbols mark data points used in figure 13(a). Circles
indicate aerostatic configuration; diamonds indicate ReG = −3040; squares indicate ReG = −4190; pentagons
indicate ReG = −5200; triangles indicate ReG = −5750. (b) Frequency spectra of the film height h�, with
ReG = −5750, where |ĥ�i | denotes the amplitude of the Fourier mode with f �i . Crosses mark primary and
secondary peaks. Left, x� = 41.5 cm; middle, x� = 51.5 cm; right, x� = 58.5 cm.

In our experiment, saturated waves of fixed frequency f �0 are formed before entering into
contact with the counter-current gas flow. In figures 13(a) and 13(b), we have compared
the gas effect on such waves, i.e. TWS at f � = f �0 = 3 Hz (solid curves), with TWS at the
linearly most-amplified frequency, i.e. f � = f �max (dot-dashed blue curves). Except for the
3-CR branch (dot-dashed curve with asterisk), both types of TWS behave quite similarly
until the AI limit (where the f �max branches break down). This is because f �max does not vary
much with ReG, thus the forcing frequency f �0 chosen in the experiment remains close to
f �max. By contrast, in the case of the 3-CR branch, the most-amplified TWS are lost due to a
nonlinear limit point (blue asterisk), before the gas flow reaches the fully turbulent regime
(|ReG| < 1800).

6.1.3. Nonlinear gas effect: spatio-temporal wave dynamics
In a spatially evolving falling liquid film, the counter-current gas flow not only acts on
nonlinear Kapitza waves individually, but can trigger interactions between consecutive
waves. Thus we study the gas effect on the spatio-temporal dynamics of such waves.
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Figure 15. Wave coalescence event. Top-view snapshots from our experiment in figure 10 (parameters similar
to pentagons in figure 14a): ReL = 43.1, ReG = −5200. Time increases from top left to bottom right with
increment 0.48 s. Solid red and dashed yellow lines highlight two consecutive wave fronts.

Figure 14(a) summarizes spatial profiles of film thickness data obtained from our
experiments at Reas

L = 46, ReL = 44.2 ± 0.7 and f �0 = 3 Hz, under increasing |ReG|.
Symbols represent the ensemble average of the wave height h�max (over at least 100 waves)
at a given streamwise position x�, and error bars represent the corresponding standard
deviation. Filled symbols identify the TWS data reported in figures 13(a) and 13(b).

In the aerostatic configuration (open circles in figure 14a), the error bars are very short,
implying that waves are highly regular in time. However, h�max varies in space as the result
of the well-known secondary instability discovered by Liu & Gollub (1993).

In the counter-current configuration (from diamonds to triangles in figure 14a), we
observe that h�max in the lower half of the channel (x� � 50 cm) increases significantly
when |ReG| is increased. On the one hand, this is due to the gas-induced amplification
of TWS discussed in § 6.1.2. On the other hand, the standard deviation of the h�max data
increases significantly as |ReG| is increased. This is the signature of wave coalescence
events that can suddenly increase the wave height. Figure 15 represents a sequence of
snapshots illustrating such an event for ReG = −5200 (pentagons in figure 14a). The solid
red and dashed yellow lines highlight the fronts of two consecutive waves that eventually
coalesce.

In figure 14(a), we have marked the streamwise position beyond which such coalescence
events become prevalent via check marks on the corresponding error bars. This position,
which we will designate as x�c, is determined from the spatial evolution of the frequency
spectrum of h�, as illustrated in figure 14(b) for ReG = −5750 (triangles in figure 14a).
We see that the spectrum evolves from that of a regular wave train, with clear peaks at the
forcing frequency f �0 and its harmonics (left-hand plot), to a form where the dominant
frequency f �max is lower than the forcing frequency (right-hand plot). The streamwise
locations of the transition, i.e. where f �max becomes smaller than f �0 (middle plot), is defined
as x�c.

Judging by the standard deviation of the h�max profiles in figure 14(a), wave coalescence
becomes more prominent as |ReG| is increased. We have seen in figure 13(b) that the
counter-current gas flow reduces the wave speed of TWS. At fixed wave frequency
f �, this leads to a reduction of the wave separation distance, thus favouring wave
interaction and coalescence. Figure 16 provides a direct comparison of wave trains
for two of the experiments from figure 14(a). Figure 16(a) confronts film thickness
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Figure 16. Wave trains for two data sets from figure 14(a). (a) Film thickness time traces at x� = 82.5 cm. Solid
line indicates aerostatic configuration (circles in figure 14a), Reas

L = 46.0; dashed line indicates counter-current
configuration (triangles in figure 14a), ReL = 44.2, ReG = −5750. (b,c) Corresponding frequency spectra,
where |ĥ�i | is the amplitude of the Fourier mode with f �i . (b) Aerostatic configuration; open circles mark peaks
at f �0 and its harmonics. (c) Counter-current configuration; open circle marks global peak at most-amplified
frequency f �max/f

�
0 = 0.49.

time traces measured at x� = 82.5 cm for the aerostatic configuration (solid black
curve) and for the counter-current configuration at ReG = −5750 (dashed red curve).
Whereas the former represents a regular train of waves responding well to the forcing
frequency, the latter displays clear signs of coalescence-induced wave coarsening, leading
to large-amplitude tsunami waves with a wave height much greater than the TWS in
figure 13(a). Figures 16(b) and 16(c) represent corresponding frequency spectra for the
two data sets. Whereas the forcing frequency f �0 = 3 Hz is dominant in the spectrum for
the aerostatic configuration (figure 16b), a lower frequency emerges for the counter-current
configuration, where periodicity is lost entirely (figure 16c).

In figure 17, we have plotted the starting location x�c of the coalescence-dominated region
versus ReG, based on all of our experiments for two values of ReL. The error bars on x�c
correspond to the increment with which the x-position was varied in the experimental runs
reported in figure 14(a). According to figure 17, coalescence is greatly precipitated by the
(turbulent) counter-current gas flow, and this effect is stronger, the lower the liquid flow
rate.

The nonlinear wave phenomena discussed in figures 14–17 do not seem to be disrupted
by AI, even though we have considered values of |ReG| quite far beyond the AI limit,
i.e. ReAI

G = −5194 at ReL = 44.2. This is favoured by the protected zone used in our
experiments, where Kapitza waves are allowed to complete their linear and nonlinear
growth in a quiescent gas, and where the Kapitza instability remains convective. Only
after having attained a saturated nonlinear state do these waves come into contact with the
gas flow, and consequently, the AI is bypassed.
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Figure 17. Gas effect on the starting position x�c of the coalescence-dominated region. Compilation of our
experiments: water/air, H� = 13 mm, φ = 5◦, f �0 = 3 Hz. Circles indicate ReL = 32.5 ± 0.6; squares indicate
ReL = 44.3 ± 0.3; curves indicate polynomial fits to guide the eye.

Next, we employ open-domain computations with our WRIBL-LW model to study
the linear and nonlinear spatio-temporal evolution of Kapitza waves that feel the gas
effect from the start. In these computations, the turbulent counter-current gas flow is
applied over the entire domain length. Of course, our WRIBL-LW model can capture only
long-wave instabilities, such as the Kapitza instability, on which we focus in the current
subsection.

We start by studying the gas effect on the dynamics of naturally evolving Kapitza
waves, which are more relevant for industrial applications. Here, the liquid flow rate q
at the liquid inlet is subject to a noisy perturbation according to (3.46), with ε1 = 0, ε2 =
5 × 10−5. Figure 18 represents snapshots of our open-domain WRIBL-LW computations
for parameters according to three of the experiments in figure 14(a) (circles, squares and
triangles there). In figure 18(a) (aerostatic configuration) and figure 18(b) (ReG = −4190),
the AI limit ReAI

G = −5114 (obtained from the WRIBL-LW model) has not been reached,
and we observe the same phenomena as in our experiments from figure 14. In particular,
the counter-current gas flow exacerbates coalescence events, leading to large-amplitude
tsunami waves, which move very rapidly and absorb numerous smaller waves in their
path. This gas-assisted coarsening dynamics is illustrated in figure 19(a), representing
a spatio-temporal diagram for the computation in figure 18(b) (see also supplementary
movie 1 available at https://doi.org/10.1017/jfm.2023.670).

A very different dynamics unfolds when |ReG| is increased beyond the AI limit,
as shown in figures 18(c) and 19(b), which correspond to ReG = −5750 (see also
supplementary movie 2). Here, coalescence events are absent, and a highly regular
train of saturated-amplitude solitary waves develops. The height hmax of these waves is
significantly smaller than that of the tsunami waves in figure 18(b), thus limiting the
risk of flooding. At the same time, hmax is large enough that a significant wave-induced
intensification of heat and mass transport can be expected (Dietze 2019). Thus AI is not
necessarily dangerous in our configuration. On the contrary, the unbounded linear spatial
growth rate associated with AI represents an effective linear wave selection mechanism
that produces highly regular nonlinear surfaces waves of the absolute frequency f �AI =
3.35 Hz from ambient noise (where f �AI is obtained from a WRIBL-LW calculation based
on figure 12a). Thereby, nonlinear effects, which set in very close to the liquid inlet, allow
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Figure 18. Gas effect on spatial evolution of naturally-evolving Kapitza waves. Open-domain computations
using our WRIBL-LW model on a domain of length L� = 1.50 m. The gas flow is applied over the entire
domain length. Noisy inlet perturbation according to (3.46): ε1 = 0, ε2 = 5 × 10−5. Parameters according
to experiments in figure 14(a) (circles, squares and triangles there): Ka = 3174 (water and air I in table 1),
H� = 13 mm, φ = 5◦, ReL = 43.1. Plots for: (a)Πρ = Πμ = 0 in (3.6a); (b) ReG = −4190; (c) ReG = −5750.
The AI limits, obtained from WRIBL-LW and WRIBL-OS, are ReAI

G = −5347 and ReAI
G = −5182.

the Kapitza waves to travel downstream, notwithstanding the temporal nature of the linear
growth. As far as we know, such a dynamics has not been shown before, and we have
checked that it persists at ReG = −6500 (not shown here), i.e. far beyond the value of
|ReG| in figure 19(b).

By contrast, it is very hard to produce a regular wave train below the AI limit via
coherent inlet forcing. This is demonstrated in figure 20, which represents computations
similar to those in figure 18, except that we have additionally applied a harmonic
inlet perturbation at frequency f �0 = 3 Hz, using ε1 = 0.01 and ε2 = 5 × 10−5 in (3.46).
Although the applied coherent forcing produces a regular wave train in the aerostatic
configuration (figure 20a), coalescence events cannot be avoided for ReG = −4190
(figure 20b). We have not shown the corresponding computation beyond the AI limit
(see figure 21(b) for this), because it produces almost exactly the same wave train as in
figure 18(c).

Figure 21 summarizes the wave characteristics of our different WRIBL-LW
open-domain computations from figures 18 and 20 by plotting the maximum wave height
hmax versus the streamwise position x. Error bars represent the range of temporal variation
of hmax at a given position. We see that AI-induced wave selection allows us to (1) reduce
the maximum wave height in the lower portion of the domain by about 40 %, and (2)
suppress its variance over the entire domain length. For completeness, the diamonds in
figure 21(b) report results from our computation with additional coherent inlet forcing for
the parameters in figure 18(c), i.e. beyond the AI limit, evidencing that the wave train is
not altered meaningfully by this additional forcing.
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Figure 19. Spatio-temporal diagrams of the normalized film height h/hmax for the computations in
figures 18(b) and 18(c): (a) ReG = −4190, (b) ReG = −5750. The AI frequency is f �AI = 3.35 Hz, as obtained
from linear stability analysis based on our WRIBL-LW model.
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Figure 20. Computations according to figures 18(a) and 18(b), but with additional coherent inlet forcing
(3.46): f �0 = 3 Hz, ε1 = 0.01, ε2 = 5 × 10−5. Plots for: (a) Πρ = Πμ = 0 in (3.6a); (b) ReG = −4190.

6.1.4. Standing ripples in a vertically falling liquid film
Our nonlinear spatio-temporal WRIBL-LW computations in § 6.1.3 did not reveal any
evidence of the gas-induced oscillatory secondary instability (OI) discovered by Lavalle
et al. (2020) for the configuration of a vertically falling liquid film sheared by a
superconfined counter-current laminar gas flow. In a spatially evolving regular train of
surface waves formed by coherent inlet forcing at frequency f0, this instability leads to a
periodic spatial modulation of the wave height, which entails an intensification of mixing.

To check whether this dynamics can be recovered in our current weak-confinement
setting with a turbulent counter-current gas flow, we perform open-domain WRIBL-LW
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Figure 21. Summary of wave data from our computations in figures 18 and 20. Maximum wave height hmax
versus the streamwise location. Circles indicate Πρ = Πμ = 0; crosses indicate ReG = −4190; diamonds
indicate ReG = −5750. Naturally evolving versus forced waves. (a) Noisy inlet perturbation: ε1 = 0,
ε2 = 5 × 10−5 in (3.46). (b) Additional coherent inlet forcing: f �0 = 3.0 Hz, ε1 = 0.01, ε2 = 5 × 10−5 in
(3.46).

computations for the same liquid-side parameters as in figure 3(a) of Lavalle et al.
(2020), i.e. Ka = 509.5, φ = 90◦, ReL = 15 and f �0 = 16 Hz. Further, we set ε1 = 0.01 and
ε2 = 0 in (3.46), and we apply the counter-current gas flow over the entire domain length
L� = 0.84 m. In terms of confinement, we set H� = 10 mm, in contrast to H� = 1 mm used
by Lavalle et al. (2020). The forcing frequency f �0 = 16 Hz corresponds to the linearly
most-amplified value in the limit (Πρ = Πμ = 0), which is quite different from the AI
frequency f �AI = 26.8 Hz, as obtained from our WRIBL-LW model. We search for signs of
the OI by increasing |ReG|.

Figure 22 reports results of computations for two values of |ReG|. The first computation
(figure 22a) corresponds exactly to the AI limit ReG = ReAI

G = −6500 and represents the
same features as other computations at lower |ReG| (not shown here): an unaltered regular
wave train of frequency f = f0 persists over the entire domain length.

In the second computation (figure 22b), where the AI limit has been surpassed (ReG =
−7500), a more interesting dynamics unfolds. Here, a quite regular wave train of frequency
f = fAI emerges near the liquid inlet, as a result of linear wave selection at the AI
frequency. However, the coherent inlet forcing at frequency f0 competes with this wave
selection, leading to a slight perturbation of the wave train, which grows spatially and
eventually disrupts the wave train. As a result, large-amplitude tsunami waves form due
to coalescence events. These waves travel extremely fast and absorb all smaller waves
travelling in front.

This gas-induced coarsening dynamics, which is well illustrated by the spatio-temporal
diagram in figure 23(a), leads to long portions of thin residual film in between two
consecutive tsunami waves. There, the liquid flow rate qL(x, t) is very small (see the qL
profile in figure 23c), thus |ReG| is even further beyond the AI limit than for the primary
flow qL0. This leads to the formation of small-amplitude ripples on the residual film. We
call these standing ripples because they are almost fixed in space, as evidenced by several
features in figures 22 and 23.

First, the dot-dashed red profile segment in figure 22(b), which corresponds to a slightly
later time than the main profile, shows no significant translation of the ripples. Second, the
wave fronts of the standing ripples in the spatio-temporal plot in figure 23(a) are almost
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Figure 22. Vertically falling liquid film sheared by a turbulent counter-current gas flow. Liquid-side conditions
according to figure 3(a) in Lavalle et al. (2020): Ka = 509.46 (DMSO–water and air II in table 1), ReL = 15,
f �0 = 16 Hz, ReAI

G = −6500. WRIBL computation on an open domain of length L� = 0.843 m. Snapshots
of the film height profile h(x) at f0t = 61.4. (a) At AI limit: ReG = ReAI

G = −6500. (b) Beyond AI limit:
ReG = −7500. Dot-dashed red line indicates f0t = 61.6; green dashed line indicates Lagrangian path of a wave
crest.
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Figure 23. Standing ripples beyond the AI limit ReAI
G = −6500. Computation from figure 22(b):

ReG = −7500. (a) Spatio-temporal diagram of the normalized film height h/hmax. (b) Film height time trace
h(t) at x/L = 0.6. (c) Spatial profile of the liquid flow rate qL(x) at f0t = 61.4.
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horizontal. Third, the film height time trace in figure 23(b) does not show any signature of
the ripples in between two main wave humps.

The standing ripples are felt like a surface roughness by the tsunami waves propagating
over the residual film. This leads to a spatial modulation of the film height hmax, similar to
falling liquid films flowing on a corrugated substrate (Dietze 2019), where they have been
shown to intensify mixing and inter-phase mass transfer. This modulation is evidenced by
the dashed green curve in figure 22(b), which represents the Lagrangian path of the crest
of one of the tsunami waves as it propagates through the domain. The absolute nature of
the standing ripples and their interaction with the large tsunami waves is illustrated further
in supplementary movie 3.

In conclusion, although we have not found any sign of the OI reported by Lavalle et al.
(2020) for our confinement level, we nonetheless observe a similar gas-induced spatial
modulation of the Kapitza waves, albeit due to an entirely different mechanism.

6.2. Upward-travelling ripples: a new short-wave instability
We now turn to the upward-travelling ripples observed for |ReG| � 6200 in our experiment
of figure 10 (see the last eight snapshots there). These ripples eventually lead to a
breakdown of our experiment due to the accumulation of liquid droplets in the gas loop,
thus can be considered as the onset of flooding. In the current subsection, we seek to
identify the origin of these ripples via linear stability calculations using our OS-OS
approach, which allows us to capture long- and short-wave instability modes.

Figure 24 represents temporal OS-OS linear stability predictions for parameters from
the experiment. The different symbols correspond to five different values of ReG,
according to the 4th (ReG = −4700), 5th (ReG = −5200), 7th (ReG = −5750), 12th
(ReG = −6400) and 17th (ReG = −6760) snapshots in figure 10. The last snapshot in
figure 10 (ReG = −6830) corresponds to the breakdown of our experiment, and is not
considered here.

Figures 24(a) and 24(c) represent growth rate dispersion curves for different instability
modes, and figures 24(b) and 24(d) represent the corresponding dispersion curves for
the linear wave speed. We have separated the different plots into two pairs in order to
better distinguish the different modes. Red dot-dashed curves in figure 24(a) belong to the
long-wave Kapitza mode, which we have discussed in § 6.1. The growth rate of this mode
increases with increasing |ReG| (from pluses to pentagons), while its cut-off wavenumber
decreases.

The blue dashed curves in figure 24(c) belong to a new short-wave instability
mode, which emerges upon increasing |ReG| beyond |ReG| = 4837 (between crosses and
pentagons). We call this new instability mode a short-wave mode, because the growth
rate kci is positive only within a finite span of the wavelength Λ = 2π/k, and because
the maximum growth rate is observed at a large wavenumber, i.e. kmax ∼ 10 versus
kmax ∼ 2 for the long-wave Kapitza instability mode. The short-wave mode appears for
|ReG| � 1800, and this suggests that turbulence in the gas is required to generate this
instability mode. This may explain why previous stability investigations (Schmidt et al.
2016; Trifonov 2017), where the gas flow was assumed laminar, did not find the short-wave
mode.

At ReG = −5200 (pentagons in figure 24), the growth rate of the short-wave mode
(figure 24c) has surpassed that of the Kapitza mode (figure 24a). However, our experiments
in figure 10 do not show any clear signature of the short-wave mode, except maybe slight
modulations on the crests of the first two wave fronts (see e.g. 8th snapshot in figure 10).

971 A37-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.670


Gas-sheared falling liquid films beyond absolute instability

–80

–40

0

kci

kci

cr

cr

40

80

120

10–1 100 101 10–1 100 101

10–1 100

k k
101 10–1 100 101

–50

–25

0

25

50

75

–80

–40

0

40

80

120

–50

–25

0

25

50

75

(b)(a)

(d)(c)

Figure 24. New short-wave instability mode. Falling liquid film sheared by a turbulent counter-current gas
flow: Ka = 3174 (water and air I in table 1), H� = 13 mm, φ = 5◦, ReL = 43.1, ReAI

G = −5182. Temporal linear
stability predictions using the OS-OS approach. Dashed blue indicates new short-wave mode; dot-dashed red
indicates long-wave Kapitza mode; solid black with filled symbols indicates unstable merged mode; solid
green with open symbols indicates stable merged mode. Pluses indicate Πρ = Πμ = 0 in (3.41); crosses
indicate ReG = −4700; pentagons indicate ReG = −5200; diamonds indicate ReG = −5750; squares indicate
ReG = −6400; circles indicate ReG = −6760. (a,c) Growth rate; (b,d) wave speed. Shaded magenta bands and
filled magenta circles with error bars represent our experiment from figure 10: ReL = 43.1, ReG = −6760,
Λ�ripples = (13 ± 3)mm, c�ripples = (−6.2 ± 1.5) cm s−1.

This can be attributed to the protected zone in our current experimental set-up, where
Kapitza waves are allowed to develop in a virtually quiescent atmosphere, before entering
the gas-sheared zone. In other words, the gas-induced short-wave instability mode has
to compete with saturated fully-nonlinear Kapitza waves. We demonstrate this via an
additional set of experiments that was focused on detecting the first signs of ripples for
the parameters in figure 10. Figure 25 shows spatio-temporal diagrams of the film surface
slope obtained from these experiments, using the synthetic schlieren technique (Moisy,
Rabaud & Salsac 2009; Kofman et al. 2014). In figure 25(a), with ReG = −5200, wave
fronts of upward-travelling ripples are clearly visible in between downward-travelling
Kapitza waves. However, these ripples cannot yet compete with the large-amplitude
Kapitza wave humps, and thus remain hidden in the dark inter-wave regions of figure 10.

Upon increasing ReG further (diamonds in figure 24), the short-wave mode and the
Kapitza mode merge into a new unstable merged mode (filled diamonds in figure 24a),
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Figure 25. First signature of upward-travelling ripples in our experiments. Spatio-temporal diagrams of the
film surface slope ‖∇h‖ for parameters in figure 10, obtained with the synthetic schlieren technique (Kofman
et al. 2014): H� = 13 mm, φ = 5◦, ReL = 43.1, f �0 = 3 Hz, x�0 = 48 cm, z� = 13 cm. (a) For ReG = −5200,
ripples start to appear in between Kapitza wave humps. (b) For ReG = −6080, ripples deform crests of Kapitza
waves.
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Figure 26. Details of OS-OS linear stability predictions from figure 24: Ka = 3174, ReL = 43.1, H� =
13 mm, φ = 5◦. (a) Merging between the short-wave and long-wave instability modes from figures 24(a)
and 24(c). Diamonds indicate ReG = −5750; lines without symbols indicate ReG = −5680, pentagons
indicate ReG = −5200. (b) Primary-flow liquid velocity at the film surface. Solid line indicates H� = 13 mm,
ReAI

G = −5182; dot-dashed line indicates H� = 19 mm, ReAI
G = −8461; dashed line indicates H� = 5 mm,

ReAI
G = −1501. Asterisks indicate the AI limit from WRIBL-OS spatial linear stability calculations.

which initially displays a two-humped growth rate dispersion curve, and a new stable
merged mode (open diamonds in figure 24c). Figure 26(a) shows the merging of the
growth rate curves in detail. According to this, the long-wave portion of the long-wave
mode (red dot-dashed curves) merges with the short-wave portion of the short-wave mode
(blue dashed curves), creating the unstable merged mode (solid black curve with filled
diamonds). Vice versa, the short-wave portion of the long-wave mode merges with the
long-wave portion of the short-wave mode, creating the stable merged mode (solid green
curve with open diamonds).

A direct consequence of the mode merging is a change in trend of the cut-off
wavenumber kc versus ReG when considering the growth rate curves originating at k = 0,
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kci = 0 in figure 24(a). Before the merging (pluses to pentagons), these curves are
associated with the long-wave Kapitza instability, and kc decreases with increasing |ReG|.
After the merging (diamonds to circles), kc jumps to a much greater value and its trend
is reversed. This could explain the sudden change in trend of the neutral stability bounds
in figure 11 of Vellingiri et al. (2015), which we have reproduced with our WRIBL-OS
approach in figure 29(a) of Appendix A.

As |ReG| is increased beyond |ReG| = 5750 in figure 24(a) (from diamonds to circles),
the short-wave growth rate maximum of the unstable merged mode becomes dominant
and attains very large values. It is here that upward-travelling ripples become strong
enough to deform the crests of the Kapitza waves (see figure 25b), and thus become clearly
visible in our experiments (last eight snapshots of figure 10). The shaded magenta band
in figure 24(a) represents the experimental range of the wavenumber k for these ripples at
ReG = −6760 (next to last snapshot in figure 10), and this compares reasonably well with
the most-amplified wavenumber kmax of the corresponding unstable merged mode (curve
with filled circles in figure 24a). Better agreement is expected without the protected region
used in our current experimental set-up. In our set-up, short-wave ripples originate on the
residual film in between two pre-existing large-amplitude nonlinear Kapitza waves, which
is not quite comparable to the primary flow underlying figure 24.

The most important feature of the new short-wave instability mode observed in
figures 24(c) and 24(d) is that it displays negative wave speeds (cr < 0 in figure 24d)
in the range of unstable wavenumbers. And this property is endowed to the unstable
merged mode in figure 24(b). In particular, the linear wave speed cr for ReG = −6760
(solid curve with open circles in figure 24b) is negative across the entire wavenumber
span of the upward-travelling ripples observed in the corresponding experiment (vertical
shaded magenta band in figure 24b). Moreover, the ripple wave speed estimated from our
experiments (filled magenta circle with error bars in figure 24b) agrees quite well with
the linear wave speed. Thus we are confident that the short-wave instability uncovered in
figure 24 is at the origin of the upward-travelling ripples observed in our experiment of
figure 10.

Upward travelling linear waves linked to the short-wave mode, or the unstable merged
mode, do not necessarily require a negative liquid velocity. This is shown in figure 26(b),
where we have plotted the primary-flow liquid velocity at the liquid–gas interface,
uL0|y=h0 , in terms of ReG for the liquid-side parameters from figure 24. Here, we confront
our current confinement (solid curve with symbols, H� = 13 mm) with those of Kofman
et al. (2017) (dot-dashed curve, H� = 19 mm) and Mergui et al. (2023) (dashed curve,
H� = 5 mm). Focusing on the solid curve, where symbols mark |ReG| values from
figures 24(b) and 24(d), we see that uL0|y=h0 becomes negative far beyond the onset of the
short-wave instability (between the square and circle in figure 26b). Thus the gas-induced
linear short waves can travel upwards even though the liquid moves downwards across the
entire film thickness h0.

To characterize further the nature of the short-wave instability mode, figure 27
presents (normalized) profiles of the liquid-side (figure 27a) and gas-side (figure 27b)
eigenfunctions, φ and ψ (see (4.13a,b)), for the most-amplified long-wave (red solid
curves) and short-wave (blue dashed curves) instability modes at ReG = −5200
(pentagons in figures 24a,c). We see that φ is maximal at the liquid–gas interface, y = h0,
for both the long-wave and short-wave modes. We may thus conclude that the short-wave
mode is an interfacial mode, strengthening our assertion that it lies at the origin of the
upward-travelling ripples observed in our experiments.
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Figure 27. Eigenfunctions (4.13a,b) for different instability modes from figure 24. Turbulent counter-current
gas flow: ReG = −5200. Linearly most-amplified short-wave (dashed blue lines, k = 12.8) and long-wave
(solid red lines, k = 1.6) instability modes. (a) Liquid film, φ; (b) gas layer, ψ .

Interestingly, the onset of the short-wave instability mode in figure 24(c), i.e. ReG =
−5100 (between crosses and pentagons), is very close to the AI limit of the Kapitza
instability observed in figure 12, i.e. ReAI

G = −5115. This may explain why flooding
predictions based on the AI limit (Vellingiri et al. 2015) are reasonably good, even though
AI does not seem to produce any dangerous events in our experiments and nonlinear
WRIBL-LW computations.

7. Conclusion

We have studied the effect of a confined turbulent counter-current gas flow on the linear
and nonlinear dynamics of a wavy falling liquid film, focusing on regimes beyond the
absolute instability (AI) limit of the Kapitza instability. We have done this via experiments
and numerical computations based on a new low-dimensional model, which we have
introduced and validated here. This model captures accurately the gas-induced transition
to AI as well as the nonlinear gas effect on travelling Kapitza waves. In addition, we have
performed linear stability calculations based on the full Orr–Sommerfeld equations in the
gas and the liquid.

From our investigation, we may draw the following conclusions.
(1) AI is not necessarily dangerous, i.e. no flooding events linked to Kapitza waves were

observed even far beyond the AI limit. On the contrary, AI can act as an effective linear
wave selection mechanism in a naturally evolving falling liquid film, leading to highly
regular downward-travelling nonlinear waves, precluding dangerous coalescence events.

(2) Flooding is eventually triggered by upward-travelling ripples, which were discovered
in the experiments of Kofman et al. (2017) and reproduced here. We find that these
ripples result from a short-wave interfacial instability associated with a negative linear
wave speed. As far as we know, this short-wave instability has not yet been reported
in the literature. On the contrary, the instability was not found in several previous
stability investigations of falling liquid films (Schmidt et al. 2016; Trifonov 2017). In
these investigations, the counter-current gas flow was assumed laminar, even though the
gas Reynolds number ReG was increased far beyond the turbulence threshold. We may
thus surmise that Reynolds stresses associated with gas-side turbulence are essential for
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generating the short-wave instability, at least in the parameter range where ripples are
observed experimentally.

(3) The onset of the short-wave instability coincides approximately with the AI limit
of the long-wave Kapitza instability. This could explain why predictions of the flooding
threshold based on the AI limit have been found to agree reasonably well with experiments
(Vellingiri et al. 2015), even though the trends of these two thresholds with respect to the
liquid Reynolds number are opposed.

(4) At larger counter-current gas flow rates, the short-wave instability mode merges
with the long-wave Kapitza mode, leading to a sudden and drastic increase of the cut-off
wavenumber. This may explain the sudden change in the θ trend of the neutral stability
curves reported in figure 11 of Vellingiri et al. (2015), which we have reproduced in
figure 29(a) based on our own computations.

(5) Absolute instability of the long-wave Kapitza mode and instability of the new
short-wave mode can coincide in a certain parameter range (see figures 12(a) and 24(c)). It
remains to be seen how downward-travelling long waves generated by AI interact/compete
with upward-travelling ripples generated by the short-wave instability in a naturally
evolving falling liquid film. Unravelling the interaction between these two wave types
may be the key to understanding flooding in gas-sheared falling liquid films. In our
current experiments, this could not be studied, as fixed-frequency saturated-amplitude
nonlinear waves were allowed to develop in a protected region, before entering into contact
with the counter-current gas flow. In this configuration, Kapitza waves are privileged
until the growth rate of the merged instability mode (figure 24a) becomes dominant and
upward-travelling ripples appear.

Conversely, computations with our current WRIBL-LW model cannot capture the new
short-wave instability. Although this is a limitation of the model, it allowed us to show
that the long-wave AI alone does not produce any catastrophic events. An interesting
goal for future work is to extend our model to overcome this limitation. For this, the
gas-side representation, which currently relies on an O(ε) long-wave approximation, needs
to be improved. This will require relaxing our symmetry condition (3.13b). Velocimetry
experiments similar to those of Cohen & Hanratty (1968) would allow to gauge the extent
of asymmetry in the gas flow.

By contrast, our O(ε2) liquid-side WRIBL representation is capable of capturing
short waves, as evidenced by the precursory capillary ripples in figure 9, which have a
smaller wavelength than the upward-travelling ripples. Also, our comparisons between
WRIBL-OS and OS-OS linear stability calculations show good agreement (figure 6),
including for the short-wave mode (figure 30).

Finally, a detailed study of the new short-wave instability is necessary, and we intend to
pursue our work in this direction. For example, it should be verified whether the instability
also occurs for the conditions studied by Trifonov (2017) and Schmidt et al. (2016). And
the mechanism of the instability should be elucidated. For example, how does it compare
to the Kelvin–Helmholtz instability and the generation of wind-driven waves?

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.670.
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Figure 28. Validation of our WRIBL-OS approach (§ 4.1). Spatial linear stability predictions for parameters
in figure 15 of Vellingiri et al. (2015): Ka = 2000 (methanol and helium in table 1), φ = 90◦, Re0 =
3ReL/ sin(φ) = 10, H� = 30 mm, Πρ = 0, (3.6a) truncated at O(ε). Quantities are scaled with L = h�0 and
U = h�20 g sin(φ)/(2νL). The counter-current gas shear stress is quantified via Θ = ∣∣T�G0

∣∣/(μLU/L).
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Appendix A. Validation of WRIBL-OS and OS-OS approaches

In figure 28, we have used our WRIBL-OS approach from § 4.1 to reproduce the growth
rate dispersion curves obtained from temporal linear stability analysis in figure 15 of
Vellingiri et al. (2015), for a vertically falling liquid film sheared by an unconfined
counter-current turbulent gas flow. To recover the formulation used in that reference, we
have truncated our liquid-side WRIBL model (3.6a) at O(ε), set Πρ = 0, and increased
H� until it no longer affected our results. All quantities in figure 28 have been scaled
with L = h�0 and U = h�20 g sin(φ)/2/νL, according to Vellingiri et al. (2015). Thus results
are directly comparable with data in figure 15 of that reference, exhibiting very good
agreement.

In figure 29, we have used our OS-OS approach from § 4.2 to reproduce several temporal
linear stability predictions from Vellingiri et al. (2015) and Schmidt et al. (2016). In
figure 29(a), we have reproduced the neutral stability predictions in figure 11 of Vellingiri
et al. (2015), where a vertically falling liquid film sheared by an unconfined turbulent
counter-current gas flow was considered. Crosses correspond to our OS-OS prediction,
and open circles to calculations of Vellingiri et al. (2015). In the same figure, we have
also plotted predictions obtained from our WRIBL-OS approach (curves). To reproduce
the unconfined configuration considered in Vellingiri et al. (2015), we have once again
increased H� until it no longer affected our results meaningfully.

Agreement between crosses and circles in figure 29(a) is good, except for data at
Θ = ∣∣T�G0

∣∣/(μLU/L) = 3. This is where the trend of the cut-off wavenumber k in terms
of the dimensionless gas shear stress Θ changes. We believe that this is the result of
the mode merging that we have observed in § 6.2. At thresholds where the stability
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Figure 29. Validation of our WRIBL-OS (§ 4.1) and OS-OS (§ 4.2) approaches. Temporal linear stability
predictions for a gas-sheared vertically falling liquid film. (a) Neutral stability curves for parameters according
to figure 11 in Vellingiri et al. (2015): Ka = 2000, H� = 300 mm. Crosses indicate OS-OS; solid lines
indicate WRIBL-OS; open circles indicate data from Vellingiri et al. (2015). Thin solid line, Θ = 0; dashed
line, Θ = 1; dot-dashed line, Θ = 2; dot-dot-dashed line, Θ = 3; thick solid line, Θ = 3.5. Same scaling
as in figure 28. (b) Growth rate dispersion curves for parameters according to figure 4(e) in Schmidt
et al. (2016): H� = 10 mm, ρL = 1000 kg m−3, μL = 0.5 × 10−3 Pa s, ρG = 1 kg m−3, μG = 1 × 10−6 Pa s,

σ = 1 mN m−1, δL = h�0/H
� = 0.08, F̃r = Ũ/

√
gL̃ = 3, ReL = 6166, ReG = 48 322. Tildes indicate scaling

with L̃ = H� and Ũ = [∂x�P�G0H�/ρG]1/2. Solid blue line indicates long-wave Kapitza mode; dashed red line
indicates short-wave Tollmien–Schlichting mode.

behaviour changes, large discrepancies between two calculations may occur as a result
of small differences between the employed procedures. In particular, we have used a set
of curvilinear coordinates different to that used by Vellingiri et al. (2015). We believe that
this explains the discrepancy between the cross and circle for Θ = 3.

Interestingly, we have observed that our OS-OS predictions in figure 29(a) change
significantly when setting Πρ = 0 (not shown). This confirms our conclusion based on
(5.5a,b) that PG can affect stability even in the unconfined limit.

In figure 29(b), we have reproduced with our OS-OS approach the growth rate dispersion
curves in figure 4(e) of Schmidt et al. (2016), where a vertically falling liquid film
sheared by a confined laminar (l̃t = 0 in (3.27) and (3.28)) counter-current gas flow was
considered. All quantities have been scaled with L̃ = H� and Ũ = [∂x�P�G0H�/ρG]1/2,
according to Schmidt et al. (2016). Thus results are comparable directly with data in
figure 4(e) of that reference, exhibiting very good agreement, for both the long-wave
Kapitza mode (solid blue curve) and the Tollmien–Schlichting mode (dashed red curve).

Appendix B. Neutral stability bound based on (5.2)

In (5.2), we have introduced the first-order contribution c1, arising in the long-wave
expansion (k → 0) of the linear wave speed c:

c = c0 + kc1 + O(k2),

c1 = iR.

}
(B1)
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The neutral stability bound is given by R = 0, and the solution for R obtained from our
WRIBL-LW model (3.6) is

R = 1
3

cos(φ)
ReL

Fr2 h3
0

{
−1 + Πρ

Π2
u

}

+ sin2(φ)

Fr4 Re3
L

{
2
15

h6
0 + 2

5

Π2
ρ

Π4
u

h8
0

d2
0

+ 10
21
Πρ

Π2
u

h7
0

d0

}

+Πμ
sin(φ)

Fr2 Re2
L TG0

{
Πρ

Πu

[
7
24

h6
0

d0
+ 4

5
h7

0

d2
0

]
+Πu

[
2
15

h5
0 + 10

21
h6

0
d0

]}

+Π2
μΠ

2
u ReL T2

G0

{
7
24

h5
0

d0
+ 2

5
h6

0

d2
0

}

−ΠμΠρ
ReL

ReG
Π3

u TG0 ∂xPG0

{
2
15

h5
0 + 43

56
h6

0
d0

+ 4
5

h7
0

d2
0

}

− sin(φ)
Fr2

Re3
L

ReG
∂xPG0

{
Π2
ρ

[
10
21

h7
0

d0
+ 4

5
h8

0

d2
0

]
+ΠρΠ

2
u

[
4
15

h6
0 + 10

21
h7

0
d0

]}

+ Re3
L

Re2
G
Π2
ρΠ

2
u ∂xP2

G0

{
2
15

h6
0 + 10

21
h7

0
d0

+ 2
5

h8
0

d2
0

}

+ 1
2
ΠμΠu

h2
0

d0
∂ηU1

∣∣
d0

+ 1
3
ΠρΠ

2
u ReL

h3
0

d0
C1, (B2)

where C1 and U1 are obtained by solving (3.27) and (3.28). Solutions for C1 and ∂ηU1|d0
in the laminar limit are given in (5.5a,b).

Appendix C. Accounting for derivatives of TG and PG in (3.6a)

We check to what extent the temporal and spatial derivatives of TG and PG, which appear
in (3.6a) and which we have neglected in our WRIBL-LW and WRIBL-OS computations,
play a role in the linear stability of a gas-sheared falling liquid film. Figure 30 presents
linear stability predictions obtained with three approaches for conditions according to
figure 24. Solid curves correspond to OS-OS calculations based on (4.20) and (4.21),
dot-dashed curves to WRIBL-OS calculations based on (3.41), and dashed curves to
WRIBL-OS calculations with account of the space and time derivatives of TG and PG
in (3.6a).

According to this, both WRIBL approaches capture accurately the gas effect on the
long-wave Kapitza instability mode (red curves in figure 30a), and accounting for the
derivatives of TG and PG does not bear much benefit. By contrast, not surprisingly,
the growth rate of the new short-wave mode is less well predicted by both WRIBL
approaches (blue curves in figure 30a). Here, accounting for the derivatives of TG and PG
(dashed blue curve) improves predictions at intermediate k, but the standard WRIBL-OS
approach performs better at large k. Finally, both WRIBL approaches produced quite good
predictions of the merged instability mode (figure 30b), whereby the standard WRIBL-OS
approach behaves better.
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Figure 30. Accounting for temporal and spatial derivatives of TG and PG in (3.6a). Temporal linear stability
predictions based on three approaches for conditions according to figure 24: Ka = 3174 (water and air I in
table 1), H� = 13 mm, φ = 5◦, ReL = 43.1. Dot-dashed lines indicate WRIBL-OS (3.41); solid lines indicate
OS-OS (4.20) and (4.21); dashed lines indicate WRIBL-OS, including derivatives of TG and PG in (3.6a).
(a) Here, ReG = −4700. Red lines indicate long-wave Kapitza mode, blue lines indicate short-wave mode.
(b) Here, ReG = −6760, merged mode.

In summary, accounting for the derivatives of TG and PG does not meaningfully improve
predictions at low wavenumbers k. And at large k, it may even deteriorate them. This
is because the WRIBL-OS description becomes unbalanced at large k, as a result of
truncating the governing equations at different orders in the liquid (truncate at O(ε2)
and neglect O(ε2 ReL) inertial corrections) and gas (full governing equations). Retaining
supplementary terms in the governing equations has been shown to deteriorate long-wave
model predictions in other configurations (Oron & Gottlieb 2004; Thompson et al. 2019).
It is interesting to note that both the new short-wave (figure 30a) and merged (figure 30b)
instability modes can be captured by the WRIBL approach.
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