This is a ``preproof'' accepted article for *Canadian Mathematical Bulletin* This version may be subject to change during the production process. DOI: 10.4153/S000843952500013X

A BOUND ON THE μ -INVARIANTS OF SUPERSINGULAR ELLIPTIC CURVES

RYLAN GAJEK-LEONARD

ABSTRACT. Let E/\mathbb{Q} be an elliptic curve and let p be a prime of good supersingular reduction. Attached to E are pairs of Iwasawa invariants μ_p^{\pm} and λ_p^{\pm} which encode arithmetic properties of E along the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} . A well-known conjecture of B. Perrin-Riou and R. Pollack asserts that $\mu_p^{\pm} = 0$. We provide support for this conjecture by proving that for any $\ell \geq 0$, we have $\mu_p^{\pm} \leq 1$ for all but finitely many primes p with $\lambda_p^{\pm} = \ell$. Assuming a recent conjecture of D. Kundu and A. Ray, our result implies that $\mu_p^{\pm} \leq 1$ holds on a density 1 set of good supersingular primes for E.

1. INTRODUCTION

Let E/\mathbb{Q} be an elliptic curve and fix a prime p of good reduction. Attached to E is the p-primary Selmer group $\operatorname{Sel}(E/\mathbb{Q}_{\operatorname{cyc}})$, where $\mathbb{Q}_{\operatorname{cyc}}$ denotes the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} . This group fits into the exact sequence

(1)
$$0 \to E(\mathbb{Q}_{cyc}) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to \operatorname{Sel}(E/\mathbb{Q}_{cyc}) \to \operatorname{III}(E/\mathbb{Q}_{cyc}) \to 0,$$

where III denotes the p-part of the Shafarevich-Tate group, and therefore encodes many arithmetic properties of E along the cyclotomic line.

If p is a prime of ordinary reduction then $\operatorname{Sel}(E/\mathbb{Q}_{\operatorname{cyc}})$ is cotorsion as an Iwasawa module (see [6, Theorem 17.4]) and its characteristic ideal is therefore generated by a polynomial $L_p^{\operatorname{alg}} \in \mathbb{Z}_p[T]$. The algebraic Iwasawa invariants $\lambda_p^{\operatorname{alg}}$ and $\mu_p^{\operatorname{alg}}$ measure the degree and p-divisibility of L_p^{alg} , respectively. If E[p] is irreducible as a $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ -module, a well-known conjecture of Greenberg [5, Conjecture 1.11] asserts that $\mu_p^{\operatorname{alg}} = 0$.

If p is a prime of supersingular reduction then $\operatorname{Sel}(E/\mathbb{Q}_{\operatorname{cyc}})$ is no longer cotorsion, however Kobayashi [8] introduced signed Selmer groups $\operatorname{Sel}^{\pm}(E/\mathbb{Q}_{\operatorname{cyc}})$ which are cotorsion and encode analogous arithmetic data. In particular, the characteristic ideals of $\operatorname{Sel}^{\pm}(E/\mathbb{Q}_{\operatorname{cyc}})$ are generated by polynomials $L_{p,\operatorname{alg}}^{\pm} \in \mathbb{Z}_p[T]$ which have associated pairs of Iwasawa invariants $\mu_{p,\operatorname{alg}}^{\pm}$ and $\lambda_{p,\operatorname{alg}}^{\pm}$. In the supersingular setting, E[p] is automatically irreducible and it is similarly conjectured (see [13, Conjecture 6.3] and [12, Conjecture 7.1]) that $\mu_{p,\operatorname{alg}}^{\pm} = 0$. Recently, Chakravarthy [2, Theorem 1.3] made progress towards Greenberg's

Recently, Chakravarthy [2, Theorem 1.3] made progress towards Greenberg's conjecture by proving that $\mu_p^{\text{alg}} \leq 1$ for all but finitely many primes of good ordinary reduction. In this article, we prove a similar result in the supersingular setting.

Theorem 1.1. Let $\ell \ge 0$ and $* \in \{+, -\}$. Then $\mu_{p,an}^* \le 1$ for all but finitely many good supersingular primes p with $\lambda_{p,an}^* = \ell$.

²⁰²⁰ Mathematics Subject Classification. Primary 11R23.

Key words and phrases. Iwasawa theory, elliptic curves, p-adic L-functions.

R. GAJEK-LEONARD

In the above theorem, $\lambda_{p,\mathrm{an}}^{\pm}$ and $\mu_{p,\mathrm{an}}^{\pm}$ denote the Iwasawa invariants attached to the *analytic* p-adic L-functions $L_{p,\mathrm{an}}^{\pm} \in \mathbb{Z}_p[\![T]\!]$ defined by Pollack in [13]. The construction of these p-adic L-functions requires $a_p = 0$, which is automatically true when p > 3. The main conjecture of Iwasawa theory in this setting asserts that $L_{p,\mathrm{an}}^{\pm}$ and $L_{p,\mathrm{alg}}^{\pm}$ generate the same ideal in $\mathbb{Z}_p[\![T]\!]$, and in particular that

(2)
$$\lambda_{p,\text{alg}}^{\pm} = \lambda_{p,\text{an}}^{\pm}$$
 and $\mu_{p,\text{alg}}^{\pm} = \mu_{p,\text{an}}^{\pm}$.

Thus, Theorem 1.1 provides support for the vanishing of $\mu_{p,\text{alg}}^{\pm}$.

Remark 1.2. The main conjecture is known to hold in many cases: the CM case was established by Pollack and Rubin [15], and Kobayashi [8, Theorem 1.3] proved the containment $(L_{p,\mathrm{an}}^{\pm}) \subseteq (L_{p,\mathrm{alg}}^{\pm})$ for non CM curves. A proof of the full supersingular main conjecture was recently announced by Burungale, Skinner, Tian, and Wan [1, Theorem 1.2].

We henceforth assume (2) and write λ_p^{\pm} , μ_p^{\pm} to mean either algebraic or analytic invariants. Letting r_E denote the Mordell-Weil rank of E, Kundu and Ray conjecture [7, Conjecture 3.17] that $\lambda_p^{\pm} = r_E$ on a density 1 set of good supersingular primes. Assuming this conjecture, the condition on λ -invariants in Theorem 1.1 could be removed and one would have the bound $\mu_p^{\pm} \leq 1$ on a density 1 set of good supersingular primes for E.

We remark that if $r_E = 0$ then [7, Theorem 3.8] implies that both λ_p^{\pm} and μ_p^{\pm} vanish for all but finitely many primes p (in fact, $\operatorname{Sel}^{\pm}(E/\mathbb{Q}_{\operatorname{cyc}}) = 0$ for these primes). Thus, the primary contribution of Theorem 1.1 is in providing support for the vanishing of μ_p^{\pm} in the positive rank case. We also note that, under some mild assumptions, it is known [7, Lemma 3.3] that $\lambda_p^{\pm} \ge r_E$ for all good supersingular primes p > 2, thus the cases where $\ell < r_E$ in Theorem 1.1 are mostly vacuous.

The crux of Chakravarthy's proof in the ordinary setting is constructing a bound (which holds for all but finitely many p) on the size of the modular symbols defining the ordinary p-adic L-function. In the supersingular case, the signed p-adic Lfunctions are defined via a decomposition theorem of Pollack [13, Theorem 5.6], and in particular they are not as immediately understood in terms of modular symbols. The approach taken here is to instead apply Chakravarthy's bound to the sequence of Mazur-Tate elements θ_n for E (which are defined using modular symbols), where one can show (see Proposition 3.8) that there exists an integer n_0 such that for all but finitely many primes p,

(3)
$$\mu(\theta_n) \le 1$$
, for all $n \ge n_0$.

The lower bound n_0 depends only on the conductor of E (and not on p). We then relate the Iwasawa invariants of the Mazur-Tate elements to those of the signed p-adic L-functions in order to deduce Theorem 1.1.

The assumption on λ -invariants in Theorem 1.1 comes from the fact that, while one can show that $\mu(\theta_n) = \mu_p^*$ for n large enough of fixed parity (see Proposition 3.1), in this case the lower bound on n in the asymptotic depends on both p and λ_p^{\pm} . The idea is that if we assume λ_p^{\pm} does not vary with p then it is possible to take $p \gg 0$ so that $\mu(\theta_n) = \mu_p^*$ holds for any fixed n, and in particular for the n_0 appearing in (3). 1.1. Acknowledgements. We are grateful to A. Chakravarthy, J. Hatley, A. Lei, and the anonymous referee for their helpful comments in the preparation of this article.

2. Iwasawa invariants

Fix a prime p and let F be a nonzero power series in $\Lambda = \mathbb{Z}_p[\![T]\!]$. By the Weierstrass preparation theorem [18, Theorem 7.3] there are unique nonnegative integers λ and μ such that

(4)
$$F = p^{\mu} DU,$$

for some distinguished polynomial $D \in \mathbb{Z}_p[T]$ of degree λ and some $U \in \Lambda^{\times}$. (Recall that a polynomial $D \in \mathbb{Z}_p[T]$ is called *distinguished* if $D \equiv T^{\deg D} \mod p$.) In terms of the coefficients of $F = \sum_{i \geq 0} a_i T^i$, we have

$$\mu = \min\{\operatorname{ord}_p(a_i) \mid i \ge 0\},\$$
$$\lambda = \min\{i \mid \operatorname{ord}_p(a_i) = \mu\}.$$

2.1. Refined Iwasawa invariants. Let $\Gamma \cong \mathbb{Z}_p$ be the Galois group of the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} and let $\Gamma_n = \Gamma/\Gamma^{p^n} \cong \mathbb{Z}/p^n\mathbb{Z}$ denote the Galois group of its *n*th-layer. Let $\omega_n = (1+T)^{p^n} - 1$ and $\Lambda_n = \Lambda/(\omega_n)$. Fixing a topological generator $\gamma \in \Gamma$, one has isomorphisms $\Lambda \cong \mathbb{Z}_p[\Gamma]$ and $\Lambda_n \cong \mathbb{Z}_p[\Gamma_n]$ induced by the map $\gamma \mapsto 1 + T$. Refined Iwasawa invariants are those attached to elements of Λ_n . We now give two definitions of refined Iwasawa invariants – both useful in different contexts – and then show that they are equivalent.

2.1.1. Definition via the division algorithm. Since $\Lambda = \lim_{\leftarrow} \Lambda_n$, for each $n \ge 0$ there is a projection map $\pi_n : \Lambda \twoheadrightarrow \Lambda_n$, $F \mapsto F \mod \omega_n$, and we can define the Iwasawa invariants of $\pi_n(F)$ as follows. Since ω_n is a distinguished polynomial, the division algorithm for distinguished polynomials in Λ allows us to write

$$F = \omega_n Q_n + F_n$$

for some unique $Q_n \in \Lambda$ and a polynomial $F_n \in \mathbb{Z}_p[T]$ of degree $< p^n$. Define

$$\lambda(\pi_n(F)) = \lambda(F_n),$$

$$\mu(\pi_n(F)) = \mu(F_n).$$

2.1.2. Definition via augmentation ideals. Following [14] and [16], one can define the Iwasawa invariants of $\theta \in \mathbb{Z}_p[\Gamma_n]$ as follows. For each $n \geq 1$, the element $\gamma_n = \gamma \mod \Gamma^{p^n}$ generates Γ_n and we define the μ -invariant of $\theta = \sum_{j=0}^{p^n-1} c_j \gamma_n^j$ by

$$\mu(\theta) = \min_{0 \le j \le p^{n-1}} \operatorname{ord}_p(c_j).$$

For the λ -invariant, let $\theta' = p^{-\mu(\theta)}\theta \in \mathbb{Z}_p[\Gamma_n]$ and let I_n be the augmentation ideal of $\mathbb{F}_p[\Gamma_n]$. (Thus, I_n is the ideal generated by the image of $\gamma_n - 1$ in $\mathbb{F}_p[\Gamma_n]$.) Since θ' has nonzero image under the natural reduction map $\overline{(\cdot)} : \mathbb{Z}_p[\Gamma_n] \to \mathbb{F}_p[\Gamma_n]$ and all ideals of $\mathbb{F}_p[\Gamma_n]$ are powers of I_n , we can define

$$\lambda(\theta) = \operatorname{ord}_{I_n} \overline{\theta'} = \max\{j \mid \overline{\theta'} \in I_n^j\} \in \{0, 1, \dots, p^n - 1\}.$$

(If n = 0 then $\theta \in \mathbb{Z}_p$ and we define $\mu(\theta) = \operatorname{ord}_p(\theta)$ and $\lambda(\theta) = 0$.)

2.1.3. *Equivalence of definitions*. We now show that the definitions of refined Iwasawa invariants given above agree.

Proposition 2.1. Let $n \ge 0$ and $\theta \in \mathbb{Z}_p[\Gamma_n]$. If $F \in \mathbb{Z}_p[T]$ is the unique polynomial of degree $< p^n$ mapping to θ under the composition

$$\Lambda \twoheadrightarrow \Lambda_n \xrightarrow{\cong} \mathbb{Z}_p[\Gamma_n], \quad T \mapsto \gamma_n - 1,$$

then $\lambda(\theta) = \lambda(F)$ and $\mu(\theta) = \mu(F)$. In particular, the Iwasawa invariants defined in §2.1.1 and §2.1.2 agree.

Proof. The case n = 0 is clear, so suppose $n \ge 1$. Write $\theta = p^{\mu(\theta)}\theta'$ for some $\theta' \in \mathbb{Z}_p[\Gamma_n]$. Let $F_{\theta'} \in \mathbb{Z}_p[T]$ be a representative of the image of θ' in Λ_n , so $F \equiv p^{\mu(\theta)}F_{\theta'} \mod \omega_n$. By the division algorithm, we can choose $F_{\theta'}$ such that $\deg F_{\theta'} < p^n$, in which case the degree of F forces the equality $F = p^{\mu(\theta)}F_{\theta'}$ in $\mathbb{Z}_p[T]$. Since $\theta' \equiv (\gamma_n - 1)^{\lambda(\theta)}\theta'' \mod p$ for some $\theta'' \in \mathbb{Z}_p[\Gamma_n]$, the commutativity of the diagram

$$\mathbb{Z}_p[\Gamma_n] \longrightarrow \Lambda_n$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{F}_p[\Gamma_n] \longrightarrow \mathbb{F}_p[T]/(\omega_n)$$

where the horizontal maps are $\gamma_n \mapsto 1 + T$ and the vertical maps are reduction mod p, implies that $F_{\theta'} \equiv T^{\lambda(\theta)} F_{\theta''} \mod p$ for some $F_{\theta''} \in \mathcal{O}[T]$ of degree $\langle p^n$. Hensel's lemma [11, §II Lemma 4.6] now gives a factorization $F_{\theta'} = DU$ in $\mathbb{Z}_p[T]$, where $D, U \in \mathcal{O}[T]$ are such that deg $D = \lambda(\theta)$ and $D \equiv T^{\lambda(\theta)} \mod p$ (so D is distinguished), and $U \equiv F_{\theta''} \mod p$ (so $U \in \Lambda^{\times}$ since the constant term of $F_{\theta''}$ does not vanish mod p by maximality of $\lambda(\theta)$). It follows that $F = p^{\mu(\theta)}DU$ and by uniqueness of the Weierstrass decomposition (4), we obtain $\mu(\theta) = \mu(F)$ and $\lambda(\theta) = \lambda(F)$.

2.1.4. Relating invariants in Λ and Λ_n . The following lemma is known in the literature (see [14, Remark 4.3]), though we outline a proof for completeness.

Lemma 2.2. Let $n \ge 0$ and $F \in \Lambda$. If $\lambda(F) < p^n$ then the Iwasawa invariants of F and $\pi_n(F)$ agree.

Proof. We may assume $\mu(F) = 0$. Use the division algorithm to write

(5)
$$F = \omega_n Q_n + F_n.$$

If $\mu(F_n)$ were positive then (5) implies

$$F \equiv T^{p^n} Q_n \mod p,$$

which contradicts the fact that $\lambda(F) < p^n$. Hence we must have $\mu(F_n) = 0$. From (4), we can write $F = (T^{\lambda(F)} + pF_0)U$ for some $F_0 \in \mathbb{Z}_p[T]$ of degree $< \lambda(F)$. Combining this decomposition with (5) yields

$$F_n \equiv T^{\lambda(F)}(U - T^{p^n - \lambda(F)}Q_n) \mod p,$$

but since U is a unit and $\lambda(F) < p^n$, $U - T^{p^n - \lambda(F)}Q_n$ must also be a unit. It follows that $\lambda(F_n) = \lambda(F)$.

3. Bounding the μ -invariant

Let E/\mathbb{Q} be an elliptic curve of conductor N_E and fix a prime p of good reduction such that $a_p = 0$.

3.1. Mazur-Tate elements. Let $L_p^{\pm} \in \Lambda$ and $\theta_n \in \mathbb{Q}[T]$ denote the plus/minus p-adic L-functions and Mazur-Tate elements for E, as defined in §§2.9 and 6.15 of [13], respectively. The definition of both L_p^{\pm} and θ_n depend on a choice of complex periods $\Omega_E^{\pm} \in \mathbb{C}$. We henceforth assume that Ω_E^{\pm} are p-cohomological periods for E, in the sense of [16, §2.2]. The choice of cohomological periods ensures that the coefficients of θ_n are p-integral (cf. [16, Remark 2.2]), thus we can view each θ_n as an element of the localization $\mathbb{Z}_{(p)}[T] \subseteq \mathbb{Q}[T]$.

We now relate the Iwasawa invariants of θ_n to those of L_p^{\pm} by showing that the *even* Mazur-Tate elements recover the *minus* invariants of the *p*-adic *L*-function, and vice-versa. Let $q_1 = q_0 = 0$ and define for $n \ge 2$ the sequence

$$q_n = \begin{cases} p^{n-1} - p^{n-2} + \dots + p - 1 & n \text{ even,} \\ p^{n-1} - p^{n-2} + \dots + p^2 - p & n \text{ odd.} \end{cases}$$

Let λ_p^{\pm} and μ_p^{\pm} denote the Iwasawa invariant of L_p^{\pm} .

Proposition 3.1. If $n \ge 0$ is even (resp., odd) and $\lambda_p^- < p^n - q_n$ (resp., $\lambda_p^+ < p^n - q_n$), then

$$\mu(\theta_n) = \mu_p^{\pm},$$

$$\lambda(\theta_n) = \lambda_p^{\pm} + q_n,$$

where \pm is opposite the parity of n.

Proof. This follows from the argument of [4, page 3], which we reproduce in brief here. Let $\varepsilon_n = \operatorname{sgn}(-1)^n$ denote the parity of n. By [13, Proposition 6.18], we have

(6)
$$\theta_n \equiv \omega_n^{-\varepsilon_n} L_p^{-\varepsilon_n} \mod \omega_n.$$

Here

$$\omega_n^+ = \prod_{\substack{1 \leq i \leq n \\ i \text{ even}}} \Phi_{p^i}(1+T) \quad \text{ and } \quad \omega_n^- = \prod_{\substack{1 \leq i \leq n \\ i \text{ odd}}} \Phi_{p^i}(1+T),$$

where $\Phi_{p^i}(T)$ is the p^i th cyclotomic polynomial. Since $\lambda(\Phi_{p^n}(1+T)) = p^n - p^{n-1}$, we have $\lambda(\omega_n^{-\varepsilon_n}L_p^{-\varepsilon_n}) = q_n + \lambda_p^{-\varepsilon_n}$. As the sequence $p^n - q_n$ tends to infinity, we may therefore take *n* large enough so that $\lambda(\omega_n^{-\varepsilon_n}L_p^{-\varepsilon_n}) < p^n$. The result now follows from Lemma 2.2.

Remark 3.2. The formula for λ -invariants in Proposition 3.1 can also be found in [12, §5], [16, Theorem 4.1], and [17, Corollary 8.9], where it is instead deduced from a 3-term compatibility relation (see [16, Proposition 2.5], for example) satisfied by Mazur-Tate elements.

We now fix an integer $\ell \ge 0$ and let $X^{\pm}(E, \ell)$ denote the set of all good supersingular primes p > 3 for which $\lambda_p^{\pm} = \ell$.

Remark 3.3. It is conjectured [7, Conjecture 3.17] that λ_p^{\pm} coincides with the Mordell-Weil rank on a density 1 set of good supersingular primes, thus one expects $X^{\pm}(E, \ell)$ to have density 0 except when $\ell = r_E$.

https://doi.org/10.4153/S000843952500013X Published online by Cambridge University Press

Corollary 3.4. Fix $n \ge 1$. For all but finitely many $p \in X^{\pm}(E, \ell)$, we have

$$\mu_p^{\pm} = \mu(\theta_n)$$

where \pm is opposite the parity of n.

Proof. Since $\lambda_p^{\pm} = \ell$, we can take p large enough so that $\lambda_p^{\pm} < p^n - q_n$. For such p, Proposition 3.1 yields the desired result.

3.2. Modular symbols. Let f be the cuspidal newform attached to E via modularity. For $r \in \mathbb{Q}$, recall the modular symbols of [9] defined by

$$[r]^{\pm} = \frac{\pi i}{\Omega_E^{\pm}} \left(\int_r^{i\infty} f(z) dz \pm \int_{-r}^{i\infty} f(z) dz \right).$$

For odd primes p we have by definition (see [13, Definition 6.15])

$$\theta_n = \sum_{a \in (\mathbb{Z}/p^{n+1}\mathbb{Z})^{\times}} [a/p^{n+1}]^+ \gamma_n^{\log_{\gamma} a} \in \mathbb{Z}_p[\Gamma_n].$$

Here $0 \leq \log_{\gamma}(a) \leq p^n - 1$ is the unique integer for which $a \equiv \omega(a)(1+p)^{\log_{\gamma}(a)} \mod p^{n+1}$, where $\omega : (\mathbb{Z}/p^{n+1}\mathbb{Z})^{\times} \to \mathbb{Z}_p^{\times}$ is the mod p cyclotomic character (sending $a \mod p^{n+1}$ to the (p-1)st root of unity $\omega(a) \in \mathbb{Z}_p^{\times}$ with $\omega(a) \equiv a \mod p$.) Write μ_{p-1} for the set of (p-1)st roots of unity in \mathbb{Z}_p^{\times} , and if $\alpha \in \mathbb{Z}_p$ define $[\alpha/p^n]^{\pm} = [a/p^n]^{\pm}$ where $\alpha \equiv a \mod p^n$.

Lemma 3.5. Let p be an odd prime of good reduction. For any $n \ge 0$ we have

$$\mu(\theta_n) = \min_{0 \le j \le p^n - 1} \operatorname{ord}_p \left(\sum_{\eta \in \boldsymbol{\mu}_{p-1}} \left[\frac{\eta(1+p)^j}{p^{n+1}} \right]^+ \right).$$

Proof. Since $\log_{\gamma}(a) = \log_{\gamma}(b)$ if and only if $a\omega(a)^{-1} = b\omega(b)^{-1} \mod p^{n+1}$, we have

(7)
$$\theta_n = \sum_{j=0}^{p^n - 1} \sum_{\eta \in \boldsymbol{\mu}_{p-1}} \left[\frac{\eta (1+p)^j}{p^{n+1}} \right]^+ \gamma_n^j.$$

The result now follows from Definition 2.1.2.

Lemma 3.6. Let $n \ge 0$ and $C \in \mathbb{R}$. For all but finitely many primes p, if $a \in (\mathbb{Z}/p^{n+1}\mathbb{Z})^{\times}$ then

$$\left| C \left[\frac{a}{p^{n+1}} \right]^+ \right| < p.$$

Proof. By Chakravarthy's bound [2, Proposition 4.1], there are constants c_1 and c_2 depending only on the conductor of E (and not p) such that for any $x \in \mathbb{Q}$,

$$|[x]^+| \le c_1 + c_2 \log(\operatorname{denominator}(x)).$$

The result now follows by letting $x = a/p^{n+1}$ and taking p large enough so that $c_1 + c_2 \log(p^{n+1}) < \frac{p}{|C|}$.

Lemma 3.7. Let p be an odd prime of good reduction. There is a constant n_0 depending only on N_E such that if $n \ge n_0$ then

$$\sum_{p \in \boldsymbol{\mu}_{p-1}} \left[\frac{\eta (1+p)^j}{p^{n+1}} \right]^+ \neq 0$$

for some $0 \le j \le p^n - 1$.

Proof. Since p is a good prime, a result of Chinta [3, Theorem 2] guarantees the existence of an integer n_0 (depending only on N_E and not on p) such that if $n \ge n_0$ and χ is a Dirichlet character of conductor p^n then $L(E,\chi,1) \neq 0$. Let χ be an even Dirichlet character of p-power order and conductor p^n with $n \ge n_0$. Setting v = 1 + p, we now have

$$\sum_{j=0}^{p^n-1} \sum_{\eta \in \boldsymbol{\mu}_{p-1}} \chi(\eta v^j) \left[\frac{\eta v^j}{p^{n+1}} \right]^+ = \sum_{\substack{a \in (\mathbb{Z}/p^{n+1}\mathbb{Z})^{\times} \\ a \in (\overline{\chi}/p^{n+1}\mathbb{Z})^{\times}}} \chi(a) \left[\frac{a}{p^{n+1}} \right]^+$$
$$= \tau(\overline{\chi}) \frac{L(E, \chi, 1)}{\Omega_E^+}$$
$$\neq 0.$$

Here $\tau(\chi)$ is a Gauss sum and the middle equality above is due to [10, (8.6)]. It follows that there is some $0 \le j \le p^n - 1$ for which

$$\sum_{\eta \in \boldsymbol{\mu}_{p-1}} \chi(\eta v^j) \left[\frac{\eta v^j}{p^{n+1}} \right]^+ = \chi(v^j) \sum_{\eta \in \boldsymbol{\mu}_{p-1}} \left[\frac{\eta v^j}{p^{n+1}} \right]^+ \neq 0,$$

where the middle equality follows from the fact that χ has p-power order and η is a (p-1)st root of unity. The result follows.

3.3. Main result. We now prove our main theorem. First, we give a bound on the μ -invariants of Mazur-Tate elements.

Proposition 3.8. There is a constant n_0 depending only on N_E such that if $n \ge n_0$ then $\mu(\theta_n) \leq 1$ for all but finitely many primes p.

Proof. Let n_0 be as in Lemma 3.7 and take $n \ge n_0$, so that

(8)
$$\sum_{\eta \in \boldsymbol{\mu}_{p-1}} \left[\frac{\eta (1+p)^j}{p^{n+1}} \right]^+ \neq 0$$

holds for all good primes p > 2 and some $0 \le j \le p^n - 1$. Note the sum in (8) is the *j*th coefficient of θ_n when written in the form (7). In particular, since $\theta_n \in \mathbb{Z}_{(p)}[T]$, this sum is a rational number whose denominator is d_n not divisible by p. Thus $d_n \sum_{\eta \in \mu_{p-1}} [\eta(1+p)^j/p^{n+1}]^+$ is a nonzero integer, and from Lemma 3.6 we can take p large enough so that

$$\left| d_n \sum_{\eta \in \boldsymbol{\mu}_{p-1}} \left[\frac{\eta (1+p)^j}{p^{n+1}} \right]^+ \right| \le \sum_{\eta \in \boldsymbol{\mu}_{p-1}} \left| d_n \left[\frac{\eta (1+p)^j}{p^{n+1}} \right]^+ \right| < (p-1)p < p^2.$$

It now follows that

$$\operatorname{ord}_p\left(\sum_{\eta\in\boldsymbol{\mu}_{p-1}}\left[\frac{\eta(1+p)^j}{p^{n+1}}\right]^+\right) = \operatorname{ord}_p\left(d_n\sum_{\eta\in\boldsymbol{\mu}_{p-1}}\left[\frac{\eta(1+p)^j}{p^{n+1}}\right]^+\right) \le 1.$$

Lemma 3.5, we now have that $\mu(\theta_n) \le 1.$

From Lemma 3.5, we now have that $\mu(\theta_n) \leq 1$.

Remark 3.9. It is interesting to note that the bound in Proposition 3.8 applies to both ordinary and supersingular primes. In particular, if p is an ordinary prime then by [16, (4)] we have $\mu_p = \mu(\theta_n(f_\alpha))$ for $n \gg 0$, where $\mu_p = \mu(L_p^{an})$ and f_α is the *p*-stabilization of f to level pN at a root α of the Hecke polynomial $X^2 - a_p X + p$. It is therefore tempting to try to deduce Chakravarthy's result [2, Theorem 1.3]

that $\mu_p \leq 1$ for all but finitely many p from Proposition 3.8, however this does not immediately follow since the Iwasawa invariants of $\theta_n(E)$ and $\theta_n(f_\alpha)$ need not always agree (see [16, Example 3.4]).

Proof of Theorem 1.1. Fix $\ell \geq 0$. It suffices to show that for all but finitely many primes $p \in X^{\pm}(E, \ell)$, we have $\mu_p^{\pm} \leq 1$. By Proposition 3.8, there exists an odd integer n^+ and an even integer n^- , neither of which depends on p, such that $\mu(\theta_{n^{\pm}}) \leq 1$ holds for all but finitely many p. But by Corollary 3.4, for either choice of sign $* \in \{+, -\}$ we have $\mu_p^* = \mu(\theta_{n^*})$ for all but finitely many $p \in X^*(E, \ell)$. \Box

References

- A. Burungale, C. Skinner, Y. Tian, and X. Wan, Zeta elements for elliptic curves and applications, preprint (2024), arXiv:2409.01350.
- [2] A. Chakravarthy, The Iwasawa μ -invariants of elliptic curves over \mathbb{Q} , preprint (2024), arXiv:2408.07826.
- [3] G. Chinta, Analytic ranks of elliptic curves over cyclotomic fields, Journal für die reine und angewandte mathematik (2002), 13–24.
- [4] R. Gajek-Leonard, Iwasawa invariants of modular forms with $a_p = 0$, preprint (2023), arXiv: 2302.05748
- [5] R. Greenberg, Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997), Lecture Notes in Math., vol. 1716 (1999), Springer, Berlin, pp. 51–144.
- [6] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, Astérisque, no. 295 (2004), 117–290.
- [7] D. Kundu and A. Ray, Statistics for Iwasawa Invariants of Elliptic Curves, Trans. Amer. Math. Soc., 374 (2021), no. 11, 7945–7965.
- [8] S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., 152 (2003), no. 1, 1–36.
- B. Mazur, J. Tate, Refined conjectures of the "Birch and Swinnerton-Dyer type", Duke Math. J., 54 (1987), no. 2, 711–750.
- [10] B. Mazur, J. Tate, J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48.
- [11] J. Neukirch, Algebraic Number Theory, Springer (1999)
- [12] B. Perrin-Riou, Arithmétique des courbes elliptiques à réduction supersingulière en p, Experiment. Math., 12 (2003), no. 2, 155–186.
- [13] R. Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523–558.
- [14] R. Pollack, An algebraic version of a theorem of Kurihara, J. Number Theory, 110 (2005), pp. 164-177.
- [15] R. Pollack and K. Rubin, The main conjecture for CM elliptic curves at supersingular primes, Ann. of Math., 159 (2004), no. 1, 447-464.
- [16] R. Pollack and T. Weston, Mazur-Tate elements of nonordinary modular forms, Duke Math. J., 156 (2011), no. 3, 349–385.
- [17] F. Sprung, On pairs of p-adic L-functions for weight-two modular forms, Algebra & Number Theory, 11 (2017), no. 4, 885–928.
- [18] L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics 83, Springer, New York, 1982.

DEPARTMENT OF MATHEMATICS, UNION COLLEGE, BAILEY HALL 206B, SCHENECTADY, NY 12308, USA

Email address: gajekler@union.edu