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Nilpotency concepts for skew braces are among the main tools with which we are
nowadays classifying certain special solutions of the Yang–Baxter equation, a
consistency equation that plays a relevant role in quantum statistical mechanics and
in many areas of mathematics. In this context, two relevant questions have been
raised in F. Cedó, A. Smoktunowicz and L. Vendramin (Skew left braces of nilpotent
type. Proc. Lond. Math. Soc. (3) 118 (2019), 1367–1392) (see questions 2.34 and
2.35) concerning right- and central nilpotency. The aim of this short note is to give a
negative answer to both questions: thus, we show that a finite strong-nil brace B
need not be right-nilpotent. On a positive note, we show that there is one (and only
one, by our examples) special case of the previous questions that actually holds. In
fact, we show that if B is a skew brace of nilpotent type and b ∗ b = 0 for all b ∈ B,
then B is centrally nilpotent.

Keywords: centrally nilpotent skew brace; right nilpotent skew brace; right-nil skew
brace; strong-nil; skew brace

2020 Mathematics Subject Classification: Primary: 16T25; 20F18; 16N99

1. Introduction

The Yang–Baxter equation (YBE) is a consistency equation that was independently
set by Yang [18] and Baxter [4] in the field of quantum statistical mechanics. The
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study of its solutions not only has many relevant interpretations in the realm of
mathematical physics but it also plays a key role in the foundation of quantum
groups and furnishes a multidisciplinary approach from a wide variety of areas
such as Hopf algebras, knot theory, and braid theory among others (see [8, 10, 12]).

In the inspiring article of Drinfel’d [9], the attention is drawn to the so-called
set-theoretical solutions of the YBE, a family of solutions that has been the object
of a very prolific research since then. A (finite) set-theoretic solution of the YBE
is a pair (X, r), where X is a (finite) set and r : X × X → X × X is a bijec-
tive map satisfying the equality r12r23r12 = r23r12r23, where r12 = r × idX and
r23 = idX × r. The problem of classifying all set-theoretical solutions has brought
to light the definitions of new algebraic structures so that properties of solutions
can be translated in terms of such structures and vice-versa. In this light, left skew
braces play a key role in the classification problem of non-degenerate solutions,
i.e. set-theoretic solutions for which both components are bijective (see [13] for
example).

A (left) skew brace B is a set endowed with two group structures, (B,+) and
(B, ·), satisfying the following skew distributivity property

a · (b+ c) = a · b− a+ a · c ∀ a, b, c ∈ B.

If (B,+) satisfies some property X (such as abelianity), we say that B is a skew
brace of X type; in particular, skew braces of abelian type are just Rump’s (left)
braces (see [13] and [15]); note that both operations in B can be related by the
so-called star product : a ∗ b = −a + a · b − b, for all a, b ∈ B. A non-degenerate
set-theoretic solution of the YBE naturally leads to a skew brace structure over the
group (see [15])

G(X, r) = 〈x ∈ X |xy = uv, if r(x, y) = (u, v)〉,

which is usually called the structure skew brace of (X, r). Conversely, every skew
brace B defines a solution (B, rB) of the YBE (see [13]).

Although it is very difficult to understand arbitrary non-degenerate set-theoretic
solutions of the YBE, it turns out that nilpotency concepts for skew braces allows
us to define certain particularly tamed classes of solutions. For example, right-
nilpotent skew braces have been introduced to study the so-called multipermutation
solutions, that is, non-degenerate set-theoretic solutions that can be retracted into
the trivial solutions over a singleton after finitely many identification steps (see [7,
11, 14]); and it turns out that a non-degenerate set-theoretic solution is multiper-
mutation if the structure skew brace associated with this solution is right-nilpotent
and of nilpotent type (see [7], lemma 2.16 and [6], theorem 4.13). Thus, under-
standing if right-nilpotency is equivalent to some weaker concept could have a
breakthrough effect on classifying the multipermutation solutions of the YBE, since
it would mean we can recognize right-nilpotency with less computational effort.
This is what led the authors of [6] to ask about the equivalence of right-nilpotency
with the seemingly weaker concept of right-nil (see next section for the precise
definitions).
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Question 1.1. (see [7], Question 2.34)

• Let B be a finite right-nil skew brace. Is B right-nilpotent?

Another nilpotency concept that plays a major role in the theory of skew braces
and the solutions of the YBE is that of central nilpotency. Central nilpotency is
actually the strongest nilpotency concept for skew braces and was introduced by
using a skew brace-theoretical analog of the centre of a group (see [5] and [14]),
so it can be regarded as the true analog of the usual nilpotency for groups. As for
right-nilpotency, it is relevant to understand if central nilpotency can be derived
from the seemingly weaker concept of strong-nil.

Question 1.2. (see [7], Question 2.35)

• Let B be a finite strong-nil skew brace. Is B centrally nilpotent?

Our answers to both questions 1.1 and 1.2 are negative and in fact we provide
an example of a finite brace B of order 32 that is strong-nil but not right-nilpotent
(see example 2.5); keep in mind that strong-nil (resp. central nilpotency) implies
right-nil (resp. right-nilpotency). In this example, it happens that (b ∗ b) ∗ b = 0 =
b ∗ (b ∗ b) for every b ∈ B but Soc(B) = {0}. Thus, the only special circumstance
in which the above questions could be given a positive answer is that in which
b ∗ b = 0 for all b ∈ B. This is in fact happening, as shown by our main result.

Main Theoremm 1. Let B be a finite skew brace of nilpotent type such that b ∗ b =
0 for all b ∈ B. Then B is centrally nilpotent.

This result can also be considered as a partial extension of
Smoktunowicz [16], theorem 12. We further show that in our main theorem,
the nilpotency of the additive group cannot be replaced by weaker concepts, such
as that of supersoluble group (see example 2.4).

2. Preliminaries and results

Let (B,+, ·) be a skew brace. The common identity element of both group oper-
ations is denoted by 0, and the product of two elements will be denoted by
juxtaposition; as usual, group addition follows group product in the order of oper-
ations. A skew sub-brace of a skew brace is a subgroup of the additive group which
is also a subgroup of the multiplicative group.

As we already noted in §1, both operations in B can be related by the so-called
star product (a ∗ b = −a + a · b − b, for all a, b ∈ B), which always comes first
in the order of operations. Indeed, both group operations coincide if and only if
a ∗ b = 0 for all a, b ∈ B; in this case, B is said to be a trivial skew brace. The
following properties are essential to our work:
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(ab) ∗ c = a ∗ (b ∗ c) + b ∗ c+ a ∗ c,

ab = a+ a ∗ b+ b,

a ∗ (b+ c) = a ∗ b+ b+ a ∗ c− b,

for all a, b, c ∈ B. If X and Y are subsets of B, then X ∗ Y is the subgroup
of (B,+) generated by the elements of the form x ∗ y, for all x ∈ X and y ∈ Y .

For every a ∈ B, the map λa : B → B, given by λa(b) = −a+ ab, is an automor-
phism of (B,+) and the map λ : (B, ·) → Aut(B,+) which maps a to λa is a group
homomorphism. For every a, b ∈ B,

a ∗ b := λa(b)− b = −a+ ab− b.

Left-ideals are λ-invariant skew sub-braces or equivalently skew sub-braces L such
that B ∗ L ⊆ L. A left-ideal S is said to be a strong left-ideal if (S,+) is a normal
subgroup of (B,+), and an ideal if (S, ·) is also a normal subgroup of (B, ·), or
equivalently S ∗ B ⊆ S. Ideals of skew braces allow us to take quotients in a skew
brace: if I is an ideal of B, then B/I = {bI = b + I : b ∈ B} denotes the quotient
of B over I. It should also be remarked that, for each skew sub-brace S and each
strong left ideal I of B, we have SI = S+I. Furthermore, for the sake of simplicity,
we introduce the following notations (here, E is a subset of B):

• To denote that C is a skew sub-brace of B, we write C 6 B. To denote
that I is an ideal of B, we write I E B.

If B is any skew brace, then the following subsets are always ideals of B :

B ∗ B, Soc(B) = Ker(λ) ∩ Z(B,+) and ζ(B) = Soc(B) ∩ Z(B, ·),

where Z(B,+) and Z(B, ·) are the centres of (B,+) and (B, ·), respectively.
Now, we introduce the nilpotency concepts we deal with. Let B be a skew brace.

Set R0(B) = B = L0(B) and recursively define

Rn+1(B) = Rn(B) ∗ B and Ln+1(B) = B ∗ Ln(B)

for all n ∈ N. Then B is right-nilpotent (resp. left-nilpotent) if Rm(B) = {0} (resp.
Lm(B) = {0}) for some m ∈ N; the smallest such an m is the r-class (resp. l-class)
of B. Thus, if B is right-nilpotent of r -class m, then

(· · · ((b ∗ b) ∗ · · · ) ∗ b)︸ ︷︷ ︸
m times

= 0
(?)

for all b ∈ B; similarly, if B is left-nilpotent of l -class m, then
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(b ∗ (· · · ∗ (b ∗ b)) · · · )︸ ︷︷ ︸
m times

= 0
(•)

for all b ∈ B. Seemingly weaker concepts can be introduced if we only require (?)
or (•) to hold (see [7] and [16]). Thus, a skew brace is right-nil (resp. left-nil) if, for
all b ∈ B, there is a suitable m = mb ∈ N such that equation (?) (resp. (•)) holds.

In order to deal with right-nilpotency, we need the following chain of ideals of
a skew brace B. Let Soc0(B) = {0} and recursively define Socn+1(B) to satisfy
the equality Socn+1(B)/ Socn(B) = Soc

(
B/ Socn(B)

)
. It has been proved in [7],

lemma 2.16, that a skew brace B of nilpotent type is right-nilpotent if and only if
B = Socn(B) for some n ∈ N.

A stronger concept of nilpotency is given by central nilpotency. Let ζ0(B) = {0}
and recursively define ζn+1(B) to satisfy ζn+1(B)/ζn(B) = ζ

(
B/ζn(B)

)
. A skew

brace is centrally nilpotent if there is some m ∈ N for which B = ζm(B). We refer
to [3] for further information about centrally nilpotent skew braces. Here, we only
observe that centrally nilpotent implies both left- and right-nilpotency, and that,
conversely, left- and right-nilpotency imply central nilpotency if the skew brace is
of nilpotent type (see corollary 2.15 of [14]).

Lemma 2.1. Let B be a finite skew brace of nilpotent type such that (B, ·) is
nilpotent and b ∗ b = 0 for all b ∈ B. Then B is centrally nilpotent.

Proof. Let Lp be any Sylow p-subgroup of (B,+) for some prime p. Since Lp is a
characteristic subgroup of (B,+) it follows that Lp is a left-ideal of B. Thus, Lp is
also a Sylow p-subgroup of (B, ·) and hence Lp is an ideal of B. It follows that B =
Drp∈P Lp. Thus, in order to prove that B is centrally nilpotent, we may assume B
has prime power order pn. Since the natural semidirect product [(B,+)]λ(B, ·) is a
finite p-group, it follows that there is an element a ∈ Z(B,+) such that b ∗ a = 0
for all b ∈ B. Now,

0 = (b+ a) ∗ (b+ a) = (b · a) ∗ (b+ a) = b ∗ (a ∗ (b+ a))

+ a ∗ (b+ a) + b ∗ (b+ a)

= b ∗ (a ∗ b) + a ∗ (b+ a) + b ∗ (b+ a) = b ∗ (a ∗ b) + a ∗ b

for all b ∈ B. By theorem 4.8 of [7], B is left-nilpotent. Let c = a ∗ b. Then
b ∗ c = −c and consequently b ∗ (−c) = c. Therefore

b ∗
(
b ∗ · · · ∗ (b︸ ︷︷ ︸
` times

∗ c)
)
= (−1)`c

for every ` ∈ N, which means (by left-nilpotency) that c = a ∗ b = 0. Therefore
a ∈ Ker(λ) and hence a ∈ Soc(B). By induction on the order of B, we have that
B = Socm(B) for some m ∈ N. Thus, lemma 2.16 of [7] shows that B is right-
nilpotent. Since B is both left- and right-nilpotent, it is also centrally nilpotent by
corollary 2.15 of [14]. �
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Corollary 2.2. Let B be a finite brace such that b ∗ b = 0 for all b ∈ B. Then B
is centrally nilpotent.

Proof. It follows from theorem 12 of [16] that B is left-nilpotent. Then theorem 4.8
of [7] shows that (B, ·) is nilpotent. Finally, lemma 2.1 completes the proof. �

Corollary 2.3. Let B be a finite skew brace of prime power order such that
b ∗ b = 0. Then B is centrally nilpotent.

Proof of the Main Theorem. For any prime p, let Lp be the Sylow p-subgroup
of (B,+). Since (B,+) is nilpotent, it follows that (B,+) is the direct product of
its Sylow p-subgroups. By corollary 2.2, we may assume there is some prime p for
which (Lp,+) is non-abelian. Let Z = Z(Lp,+). Now, Z ×Q is a strong left-ideal

of B, where Q is the Hall p
′
-subgroup of (B,+). By induction, Z ×Q is centrally

nilpotent, so, as a skew brace, it is the direct product of its additive Sylow subgroups
(which are ideals), and in particular Z and Q are ideals of Z ×Q.

Furthermore, Lp (which is also a strong left-ideal of B) is centrally nilpotent
by corollary 2.3, and hence ζ(Lp) is a non-zero ideal of Lp contained in Z. Thus,
ζ(Lp) is an ideal of Z ×Q. Since Z ×Q is centrally nilpotent, we have that

C = ζ(Lp) ∩ ζ(Z ×Q) 6= {0}.

Let c ∈ C. Then c ∈ Z(B,+) ∩ Z(B, ·). Moreover, since any element of B can be
written as a sum of an element of P and an element of Q, it follows that c ∈ Ker(λ).
Therefore c ∈ ζ(B). By induction, B/〈c〉 is centrally nilpotent, and so B is centrally
nilpotent as well. �

Example 2.4. There exists a skew brace B of order 6 such that b ∗ b = 0 for all
b ∈ B, but B is not right-nilpotent.

Proof. Let (B,+) ' Sym(3) and consider a product in B given by ab = b + a for
every a, b ∈ B. It turns out that (B,+, ·) is a skew brace such that a ∗ a = 0 for
every a ∈ B. Moreover, λa(b) = −a+ b+ a for every a, b ∈ B. Thus, B ∗ B = 〈c〉+
is the Sylow 3-subgroup of (B,+). Since B(3) = (B ∗ B) ∗ B = B ∗ B, it follows
that B is not right-nilpotent. �

Example 2.5. There exists a brace B of order 32 such that (b ∗ b) ∗ b = 0
and b ∗ (b ∗ b) = 0 for all b ∈ B, but Soc(B) = {0}, so, in particular, B is not
right-nilpotent.

Proof. Let (B,+) = 〈a〉 × 〈b〉 × 〈c〉 × 〈d〉 × 〈e〉 and

(C, ·) =
〈
m1,m2,m3,m4,m5

∣∣∣ m2
i = 1, 1 ≤ i ≤ 5, (m5m2)

2 = (m5m3)
2 = 1,

m5m1m5 = m1m3, m5m4m5 = m2m4

〉
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be groups of order 32 respectively isomorphic to C2 ×C2 ×C2 ×C2 ×C2 and to a
semidirect product of the form [C2 × C2 × C2 × C2]C2. We have that C acts on B
by means of the action λ : C → Aut(B,+) defined by

λm1
(a) = a, λm2

(a) = c+ d+ e, λm3
(a) = c+ d+ e,

λm1
(b) = b, λm2

(b) = b, λm3
(b) = a+ b+ c+ d+ e,

λm1
(c) = c, λm2

(c) = c, λm3
(c) = a+ d+ e,

λm1
(d) = a+ c+ e, λm2

(d) = a+ c+ e, λm3
(d) = d,

λm1
(e) = a+ c+ d, λm2

(e) = e, λm3
(e) = e,

λm4
(a) = a, λm5

(a) = a+ b+ c+ e,

λm4
(b) = b, λm5

(b) = a+ b+ c+ d,

λm4
(c) = a+ d+ e, λm5

(c) = a+ d,

λm4
(d) = a+ c+ e, λm5

(d) = a+ b+ e,

λm4
(e) = e, λm5

(e) = e.

Consider the semidirect product G = [B]C associated with this action (here, B is
written multiplicatively for the sake of notation). Then G is trifactorized, as there
exists D = 〈abm1, em2, abdem3, abcdem4, bcm5〉 6 G such that G = DC = BD
and C ∩ D = B ∩ D = {1}. By [2, lemma 3.2], there exists a bijective 1-cocycle
δ : C → (B,+), with respect to λ, given by D = {δ(c)c : c ∈ C} (see table 1). This
yields a product in B, provided by bc = δ(δ−1(b)δ−1(c)) (see [2] for further details),
and we obtain a brace (B,+, ·) corresponding to SmallBrace(32, 24952) in the
Yang–Baxter library [17] for GAP [1].

Note that δ(x) ∗ δ(x) = 0 for every x ∈ C of order 2, while routine calculations
show that for the rest of non-trivial elements y ∈ B, one has y ∗ y 6= 0 but
(y ∗ y) ∗ y = y ∗ (y ∗ y) = 0.

Now, every element of C can be written as m
ε1
1 m

ε2
2 m

ε3
3 m

ε4
4 m

ε5
5 , with εi ∈ {0, 1},

for every 1 ≤ i ≤ 5. If 1 6= m
ε1
1 m

ε2
2 m

ε3
3 m

ε4
4 m

ε5
5 ∈ Kerλ, then

λ
m

ε1
1 m

ε2
2 m

ε3
3 m

ε4
4 m

ε5
5
(e) = e

and so ε1 = 0. Moreover, λm2
fixes b and c, λm3

fixes d, and λm4
fixes a and b.

Thus, Kerλ ∩ 〈m2,m3,m4〉 = {1}. Since m2m5 = m5m2, m3m5 = m5m3, and
m4m5 = m5m2m4, it is easy to check that also 〈m2,m3,m4,m5〉 ∩ Ker(λ) = {1}.
Hence, Kerλ = {1} and Soc(B) = {0}. Since (B,+) is abelian, so B is not
right-nilpotent. �
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Table 1. Associated bijective 1-cocycle

x δ(x) x δ(x)

1 0 m1 m2 m3 a+ c+ e

m1 a + b m1 m2 m4 a + e

m2 e m1 m2 m5 d

m3 a+ b+ d+ e m1 m3 m4 b+ d+ e

m4 a+ b+ c+ d+ e m1 m3 m5 b+ c+ d+ e

m5 b+ c m1 m4 m5 a+ b+ c

m1 m2 b+ c+ d m2 m3 m4 a + d

m1 m3 d + e m2 m3 m5 a+ c+d

m1 m4 c+ d+ e m2 m4 m5 c+ e

m1 m5 a + c m3 m4 m5 b

m2 m3 a+ b+ d m1 m2 m3 m4 a+ b+ c+ e

m2 m4 a+ b+ c+ d m1 m2 m3 m5 a+ d+ e

m2 m5 b+ c+ e m1 m2 m4 m5 b+ d

m3 m4 a+ d+ e m1 m3 m4 m5 a

m3 m5 a+ c+ d+ e m2 m3 m4 m5 b+ e

m4 m5 c m1 m2 m3 m4 m5 c+d
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