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A BOUND ON THE p-INVARIANTS OF SUPERSINGULAR
ELLIPTIC CURVES

RYLAN GAJEK-LEONARD

ABSTRACT. Let E/Q be an elliptic curve and let p be a prime of good super-
singular reduction. Attached to E are pairs of Iwasawa invariants ,u,pi and )\;,t
which encode arithmetic properties of E along the cyclotomic Zp-extension
of Q. A well-known conjecture of B. Perrin-Riou and R. Pollack asserts that
,u;t = 0. We provide support for this conjecture by proving that for any £ > 0,
we have ,u;t < 1 for all but finitely many primes p with )\;t = . Assuming
a recent conjecture of D. Kundu and A. Ray, our result implies that sz): <1
holds on a density 1 set of good supersingular primes for E.

1. INTRODUCTION

Let E/Q be an elliptic curve and fix a prime p of good reduction. Attached to
E is the p-primary Selmer group Sel(E/Qcyc), where Qcye denotes the cyclotomic
Zp-extension of Q. This group fits into the exact sequence

(1) 0 — E(Qeye) ® Qp/Zp — Sel(E/Qeyc) — HI(E/Qeyc) — 0,

where III denotes the p-part of the Shafarevich-Tate group, and therefore encodes
many arithmetic properties of E along the cyclotomic line.

If p is a prime of ordinary reduction then Sel(E/Qqy.) is cotorsion as an Iwasawa
module (see [6, Theorem 17.4]) and its characteristic ideal is therefore generated
by a polynomial Lglg € Z,[T). The algebraic Iwasawa invariants X;‘,lg and uglg
measure the degree and p-divisibility of Lglg, respectively. If Elp] is irreducible
as a Gal(Q/Q)-module, a well-known conjecture of Greenberg [5, Conjecture 1.11]
asserts that uglg =0.

If p is a prime of supersingular reduction then Sel(E/Q.y.) is no longer cotorsion,
however Kobayashi [8] introduced signed Selmer groups Sel®(E/Qeyc) which are
cotorsion and encode analogous arithmetic data. In particular, the characteristic
ideals of Sel*(E/Qcyc) are generated by polynomials Lialg € Z,[T] which have
ial . In the supersingular setting,
E|[p] is automatically irreducible and it is similarly conjectured (see [13, Conjecture
6.3] and [12, Conjecture 7.1]) that uialg =0.

Recently, Chakravarthy [2, Theorem 1.3] made progress towards Greenberg’s
conjecture by proving that leg < 1 for all but finitely many primes of good ordinary
reduction. In this article, we prove a similar result in the supersingular setting.

associated pairs of Iwasawa invariants ,u;tal g and A

Theorem 1.1. Let £ > 0 and * € {+,—}. Then p ., <1 for all but finitely many
good supersingular primes p with )\;ﬁn = /.
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In the above theorem, )\ian and uian denote the Iwasawa invariants attached
to the analytic p-adic L-functions L, € Z,[T] defined by Pollack in [13]. The
construction of these p-adic L-functions requires a, = 0, which is automatically
true when p > 3. The main conjecture of Iwasawa theory in this setting asserts
that L;'fan and L;alg generate the same ideal in Z,[7], and in particular that

+ _ + _ =+
(2) Apalg = Apan and Hp,alg = Hp.an-:

Thus, Theorem 1.1 provides support for the vanishing of 'uialg'

Remark 1.2. The main conjecture is known to hold in many cases: the CM
case was established by Pollack and Rubin [15], and Kobayashi [8, Theorem 1.3]
proved the containment (L) C (Lialg) for non CM curves. A proof of the
full supersingular main conjecture was recently announced by Burungale, Skinner,

Tian, and Wan [1, Theorem 1.2].

We henceforth assume (2) and write )\;, ,u;t to mean either algebraic or analytic
invariants. Letting rg denote the Mordell-Weil rank of E, Kundu and Ray con-
jecture [7, Conjecture 3.17] that )\;t = rp on a density 1 set of good supersingular
primes. Assuming this conjecture, the condition on A-invariants in Theorem 1.1
could be removed and one would have the bound ﬂ;t < 1 on a density 1 set of good
supersingular primes for F.

We remark that if rz = 0 then [7, Theorem 3.8] implies that both A¥ and
u;,t vanish for all but finitely many primes p (in fact, Sel* (E/Qeye) = 0 for these
primes). Thus, the primary contribution of Theorem 1.1 is in providing support for
the vanishing of ,u;,t in the positive rank case. We also note that, under some mild
assumptions, it is known [7, Lemma 3.3] that )\;t > rg for all good supersingular
primes p > 2, thus the cases where £ < rg in Theorem 1.1 are mostly vacuous.

The crux of Chakravarthy’s proof in the ordinary setting is constructing a bound
(which holds for all but finitely many p) on the size of the modular symbols defining
the ordinary p-adic L-function. In the supersingular case, the signed p-adic L-
functions are defined via a decomposition theorem of Pollack [13, Theorem 5.6],
and in particular they are not as immediately understood in terms of modular
symbols. The approach taken here is to instead apply Chakravarthy’s bound to
the sequence of Mazur-Tate elements 6,, for E (which are defined using modular
symbols), where one can show (see Proposition 3.8) that there exists an integer ng
such that for all but finitely many primes p,

(3) w(f,) <1, forall n > ng.

The lower bound ng depends only on the conductor of E (and not on p). We then
relate the Iwasawa invariants of the Mazur-Tate elements to those of the signed
p-adic L-functions in order to deduce Theorem 1.1.

The assumption on A-invariants in Theorem 1.1 comes from the fact that, while
one can show that p(6,) = p, for n large enough of fixed parity (see Proposition
3.1), in this case the lower bound on n in the asymptotic depends on both p and
)\;t. The idea is that if we assume )\ff does not vary with p then it is possible to
take p > 0 so that x(6,) = p,, holds for any fixed n, and in particular for the ng
appearing in (3).
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2. TWASAWA INVARIANTS

Fix a prime p and let F' be a nonzero power series in A = Z,[T]. By the
Weierstrass preparation theorem [18, Theorem 7.3] there are unique nonnegative
integers A and p such that

(4) F = p"DU,

for some distinguished polynomial D € Z,[T] of degree A and some U € A*. (Recall
that a polynomial D € Z, [T is called distinguished if D = TP mod p.) In terms
of the coefficients of F' =Y., a;T", we have

p = min{ord,(a;) | ¢ > 0},

A =min{i | ord,(a;) = p}.
2.1. Refined Iwasawa invariants. Let I' = Z, be the Galois group of the cy-
clotomic Z,-extension of Q and let I',, =T/ I'?" = 7/p"Z denote the Galois group
of its nth-layer. Let w, = (1 + T)?" —1 and A,, = A/(w,). Fixing a topological
generator y € T, one has isomorphisms A = Z,[I'] and A,, = Z,[I',,] induced by the
map v +— 1+ 7. Refined Iwasawa invariants are those attached to elements of A,,.

We now give two definitions of refined Iwasawa invariants — both useful in different
contexts — and then show that they are equivalent.

2.1.1. Definition via the division algorithm. Since A = lim A,,, for each n > 0 there
—

is a projection map 7, : A - A,, FF'— F mod w,, and we can define the Iwasawa
invariants of , (F') as follows. Since w, is a distinguished polynomial, the division
algorithm for distinguished polynomials in A allows us to write

F=w,Q,+ F,,

for some unique @, € A and a polynomial F,, € Z,[T] of degree < p™. Define
A(mn (F)) = A(Fn),
w(mn (F)) = p(Fn).

2.1.2. Definition via augmentation ideals. Following [14] and [16], one can define
the Iwasawa invariants of § € Z,[I'y] as follows. For each n > 1, the element

Y = mod I'?" generates I',, and we define the p-invariant of 6 = Z?;gl cjvi by

p(o) = min_ ord;(c,)

For the M-invariant, let 8 = p~#(?)g ¢ Zy[I';] and let I,, be the augmentation ideal
of F,[I',,]. (Thus, I, is the ideal generated by the image of v, — 1 in F,[I',].) Since

¢’ has nonzero image under the natural reduction map () : Z,[I[';,] — F,[I';,] and
all ideals of F,,[I',,] are powers of I,,, we can define

A@#) =ordy, 0/ =max{j | & € I} € {0,1,...,p" — 1}.
(If n = 0 then 0 € Z,, and we define p(f) = ord,(#) and A(6) =0.)
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2.1.3. Equivalence of definitions. We now show that the definitions of refined Iwa-
sawa invariants given above agree.

Proposition 2.1. Letn > 0 and § € Z,[I',,]. If F' € Z,[T] is the unique polynomial
of degree < p™ mapping to 0 under the composition

A=Ay 57,0, T ym—1,

then A(0) = M(F) and u(0) = pw(F). In particular, the Iwasawa invariants defined
i §2.1.1 and §2.1.2 agree.

Proof. The case n = 0 is clear, so suppose n > 1. Write § = p“?¢" for some
0" € Zy[I'y). Let Fp € Z,[T] be a representative of the image of ¢’ in A,,, so
F = p*DFy mod w,. By the division algorithm, we can choose Fj such that
deg Fpr < p", in which case the degree of F forces the equality F = pH(?) Fy, in
Z,[T). Since 0 = (v, — 1) D" mod p for some ¢” € Z,[T,], the commutativity
of the diagram

Zpl'y)] — A,

|

Fplln] —— Fp[T]/(wn),

where the horizontal maps are v, — 1 + T and the vertical maps are reduction
mod p, implies that Fp = T*® Fy, mod p for some Fyn € O[T] of degree < p™.
Hensel’s lemma [11, §II Lemma 4.6] now gives a factorization Fpr = DU in Z,[T],
where D,U € O[T)] are such that degD = A(#) and D = T*®) mod p (so D is
distinguished), and U = Fy» mod p (so U € A* since the constant term of Fy»
does not vanish mod p by maximality of A\(d)). Tt follows that F' = p*(®) DU and
by uniqueness of the Weierstrass decomposition (4), we obtain p(f) = u(F') and
A(0) = A(F). O

2.1.4. Relating invariants in A and A,,. The following lemma is known in the lit-
erature (see [14, Remark 4.3]), though we outline a proof for completeness.

Lemma 2.2. Letn >0 and F € A. If A\(F) < p™ then the Iwasawa invariants of
F and 7, (F) agree.

Proof. We may assume pu(F) = 0. Use the division algorithm to write
(5) F =w,Qn + Fy.
If u(F,) were positive then (5) implies

F=T""Q, mod p,

which contradicts the fact that A(F) < p™. Hence we must have p(F,) = 0. From
(4), we can write F = (T*) 4 pFo)U for some Fy € Z,[T] of degree < \(F).
Combining this decomposition with (5) yields

F, =T""U —1P" Q) mod p,

but since U is a unit and A(F) < p"*, U — TP"~2F)Q, must also be a unit. It
follows that A(F},) = A(F). O
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3. BOUNDING THE p-INVARIANT

Let E/Q be an elliptic curve of conductor Ng and fix a prime p of good reduction
such that a, = 0.

3.1. Mazur-Tate elements. Let LF € A and 6,, € Q[T] denote the plus/minus
p-adic L-functions and Mazur-Tate elements for E, as defined in §§2.9 and 6.15 of
[13], respectively. The definition of both Lljf and 6,, depend on a choice of complex
periods Q% € C. We henceforth assume that Q§ are p-cohomological periods for
E, in the sense of [16, §2.2]. The choice of cohomological periods ensures that the
coefficients of 8,, are p-integral (cf. [16, Remark 2.2]), thus we can view each 6,, as
an element of the localization Z,)[T] C Q[T

We now relate the Iwasawa invariants of 6,, to those of L;,t by showing that the
even Mazur-Tate elements recover the minus invariants of the p-adic L-function,
and vice-versa. Let ¢; = qo = 0 and define for n > 2 the sequence

0 — pn—l_p7l—2+...+p—1 n even,
n pn—l_pn—2+...+p2—p n odd.
Let )\f and u;,t denote the Iwasawa invariant of L;,t.

Proposition 3.1. If n > 0 is even (resp., odd) and A, < p™ — qn (resp., Af <
p" — qn), then
M(en) = N?a
NSEDS
where + is opposite the parity of n.

+ qn;

Proof. This follows from the argument of [4, page 3|, which we reproduce in brief
here. Let &,, = sgn(—1)" denote the parity of n. By [13, Proposition 6.18], we have

(6) On = w, "L, " mod wy,.

Here
wh = C,u(1+7)  and  w, = [[ ®,(1+7),

1<i<n 1<i<n

i even i odd
where @, (T') is the p’th cyclotomic polynomial. Since A(®p»(1+T)) = p"™ —p" 1,
we have )\(wg L, 8") = ¢ + A, °". As the sequence p" — ¢, tends to infinity, we
may therefore take n large enough so that /\(w*

nE"L;E") < p". The result now
follows from Lemma 2.2. O

Remark 3.2. The formula for A-invariants in Proposition 3.1 can also be found in
[12, §5], [16, Theorem 4.1], and [17, Corollary 8.9], where it is instead deduced from
a 3-term compatibility relation (see [16, Proposition 2.5], for example) satisfied by
Magzur-Tate elements.

We now fix an integer £ > 0 and let X*(F, ¢) denote the set of all good super-
singular primes p > 3 for which )\f =/

Remark 3.3. It is conjectured [7, Conjecture 3.17] that AF coincides with the
Mordell-Weil rank on a density 1 set of good supersingular primes, thus one expects
X*(E, ?) to have density 0 except when ¢ = rp.
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Corollary 3.4. Fizn > 1. For all but finitely many p € X*(E, (), we have

M;::: = N(en)
where + is opposite the parity of n.

Proof. Since /\;7‘E = {, we can take p large enough so that )\;t < p"™ — qy. For such p,
Proposition 3.1 yields the desired result. ([

3.2. Modular symbols. Let f be the cuspidal newform attached to E via mod-
ularity. For r € Q, recall the modular symbols of [9] defined by
r* = = < (2)dz +

= f (z)dz)
0
For odd primes p we have by definition (see [13, Definition 6.15])

n log., a
0n = Z [a/p" T #1% e Zp['n).
a€(Z/pt1z)>

100

-r

Here 0 < log, (a) < p"—1is the unique integer for which a = w(a)(14p)'*& (@) mod p"*1,
where w : (Z/p"17Z)* — Z, is the mod p cyclotomic character (sending a mod prtl

to the (p — 1)st root of unity w(a) € Z,; with w(a) = a mod p.) Write p,_; for the

set of (p — 1)st roots of unity in Z, and if a € Z,, define [a/p"]F = [a/p™]T where

a = a mod p”.

Lemma 3.5. Let p be an odd prime of good reduction. For any n > 0 we have
i1+
L n( + p)’
u(0n) = | _min _ ord, ( > [ | )
NEMp—1

Proof. Since log,, (a) = log, (b) if and only if aw(a) ™" = bw(b) ™! mod p™*!, we have

p'—1 i+
_ nd+p)’1"
g N e
The result now follows from Definition 2.1.2. O

Lemma 3.6. Let n > 0 and C' € R. For all but finitely many primes p, if a €
(Z)p"H1Z)* then
+
a
)C[pn+1:|

Proof. By Chakravarthy’s bound [2, Proposition 4.1], there are constants ¢; and ca
depending only on the conductor of E (and not p) such that for any = € Q,

<p.

[[2]T| < ¢1 + ¢ log(denominator(z)).

The result now follows by letting z = a/p"*! and taking p large enough so that
c1 + ez log(pttt) < - O

Lemma 3.7. Let p be an odd prime of good reduction. There is a constant ng
depending only on Ng such that if n > ng then

1+p)7]"
GZ |:n(pn+f) :| ?é 0
NEKp—1

for some 0 < j <p"—1.
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Proof. Since p is a good prime, a result of Chinta [3, Theorem 2] guarantees the
existence of an integer ng (depending only on Ng and not on p) such that if n > ng
and y is a Dirichlet character of conductor p™ then L(E,x,1) # 0. Let x be an
even Dirichlet character of p-power order and conductor p™ with n > ng. Setting
v =1+ p, we now have

p"—1 i1+ +
| mv? a
O ] I SRR ] ]
J=0 n€pp-1 a€(Z/pnt1z)*
L(E,x,1)
Of

=7(X)

£0.

Here 7(x) is a Gauss sum and the middle equality above is due to [10, (8.6)]. It
follows that there is some 0 < j < p™ — 1 for which

3 x(nvﬂd[plﬁr—x(vj) ) {pTiT#O,

NEMUp—1 NEMp—1

where the middle equality follows from the fact that x has p-power order and 7 is
a (p — 1)st root of unity. The result follows. O

3.3. Main result. We now prove our main theorem. First, we give a bound on
the p-invariants of Mazur-Tate elements.

Proposition 3.8. There is a constant ng depending only on Ng such that if n > ng
then p(0,) < 1 for all but finitely many primes p.

Proof. Let ng be as in Lemma 3.7 and take n > ng, so that
i1+
n(1+p)’
(8) > |:pn+1 #0
NEUp—1
holds for all good primes p > 2 and some 0 < j < p” — 1. Note the sum in (8) is the
Jjth coefficient of #,, when written in the form (7). In particular, since 6,, € Z,)[T],
this sum is a rational number whose denominator is d,, not divisible by p. Thus
dn e, (1 +p)?/p"H1* is a nonzero integer, and from Lemma 3.6 we can
take p large enough so that
i1+

n(1+p)’

0w ¥ s

NEUp_1 NEMp—1

+
<(p-1p<p’

g [ +p)]
n pn+1

It now follows that

1+p)7]* (1 +p)]*
ordp< Z [77( ntf) } ) = ord, (dn Z 777( ntf) } ) <.
némp b P nepps b P

From Lemma 3.5, we now have that p(6,) < 1. O

Remark 3.9. It is interesting to note that the bound in Proposition 3.8 applies
to both ordinary and supersingular primes. In particular, if p is an ordinary prime
then by [16, (4)] we have pi;, = 11(0,,(fa)) for n > 0, where p,, = p(L;") and f, is the
p-stabilization of f to level pN at a root « of the Hecke polynomial X? — a,X + p.
It is therefore tempting to try to deduce Chakravarthy’s result [2, Theorem 1.3]
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that p, < 1 for all but finitely many p from Proposition 3.8, however this does
not immediately follow since the Iwasawa invariants of 6,,(E) and 0,,(f,) need not
always agree (see [16, Example 3.4]).

Proof of Theorem 1.1. Fix £ > 0. It suffices to show that for all but finitely
many primes p € X (E, /), we have u;t < 1. By Proposition 3.8, there exists an
odd integer n* and an even integer n~, neither of which depends on p, such that
1(0,+) < 1 holds for all but finitely many p. But by Corollary 3.4, for either choice
of sign * € {+, —} we have uy = 1u(60,~) for all but finitely many p € X*(E£,¢). O
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