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1. Introduction. A graph G has a finite set V of
points and a set X of lines each of which joins two distinct
points (called its end-points), and no two lines join the same
pair of points. A graph with one point and no line is trivial.

A line is incident with each of its end-points. Two points are
adjacent if they are joined by a line. The degree of a point is
the number of lines incident with it. The line-graph L{G)

of G has X as its set of points and two elements x, y of X
are adjacent in I{G) whenever the lines x and y of G have
a common end-point. A walk in G 1is an alternating sequence

Vv ,X, ,V_.,X_,...,v of points and lines, the first and last
11 2 2 n
terms being points, such that x, 1is the line joining v, to
i i
V. for i=1,...,n-4. We shallcall v ,v_,...,v the
i+1 1 2 n

point-sequence of this walk. G 1is connected if every two

points of G are connected by a walk. A path is a walk in

which the points are distinct. In a closed walk, v1 =v .
—_— n

A tour is a closed walk in which no line appears more than
once. A spanning tour of G is a tour in which each point of

G appears at least once. An eulerian walk of G 1is a spanning
tour containing every line of G. A cycle of G is a closed
walk vi’xi’VZ’XZ’ .. ,vn,xn,v1 in which vi, . ,vn are
distinct and n > 3. An hamiltonian cycle of G contains every
point of G. A—graph is eulerian if it has an eulerian walk;

it is hamiltonian if it has an hamailtonian cycle.
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The object of this note is to study the relationship
between eulerian and hamiltonian graphs and line-graphs. In
this connection, we find it convenient to introduce the following
formidable formulation which becomes clear after viewing
Figure 1. Let G be a graph with p points and q lines. Then,
if n>2, Ln(G) is a graph with nq points, 2q of which are

points f(v,x) corresponding to the pairs v,x such that v isa
point of G and x is a line incident in G with v; the construc-
tion of I_.n(G) is completed by adding a path Wx with n - 2

new intermediate points connecting f(u,x) to f(v,x) whenever
x is a line joining points u and v in G, and adding a line
joining f(v,x) to f(v,y) whenever x,y are distinct lines
incident with a point v in G.

In Figure 1, the lines in LZ(G) and L3(G) which lie

within the paths Wx are drawn as broken lines. Two lines x

of G are numbered 1,2 as are the corresponding points of L(G)
and the corresponding paths Wx of LZ(G) and L3(G).

L3(G)

w__) oy

Fig.1

2. Observations. The first three statements were given
in Chartrand [1]; they are easily proved. Sedladek [5] also
proved Proposition 3. With no real loss of generality, we assume
throughout this section that G is connected and has at least two
lines.
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PROPOSITION 4. If G is eulerian, then L(G) _i_q
eulerian.

PROPOSITION 2. _I;f_ G is eulerian, then L(G) s
hamiltonian.

PROPOSITION 3. _I;f_ G is hamiltonian, then L(G) is
hamiltonian.

That the converse of each of these three statements is
false is easily seen from Figure 2, in which the first graph is
neither eulerian nor hamiltonian, and the second, which is the
line- graph of the first, is both. But some may object to the
gounter-example of Figure 2 since Whitney [6] has shown that
these two graphs are the only two non-isomorphic graphs whose

Fig.2

line-graphs are isomorphic. It is easy to supply alternative
counter-examples to the converses of these three propositions.
In Figure 1 above, L(G) is hamiltonian while G is not
eulerian. In Figure 3, L(G) is eulerian while G is not.

G L(G)

Fig.3
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And in Figure 4, L(G) is hamiltonian while G is not.

L(G) L2 (G)

Fig.4

A refinement of Proposition 3 is provided by the following
pair of propositions.

PROPOSITION 4. If .G is hamiltonian, then LZ(G) is

hamiltonian.

PROPOSITION 5. If LZ(G) is hamiltonian, then L{G)

is hamiltonian.

L,(G)

Fig.5
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That the converse of Proposition 4 does not hold is seen
from Figure 5, in which LZ(G) is hamiltonian and G is not.

The converse of Proposition 5 is also false, as is seen from
Figure 4. Note that LZ(G) may be hamiltonian without G

being eulerian (see Figure 1). However, we now find that the
corresponding property for L3(G) is entirely relevant.

PROPOSITION 6. If G is eulerian, then L3(G) is

hamiltonian, and conversely.

The truth of Propositions 1-5 (and, indeed, the falsity
of their converses) is easily seen from the Propositions 7, 8
and 9 which we shall now state. The proof of Proposition 7 is
given by Chartrand [1]. We shall prove Propositions 8 and 9,
and thereafter Proposition 6.

PROPOSITION 7. L(G) is eulerian if and only if the
degrees of the points of G are all of the same parity.

PROPOSITION 8. L(G) is hamiltonian if and only if
there is a tour in G which includes at least one end-point of
each line of G.

PROPOSITION 9. LZ(G) is hamiltonian if and only if

there is a spanning tour in G.

Proof of Proposition 8. Let us suppose, first, that

there is a tour v ,x ,v_,X_,...,v ,xXx ,v. in G which

ret 17 F1 V2’ 2 Yn' ¥’V
includes at least one end-point of each line of G. Divide the
lines of G not in this tour into n disjoint sets Si’ RN ,Sn

such that the members of Si are incident with vi. If

S. ={Y1.,-- . ,Ylj(l)} , then
1 1 1

< Yi r(1) 1 r(2) < 1 r(n) <
n! 1)'-')Yi ,xiryz"'-yyz ’ 2)~"; n Y Yn

is the point-sequence of an hamiltonian cycle of L(QG).
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To prove the converse, let us assume that L(G) has an

hamiltonian cycle with point-sequence x1 x ﬁ( x , where
Xysees X are the distinct lines of G. Let v, be the common
end- point of x, and xi+1 in G for i=1,...,k-1 and Vi

be the common end-point of xk and xi. I5d v1 =... :vk, the

sequence with sole term v1 is, in a trivial sense, a tour which

includes an end-point of each line of G. Otherwise, let

V., sV, be the subsequence of v ,...,v.  consisting of
i(1) i(p) 1 k
the consecutively distinct points among APEREE ,vk; specifically
(i) v, =v, # Vv, for j(r) < i< j{r+4) and r=1,...,p-1 and
ey i jlr+1) -
ii) v, =v., # v, for h> j(p) and for h < j(1). Then,
) Py h (1) =7
since, for r=2,...,p, V. =v, and v, are distinct
P Yi(e-1) T V()1 i(x)
points incident with x( ) in G, they are joined by x_( );
j(r
and similarly v. is joined by x. to v., .. Hence
Y Vi 7 %50 i(1)

(1) v, » X, sV, » X, ,V; » X, 300 3 X, sV
i) i(1) (1) 3(2) §(2) 3(3) itp)" j(p)
is a tour in G which includes each v, and hence includes an

i
end-point of each line of G.

Proof of Proposition 9. Let us suppose, first, that G

hasa s t e,V X L,V
panning tour v x vZ 2 v xn v1 Then clearly

2 ’ s 3 ’ 3 b > ? 3 s
(2) f(v_1 xn) f(v1 Xi) f(v2 xi) f(v2 XZ) f(v3 xZ)

, f(v ,x Y, f(v ,x ), f{v ,x )
n n-1 n n 1" n

is the point-sequence of a cycle in LZ(G). Since the sequence

Vv includes all the points of G (possibly with repetitions),

the points of LZ(G) not in (2) may be divided into n disjoint

- sets Si' R ,Sn sx‘lch that all elements of S, have the form
i
f(vi,X)- If, for i=2,...,n, the elements of S, are inserted
i
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between f(vi,xi 1) and f(vi,xi), and if in addition the elements

of S1 are inserted between f(vi.xn) and f(vi,xi), then the

result is still the point-sequence of a cycle in LZ(G); and this

is an hamiltonian cycle since it includes all the points of LZ(G).

To prove the converse, let us suppose that

f(vi,xi), f(vz,xz),... , f(vk,xk), f(vi,xi)

is the point-sequence of an hamiltonian cycle of LZ(G). Let

V., 9.0V, be the subsequence of v, ,...,v. defined as in
j1) i(p) 4 1 k
the proof of Proposition 8. Since v, # v, and
P P ir)-1" j(z) -
(v, , X. is adjacent to f(v., ., x. in L_(G), it
se)-17 Fj(e)-1) €24 Citey Sy B 9
follows that x, =X, and hence that x, joins
j(r)-1 j(r) , i(r)
v, =v, to v, in G for r=2,...,p; similarl
ir)-1 " i(x-1) j(r) P y
x. joins v, to v,,. .. Therefore (1) must be a spannin
j(1) j(p) (1) ( &

tour of G.

Proof of Proposition 6. For any line x of G, let
m(x) be the middle point of the path Wx. Suppose, first,

that G is eulerian. Let vi,xi,vz,xz,...,vn,xn,vi be an

eulerian walk in G. Then clearly

f(vi,xi), m(xi), f(vz,xi), f(v ,xz), m(xz), f(v

2 ,xz).

3

f(v ,x3), m(x3), f(v

3 :xs)v so ey m(xn)’ f(vi,xn), f(vi.xi)

4

is the point-sequence of an hamiltonian cycle in L3(G).
Conversely, if L3(G) is hamiltonian, we can clearly select an
hamiltonian cycle H of L3(G) such that the second point in H
is m(xi) for some line x‘1 of G. Moreover, if a line x joins

the points u and v in G, the terms ixnmediateiy preceding
and following m(x) in the point-sequence of H must clearly
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be f(u,x), f(v,x) in some order. Therefore the point-sequence
of H must be of the form

f(ui,x.1), m(xi), f(vi,xi), f(uz,xz),, m(xz), f(vz,xz),
Ce ey £(un,xn), m(xn), f(vn,xn), f(ui,xi),

where xi, e ,xn is a list of the lines in G without repetitions

and x, joins u_,v, in G. Since f(v, ,x ), f(u ,x) are
i i i i-1 i-1 11

successive terms of H, they are adjacent in L3(G) and there-
fore v, =u, for i=2,...,n; similarly v =u . Hence
i-1 i n 1

u,X ,u_,X_,...,u ,X ,u 1is an eulerian walk in G.
11 2 2 n n 1

3. Directed graphs. A digraph D has a finite non-
empty set V of points and a subset X of V XV whose elements
arecalled directed lines, with the convention that u # v whenever
(u,v) € X. For a comprehensive presentation of the concepts of
digraph theory, see [3]. We apply the adjective "directed" to the
graphical terms: path, cycle, walk, tour, etc., to indicate that
the directions of the directed lines are followed. The line-digraph
I(D) of D has X as its set of points, and an element
((u1,v1), (uZ’VZ)) of XX X is a directed line of I(D) if

and only if vy T8, An eulerian digraph has a directed spanning

tour containing all its directed lines. An hamiltonian digraph
has a directed cycle containing all its points. We call D weakly
connected if every two points of D are joined by a (not neces-
sarily directed) walk.

PROPOSITION 10. A non-trivial weakly connected
digraph D is eulerian if and only if its line-digraph L(D) is
hamiltonian.

In fact, it was noted by Kasteleyn [4] that there is a one-
to-one correspondence between the eulerian walks of D and the
hamiltonian cycles of L{D), so that there is an equal number
of each.
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4. Problem. Characterize those graphs G for which
I(G) is hamiltonian. This class of graphs includes both the
eulerian and hamiltonian graphs. (The problems of conveniently
characterizing hamiltonian graphs and hamiltonian digraphs
appear to be impossibly difficult in the present state of knowledge.
We mention, however, that a construction can be given which
reduces both of these problems to that of characterizing
hamiltonian bicolourable undirected graphs, whose set of points
can be coloured with two colours so that no two points of the
same colour are adjacent.)

REFERENCES

1. G. Chartrand, Graphs and their associated line-graphs.
Doctoral dissertation, Michigan State University, 1964.

2. F. Harary and R. Z. Nbrman, Some properties of line-
digraphs. Rendiconti del Circolo Matematico di Palermo
9 (1960), 1-8.

3. F. Harary, R.Z. Norman and D. Cartwright, Structural

models: an introduction to the theory of directed graphs.
New York, 1965.

4. P. W. Kasteleyn, A soluble self-avoiding walk problem.
Physica 29 (1963), 1329-1337.

5. J. Sedlalek, Some properties of interchange graphs.
In Theory of graphs and its applications, (M. Fiedler,
ed. ) Prague, 1964, 145-150.

6. H. Whitney, Congruent graphs and the connectivity of
graphs. Amer. J. Math. 54 (1932), 150-168,

Universities of Aberdeen, Michigan and Waterloo

709

https://doi.org/10.4153/CMB-1965-051-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-051-3

