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1. Introduction, A graph G has a finite set V of 
points and a set X of lines each of which joins two distinct 
points (called its end-points), and no two lines join the same 
pair of points. A graph with one point and no line is t r ivial . 
A line is incident with each of i ts end-points. Two points are 
adjacent if they a re joined by a line. The degree of a point is 
the number of lines incident with it. The line-graph L(G) 
of G has X as its set of points and two elements x, y of X 
are adjacent in L(G) whenever the lines x and y of G have 
a common end-point. A walk in G is an alternating sequence 
v , x , v . x . . . . , v of points and lines, the first and last 

1 1 2 2 n 
t e r m s being points, such that x. is the line joining v. to 

v for i = 1 , . . . , n - 1 . We shall call v , v , . . . , v the 
i+1 1 2 n 

point- sequence of this walk. G is connected if every two 
points of G a re connected by a walk. A path is a walk in 
which the points are distinct. In a closed walk, v = v . 

_ — _ I n 

A tour is a closed walk in which no line appears more than 
once. A spanning tour of G is a tour in which each point of 
G appears at least once. An eulerian walk of G is a spanning 
tour containing every line of G. A cycle of G is a closed 
walk v « x, ,v_ ,X- , . . . , v , x ,v in which v . , . . . , v a re 

1 1 2 2 n n l 1 n 
distinct and n >• 3. An hamiltonian cycle of G contains every 
point of G. A graph is eulerian if it has an eulerian walk; 
it is hamiltonian if it has an hamiltonian cycle. 
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The object of this note is to study the relat ionship 
between eulerian and hamiltonian graphs and l ine-graphs . In 
this connection-, we find it convenient to introduce the following 
formidable formulation which becomes clear after viewing 
Figure 1. Let G be a graph with p points and q l ines. Then, 
if n > 2, L (G) is a graph with nq points, 2q of which are 

points f(v,x) corresponding to the pai rs v, x such that v is a 
point of G and x is a line incident in G with v; the construc­
tion of L (G) is completed by adding a path W with n - 2 

n x 
new intermediate points connecting f(u, x) to f(v,x) whenever 
x is a line joining points u and v in G, and adding a line 
joining f(v, x) to f(v,y) whenever x, y a re distinct l ines 
incident with a point v in G» 

In Figure 1, the lines in L (G) and L (G) which lie 

within the paths W a r e drawn as broken l ines. Two lines x 
x 

of G are numbered 1,2 as a re the corresponding points of L(G) 
and the corresponding paths W of L (G) and L. (G). 

X Ct J 

L(G) 

L 2 (G) 

> 

L 3 ( G ) 

A 
2 ' I 1* / 

/ » i y 

\-j v__̂  
F i g . l 

2. Observations, The first three s tatements were given 
in Chartrand [ l ] ; they a r e easily proved. Sedlacek [5] also 
proved Proposition 3. With no rea l loss of generali ty, we assume 
throughout this section that G is connected and has at least two 
l ines . 
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PROPOSITION 1. If G is eulerian, then L(G) jis 
eulerian. 

PROPOSITION 2. J £ G is eulerian, then L(G) jls 
hamiitonian. 

PROPOSITION 3. J f G is hamiitonian, then L(G) j£_ 
hamiitonian. 

That the converse of each of these three statements is 
false is easily seen from Figure 2, in which the f irst graph is 
neither eulerian nor hamiitonian, and the second, which is the 
l ine-graph of the first , is both. But some may object to the 
counter-example of Figure 2 since Whitney [6] has shown that 
these two graphs a re the only two non-isomorphic graphs whose 

A 
Fig. 2 

l ine-graphs a r e isomorphic. It is easy to supply alternative 
counter-examples to the converses of these three propositions. 
In Figure 1 above, JL(G) is hamiitonian while G is not 
euler ian. In Figure 3, L(G) is eulerian while G is not. 

G KG) 

A 
Fig.3 
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And in Figure 4, L(G) is hamiltonian while G is not. 

L(G) 

M 
L 2 ( G ) 

Fig. 4 

A refinement of Proposition 3 is provided by the following 
pair of propositions. 

PROPOSITION 4. JK G is hamiltonian, then L, (G) i £ 

hamiltonian. 

PROPOSITION 5. J£ L2(G) is hamiltonian, then L(G) 

is hamiltonian. 

L 2 ( G ) 

Fig. 5 
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That the converse of Proposition 4 does not hold is seen 
from Figure 5, in which LAG) is hamiltonian and G is not. 

The converse of Proposition 5 is also false, a s is seen from 
Figure 4. Note that LAG) may be hamiltonian without G 

being eulerian (see Figure 1). However, we now find that the 
corresponding property for L (G) is entirely relevant. 

PROPOSITION 6. J f G is euler ian, then L (G) j £ 

hamiltonian, and conversely. 

The truth of Proposit ions 1-5 (and, indeed, the falsity 
of their converses) is easily seen from the Propositions 7, 8 
and 9 which we shall now state. The proof of Proposition 7 is 
given by Chartrand [ l ] . We shall prove Proposit ions 8 and 9, 
and thereafter Proposition 6. 

PROPOSITION 7. L(G) is eulerian if and only if the 
degrees of the points of G a re all of the same parity. 

PROPOSITION 8. L(C) is hamiltonian if and only if 
there is a tour in G which includes at least one end-point of 
each line of G. 

PROPOSITION 9. LAG) is hamiltonian if and only if 

there is a spanning tour in G-

Proof of Proposition 8. Let us suppose, f irst , that 
there is a tour v , x j , v , x^, . . . , v , x , v , in G which 

1 1 2 2 n n 1 
includes at least one end-point of each line of G. Divide the 
lines of G not in this tour into n disjoint sets S , . . . ,S 

1 n 
such that the member s of S. a r e incident with v. . If 

i i 

S. = { y . , . . . ,y . } , then 

1 r ( l ) 1 r(2) 1 r(n) 
x ,y , . . . , y »x ,y , . . . , y , x , . . . , y , . . . ,y , x 

n l 1 1 2 2 2 n n n 
is the point-sequence of an hamiltonian cycle of L{G). 
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To prove the converse , let us a s sume that L(G) has an 
hamiltonian cycle with point- sequence x , x , . . . , x . x . » where 

x , . . . ,x , a r e the distinct l ines of G. Let v. be the common 
I K i 

end- point of x. and x. g in G for i = 1, . . . , k-1 and v 

be the common end-point of x^ and x . If v = . . . = v , the 

sequence with sole t e r m v i s , in a t r iv ia l sense, a tour which 

includes an end-point of each line of G. Otherwise, let 
v , . . . , v % be the subsequence of v , . . . , v, consisting of 

j ( l ) J(P) 1 k 

the consecutively distinct points among v , . . . , v ; specifically 
(i) v =v ^ v , t for j(r) < i < j(r+1) and r = l , . . . , p - l and 

j(r) i j ( r+ l ) -
(ii) v. , =v, # v . # j , for h > j(p) and for h < j ( l ) . Then, 

j(p) h j ( l ) -
since, for r = 2 , . . . , p , v. , JX = v . . A and v . a r e distinct 

j ( r - l ) j ( r ) - l j (r) 
points incident with x., % in G, they a r e joined by x , * 

j(r) j(r) 
and similar ly v , x is joined by x . , . t to v. , %. Hence 

J(P) 3(1) 3(1) 

(1) v v»x. /4v»v , x ,v ; , x , . . . , x . , v . 
3(Pi 3(1) 3(1) 3(2) 3(2) 3(3) j(p) j(p) 

is a tour in G which includes each v and hence includes an 
i 

end-point of each line of G. 

Proof of Proposit ion 9- Let us suppose, f i rs t , that G 
has a spanning tour v , x , v , x , . . » , v , x ,v . Then clearly 

1 1 2 2 n n 1 

(2) f(v x ), f(v , x ), f(v , x ), f(v , x ), f(v , x j , 
I n 1 1 Ù 1 ù ù 3 2 

. . . , f(v , x ), f(v , x ), f(v , x ) 
n n-1 n n I n 

is the point-sequence of a cycle in L, (G). Since the sequence 

v , . . - , v includes all the points of G (possibly with repet i t ions) , 

the points of LAG) not in (2) may be divided into n disjoint 

sets S . . . . , S such that all e lements of S have the form 
I n * i 

f(v. ,x). If, for i =2 , . . . , n , the elements of S. a r e inser ted 
i i 
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between f ( v . , x \ and f ( v . x . ) , and if in addition the e l e m e n t s 
i x-1 1 l 

of S, are inser ted between f(v , x ) and f(v , x ) , then the 
1 1 n 1 1 

re su l t i s s t i l l the point-sequence of a cyc le in L.AG); and this 

i s an hamiltonian cyc le s ince it includes a l l the points of L (G). 

To prove the c o n v e r s e , let us suppose that 

f(v , x ), *(v
2»x2)> • • • » f < v

k ' x
k > ' £ f v i ' x i * 

i s the point -sequence of an hamiltonian cyc le of L (G). L&t 

v . . . v » . • . »v.# . be the subsequence of v , , . . . , v , defined a s in 
j ( l ) J(P) 1 k 

the proof of Proposi t ion 8. Since v . . x M 4 v . . . and 
j ( r ) - l j(r) 

f ( V j ( r ) - r Xj(r)-1> i s a d i a c e n t t o f ( v
j ( r ) ' X j (r) ' * L 2 { G ) ' tt 

fo l lows that x . , fc , - x . . . and hence that x . , % jo ins 
j ( r ) - l j(r) j(r) 

V»A * A = v - / ^\ t o v - / \ ^ G f o r r = 2 , . . . , p ; s imi lar ly j ( r ) - i j ( r - l ) j(r) 
x , . jo ins v , . % to v . , « Therefore (1) m u s t be a spanning 

j ( D J j(p) j ( D ± — B 

tour of G. 

Proof of Proposi t ion 6. For any line x of G, let 
m(x) be the middle point of the path W . Suppose, f i rs t , 

that G i s eu ler ian . L,et v ( , x . v . x „ . . . . , v , x , v b e a n 
1 1 2 2 n n 1 

euler ian walk in G. Then c l ear ly 

f(v . x ) , m ( x ) , f(v , x ) , . . . . m ( x ), f(v , x ) , f(v , x ) 
3 3 3 4 3 n I n 1 1 

i s the point -sequence of an hamiltonian cyc l e in L (G). 

Converse ly , if Li-(G) i s hamiltonian, we can c l ear ly s e l e c t an 

hamiltonian cyc le H of L (G) such that the second point in H 

i s m ( x ) for some line x of G. Moreover , if a l ine x jo ins 

the points u and v in G, the t e r m s immediate ly preceding 
and following m(x) in the point -sequence of H m u s t c l e a r l y 
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be f(u,x), f(v,x) in some order . Therefore the point-sequence 
of H must be of the form 

f(u , x ), m(x ), f(v , x ), f(u , x h m(x ), f(v , x ), 
1 1 1 1 1 2 2 2 2 2 

. . . , f(u , x ), m(x ), f(v , x ), f(u , x ), 
n n n n n 1 1 

where x , . . . , x i s a l is t of the l ines in G without repeti t ions 
I n 

and x. joins u . ,v . in G. Since f(v , x ), f(u , x ) a r e 
l i l i - l i - l i i 

successive t e r m s of H, they a r e adjacent in L» (G) and the re ­
fore v. t = u. for i = 2 , . . . , n ; s imi lar ly v =u . Hence 

l - l l n • 1 
u , x , u . x . . . . , u , x , u is an eulerian walk in G. 

1 1 2 2 n n 1 

3. Directed graphs. A digraph D has a finite non­
empty set V of points and a subset X of V X V whose e lements 
a r e called directed l ines , with the convention that u / v whenever 
(u,v) € X. For a comprehensive presentat ion of the concepts of 
digraph theory, see [3]. We apply the adjective "directed" to the 
graphical t e r m s : path, cycle, walk, tour, etc. , to indicate that 
the direct ions of the directed lines a r e followed. The l ine-digraph 
lu(D) of D has X as its set of points, and an element 
((U .»VJ> (u~,»v \) of X X X is a directed line of L(D) if 

1 ' 1 Z . 2 
and only if v = u . An eulerian digraph has a directed spanning 

tour containing al l i t s directed l ines. An hamiltonian digraph 
has a directed cycle containing all its points. We call D weakly 
connected if every two points of D a re joined by a (not neces ­
sari ly directed) walk. 

PROPOSITION 10. A non-t r iv ia l weakly connected 
digraph D is eulerian if and only if i ts l ine-digraph L(D) is 
hamiltonian. 

In fact, it was noted by Kasteleyn [4] that there is a one-
to-one correspondence between the eulerian walks of D and the 
hamiltonian cycles of Lt(D)i so that there is an equal number 
of each. 
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4. Problem. Character ize those graphs G for which 
L(G) is hamiltonian. This c lass of graphs includes both the 
eulerian and hamiltonian graphs. (The problems of conveniently 
character iz ing hamiltonian graphs and hamiltonian digraphs 
appear to be impossibly difficult in the present state of knowledge. 
We mention, however, that a construction can be given which 
reduces both of these problems to that of character iz ing 
hamiltonian bicolourable undirected graphs, whose set of points 
can be coloured with two colours so that no two points of the 
same colour a re adjacent. ) 
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