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Rings in which Every Element is a Sum of
Two Tripotents

Zhiling Ying, Tamer Koşan, and Yiqiang Zhou

Abstract. Let R be a ring. _e following results are proved. (1) Every element of R is a sum of an
idempotent and a tripotent that commute if and only if R has the identity x6

= x4 if and only if
R ≅ R1 × R2 , where R1/J(R1) is Boolean with U(R1) a group of exponent 2 and R2 is zero or a
subdirect product of Z3 ’s. (2) Every element of R is either a sum or a diòerence of two commuting
idempotents if and only if R ≅ R1 ×R2 , where R1/J(R1) is Boolean with J(R1) = 0 or J(R1) = {0, 2}
and R2 is zero or a subdirect product of Z3 ’s. (3) Every element of R is a sum of two commuting
tripotents if and only if R ≅ R1 × R2 × R3 , where R1/J(R1) is Boolean with U(R1) a group of
exponent 2, R2 is zero or a subdirect product of Z3 ’s, and R3 is zero or a subdirect product of Z5 ’s.

1 Introduction

In 1988, Hirano and Tominaga [2] investigated the rings for which every element is
a sum of two idempotents and proved that every element of a ring R is a sum of two
commuting idempotents if and only if R has the identity x3 = x; that is, R = A × B
where A is a Boolean ring and B is zero or a subdirect product ofZ3’s. It can be shown
that every element of a ring is a sum of two commuting idempotents if and only if
every element is a diòerence of two commuting idempotents. _us, one is naturally
led to ask which rings have the property that every element is a sum or a diòerence of
two commuting idempotents. For any idempotent e, both e and −e are tripotents, i.e.,
the elements equal to their cubes. One is further led to two more general questions.
Which rings have the property that every element is a sum of an idempotent and a
tripotent that commute? Which rings have the property that every element is a sum
of two commuting tripotents? _e goal of this paper is to present complete answers
to those three questions. So far, no structure theorem exists for the rings for which
every element is a sum of two idempotents. We prove a structural result to reduce that
situation to the case of characteristic 2.

_roughout, rings R are associative with 1. For a ring R, the characteristic, the
Jacobson radical, the set of units and the set of nilpotents of a ring R are denoted by
ch(R), J(R), U(R), and Nil(R), respectively. As usual,Mn(R) and Tn(R) stand for
the n× n matrix ring and n× n upper triangular matrix ring, respectively, over R. We
write Zn for the ring of integers modulo n. A reduced ring is a ring without nonzero
nilpotents. An abelian ring is a ring for which every idempotent is central.
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2 Motivation and Questions

In [2], Hirano and Tominaga proved the following interesting result.

_eorem 2.1 ([2]) _e following are equivalent for a ring R.
(i) Every element of R is a sum of two commuting idempotents.
(ii) R is commutative and every element of R is a sum of two idempotents.
(iii) R has the identity x3 = x.

We can add one condition to the equivalence list.

Proposition 2.2 Let R be a ring. _en every element of R is a diòerence of two com-
muting idempotents if and only if R has the identity x3 = x.

Proof (⇒). Let b ∈ Nil(R). Write b = e− f where e , f are commuting idempotents.
_en b+ f = (b+ f )2 = b2+2b f + f , showing that b(1−2 f ) = b2. So b = b2(1−2 f )−1 =
b2(1 − 2 f ). As b is nilpotent, it follows that b = 0. So R is a reduced ring. _us,
R is a subdirect product of the domains {Rα}. As an image of R, each Rα has the
same property as R. _at is, every element of Rα is a diòerence of two commuting
idempotents. But Rα has only the trivial idempotents, so Rα = {0, 1,−1} (and possibly
−1 = 1). Hence, Rα has the identity x3 = x. It follows that R has the identity x3 = x.

(⇐). If R has the identity, then R is a subdirect product of Z2’s and Z3’s. Hence,
R = R1 × R2, where R1 is a Boolean ring (a subdirect product of Z2’s) and R2 is a
subdirect product of Z3’s. Clearly, every element of R1 is a diòerence of two commut-
ing idempotents. For y ∈ R2, as 3 = 0, y = 1

2 (y
2 + y) − 1

2 (y
2 − y) is a diòerence of

two commuting idempotents. It follows that every element of R is a diòerence of two
commuting idempotents.

_e following question is naturally motivated.

Question 2.3 What can be said about the rings for which every element is either a
sum or a diòerence of two commuting idempotents?

An element e of a ring is called a tripotent if e3 = e. For any idempotent e, both e
and −e are tripotents. _us, the following questions are also motivated.

Question 2.4 What can be said about the rings for which every element is a sum of
an idempotent and a tripotent that commute?

Question 2.5 What can be said about the rings for which every element is a sum of
two commuting tripotents?

In this paper, we give answers to these three questions.
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3 Elements as Sums of an Idempotent and a Tripotent that Com-
mute

Deûnition 3.1 A ring is called a (strong) SIT-ring if every element is a sum of an
idempotent and a tripotent (that commute).

Proposition 3.2 Any direct product of (strong) SIT-rings is a (strong) SIT-ring. Any
factor ring of a (strong) SIT-ring is a (strong) SIT-ring.

Lemma 3.3 If R is a ring for which 3 = e + f where e2 = e and f 3 = f , then 24 = 0
in R.

Proof From 3 = e+ f , we see e f = f e, so 9 = (e+ f )2 = e+2e f + f 2. _us, 2(e+ f ) =
6 = 9−3 = (e+2e f + f 2)−(e+ f ) = 2e f + f 2− f . It follows that 2e+3 f −2e f − f 2 = 0.
_us, 0 = (2e + 3 f − 2e f − f 2)e f = 2e f + 3e f 2 − 2e f 2 − e f 3 = e f + e f 2. So,
24 = 33−3 = (e+ f )3−3 = (e+3e f +3e f 2+ f )−3 = [(e+ f )−3]+3(e f +e f 2) = 0.

Lemma 3.4 A ring R is a (strong) SIT-ring if and only if R ≅ R1 × R2 where R1 , R2
are (strong) SIT-rings, 23 = 0 in R1, and 3 = 0 in R2.

Proof _e suõciency is clear by Proposition 3.2. For the necessity, assume that R
is a (strong) SIT-ring. _en, by Lemma 3.3, 233 = 0. _us, 23R ∩ 3R = 0 and R =
23R + 3R. By the Chinese Remainder _eorem, R ≅ R/23R × R/3R. Let R1 = R/23R
and R2 = R/3R. _en R1 , R2 are (strong) SIT-rings by Proposition 3.2 with 23 = 0 in
R1 and 3 = 0 in R2, and R ≅ R1 × R2.

_e argument in the proof of the next lemma is well known for li�ing idempotents
modulo a nil ideal (see [4, p. 319]). As the lemma is stated slightly diòerently than
usual, we include its proof for the reader’s convenience.

Lemma 3.5 Let a ∈ R. If a2 − a is nilpotent, then there exists a monic polynomial
θ(t) ∈ Z[t] such that θ(a)2 = θ(a) and a − θ(a) is nilpotent.

Proof Let b = 1− a. We have ab = ba = a− a2, so (ab)m = 0 for some integer m ≥ 1.
_en

1 = (a + b)2m = a2m + r1a2m−1b + ⋅ ⋅ ⋅ + rmambm + rm+1am−1bm+1 + ⋅ ⋅ ⋅ + b2m ,

where the r i ’s are integers. Let

e = a2m + r1a2m−1b + ⋅ ⋅ ⋅ + rmambm and f = rm+1am−1bm+1 + ⋅ ⋅ ⋅ + b2m .

Since ambm = bmam = 0, we have e f = 0, and so e = e(e + f ) = e2. So far, all
the arguments are the same as in [4, p. 319]. It is clear that e = θ(a) for a monic
polynomial θ(t) overZ. Since ab = ba is nilpotent, e−a2m = r1a2m−1b+⋅ ⋅ ⋅+rmambm

is nilpotent. As a − a2 is nilpotent, we infer that a − e = (a − a2m) − (e − a2m) =
(a − a2) + (a2 − a3) + ⋅ ⋅ ⋅ + (a2m−1 − a2m) − (e − a2m) is nilpotent.
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Following [1], an element of a ring is called strongly nil clean if it is the sum of an
idempotent and a nilpotent element that commute with each other, and the ring is
called strongly nil clean if each of its elements is strongly nil clean.

_eorem 3.6 _e following are equivalent for a ring R.
(i) R is a strong SIT-ring with 2 ∈ J(R).
(ii) R is a strong SIT-ring with 23 = 0.
(iii) R has the identity x6 = x4 and 2 ∈ J(R).
(iv) R/J(R) is Boolean and j2 = 2 j for all j ∈ J(R).
(v) R/J(R) is Boolean and U(R) is a group of exponent 2.

Proof (i)⇒(ii). _is is clear by Lemma 3.4.
(ii)⇒(iii). For a ∈ R, write a = e + f where e2 = e , f 3 = f , and e f = f e. _en

a4 = (e + f )4 = e4 + 4e3 f + 6e2 f 2 + 4e f 3 + f 4

= e + 4e f + 6e f 2 + 4e f + f 2 = e + 6e f 2 + f 2 ,
a6 = a4a2 = (e + 6e f 2 + f 2)(e + 2e f + f 2)

= (e + 6e f 2 + e f 2) + (2e f + 12e f + 2e f ) + (e f 2 + 6e f 2 + f 2)
= e + 6e f 2 + f 2 .

So a6 = a4 holds.
(iii)⇒(iv). For j ∈ J(R), we have (1 − j)6 = (1 − j)4, so (1 − j)2 = 1 as (1 − j)4 ∈

U(R). It follows that j2 = 2 j. Hence, we have proved that j2 = 2 j for all j ∈ J(R).
From 26 = 24, we obtain 243 = 0. As 2 ∈ J(R), 3 ∈ U(R), so we infer 24 = 0. For
a ∈ R, we have a6 = a4, so (a − a2)4 = a4(1 − a)4 = a4(1 − 4a + 6a2 − 4a3 + a4) =
a4 −4a5 +6a6 −4a7 + a8 = a4 −4a5 +6a4 −4a5 + a4 = 8(a4 − a5), which is nilpotent
as 2 is nilpotent. _us, a− a2 is nilpotent. By Lemma 3.5, there exists e2 = e such that
ae = ea and a − e is nilpotent. _is shows that a = e + (a − e) is strongly nil clean.
_erefore, we have proved that R is strongly nil clean. By [3], R/J(R) is Boolean.

(iv)⇒(v). For u ∈ U(R), u2 − u ∈ J(R), since R/J(R) is Boolean, so u ∈ 1 + J(R);
hence,U(R) = 1+ J(R). Write u = 1− j for j ∈ J(R). _en u2 = (1− j)2 = 1−2 j+ j2 = 1,
as j2 = 2 j. Hence, U(R) is a group of exponent 2.

(v)⇒(i). For j ∈ J(R), we have (1− j)2 = 1 by (v), so j2 = 2 j. Replacing j by j(1+ j),
we have ( j(1 + j))2 = 2 j(1 + j). We infer that j(1 + j) j = 2 j; that is, j2 + j3 = 2 j. It
follows that j3 = 0. Hence, J(R) is nil. Since R/J(R) is Boolean, R is strongly nil clean
by [3]. _erefore, for any a ∈ R, there exist b ∈ Nil(R) and e2 = e such that eb = be
and a − 1 = e + b. By (v), (1 + b)2 = 1, so 1 + b is a tripotent. Hence, a = e + (1 + b)
is a sum of an idempotent and a tripotent that commute. So R is a strong SIT-ring.
Moreover, since R/J(R) is Boolean, 2 ∈ J(R) as required.

Example 3.7 _e ring T2(Z2) is a strong SIT-ring, but it is not commutative.

Corollary 3.8 Every strong SIT-ring with 2 ∈ J(R) is strongly nil clean.

Proposition 3.9 A ring R is a strong SIT-ring with 3 = 0 if and only if R is a subdirect
product of Z3’s.
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Proof _e suõciency is clear. For the necessity, let a ∈ R, and write a = e + f where
e2 = e, f 3 = f , and e f = f e. _en a3 = (e + f )3 = e3 + 3e2 f + 3e f 2 + f 3 = e + f = a.
Hence, R has the identity x3 = x. Since 3 = 0 in R, R is a subdirect product ofZ3’s.

_eorem 3.10 _e following are equivalent for a ring R.
(i) R is a strong SIT-ring.
(ii) R has the identity x6 = x4.
(iii) R is one of the following types:

(a) R/J(R) is Boolean and U(R) is a group of exponent 2.
(b) R is a subdirect product of Z3’s.
(c) R ≅ A × B, where A/J(A) is Boolean with U(A) a group of exponent 2, and

B is a subdirect product of Z3’s.

Proof (i)⇔(iii). _is follows from Lemma 3.4, _eorem 3.6, and Proposition 3.9.
(iii)⇒(ii). _eorem 3.6 indicates that (iii)(a) implies (ii), and (iii)(b) clearly implies

(ii). _erefore, (iii)(c) also implies (ii).
(ii)⇒(i). From 26 = 24, we see that 24(22 − 1) = 243 = 0. From 36 = 34, we obtain

2334 = 0. _erefore, gcd(243, 2334) = 0, i.e., 233 = 0. _is shows that R = R1 × R2,
where R1 ≅ R/23R and R2 ≅ R/3R. _us, R1 has the identity x6 = x4 with 2 ∈ J(R1).
So R1 is a strong SIT-ring by _eorem 3.6. On the other side, R2 has the identity
x6 = x4 with 3 = 0. Replacing x by 1 + x in x6 = x4, we can obtain x3 = x. Hence, R2
has the identity x3 = x, and so R2 is a strong SIT-ring. _us, R = R1 × R2 is a strong
SIT-ring.

Example 3.11 Let n ≥ 2. _e matrix ring Mn(R) is not a strong SIT-ring for any
ring R.

Proof Let A = ( X 0
0 In−2 ) where X = ( 1 1

1 0 ) . _en A2 /= In , so A6 /= A4. Hence,
Mn(R) is not a strong SIT-ring by _eorem 3.10.

Example 3.12 Let n ≥ 2. _e upper triangular matrix ring Tn(R) is a strong SIT-
ring if and only if R is Boolean and n = 2.

Proof (⇐). _is follows from _eorem 3.6(iv).
(⇒). It follows from the hypothesis that R is a strong SIT-ring. So, by _eo-

rem 3.10, R = A × B, where A/J(A) is Boolean with j2 = 2 j for all j ∈ J(A), and
B is zero or a subdirect product of Z3’s. _us, Tn(R) ≅ Tn(A) ×Tn(B). As Tn(B) is
a strong SIT-ring with characteristic 3, we infer from _eorem 3.10 that the Jacobson
radical ofTn(B) is zero. _is shows that B = 0, and so R/J(R) is Boolean with j2 = 2 j
for all j ∈ J(R). By _eorem 3.6, we have 0 = E2

1n = 2E1n , showing 2 = 0 in R. _us,
again by_eorem 3.6, α2 = 2α = 0 for all α ∈ J(Tn(R)). _is clearly shows that n = 2.
Hence, it must be that n = 2. Finally, for j ∈ J(R), from ( j 1

0 0 )
2 = 0, we obtain that

j = 0. So R is Boolean.

https://doi.org/10.4153/CMB-2016-009-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-009-0


666 Z. Ying, T. Koşan, and Y. Zhou

4 Elements as Sums or Differences of Two Commuting Idempotents

Next we apply the results above to determine the rings for which every element is
either a sum or a diòerence of two commuting idempotents. _e following corollary
is an immediate consequence of _eorem 3.6.

Corollary 4.1 Let 2 = 0 in R. _en every element of R is either a sum or a diòerence
of two commuting idempotents if and only if R is Boolean.

Lemma 4.2 Suppose that every element of R is either a sum or a diòerence of two
commuting idempotents. If 0 /= 2 ∈ J(R), then the following hold.
(i) 4 = 0.
(ii) For any j ∈ J(R), j = 2e for some e2 = e. In particular, J(R) = 2R.
(iii) 2J(R) = 0 and J(R)2 = 0.
(iv) Nil(R) = J(R) and U(R) = {1 − 2e ∶ e2 = e ∈ R}.
(v) R is abelian.
(vi) J(R) = {0, 2}.

Proof (i). _ere exist two commuting idempotents e , f such that 3 = e + f or 3 =
e − f .

If 3 = e+ f , then 2(e+ f ) = 6 = 9−3 = (e+ f )2−(e+ f ) = (e+2e f+ f )−(e+ f ) = 2e f .
So 2e f = (2e f )e = 2(e + f )e = 2e + 2e f , showing 2e = 0. Similarly, 2 f = 0. Hence,
6 = 2(e + f ) = 0, so 2 = 0 as 3 ∈ U(R).

If 3 = e− f , then 2(e− f ) = 6 = 9−3 = (e− f )2−(e− f ) = −2e f +2 f , so 2(e− f )e =
(−2e f + 2 f )e, showing 2e = 2e f . _us, 9 = e − 2e f + f = e − 2e + f = f − e = −3,
giving 12 = 0. So 4 = 0 as 3 ∈ U(R).

(ii) and (iii). Let j ∈ J(R). _ere exist two commuting idempotents e , f such that
j = e + f or j = e − f . If j = e + f , then j − e = ( j − e)2 = j2 − 2 je + e, showing
that j − 2e − j2 + 2 je = 0. _at is, ( j − 2e)(1 − j) = 0. So j = 2e as 1 − j ∈ U(R). If
j = e − f , then j + f = ( j + f )2 = j2 + 2 j f + f , showing that j − j2 − 2 j f = 0. _at
is, j(1 − 2 f − j) = 0. As 1 − 2 f − j ∈ U(R), we have j = 0 = 2 ⋅ 0. _erefore, we have
proved j = 2g for some g2 = g. So 2 j = 4g = 0 by (i). For j′ ∈ J(R), as above, j′ = 2h
for some h2 = h ∈ R. Hence, j j′ = (2g)(2h) = 4(gh) = 0 by (i).

(iv). By _eorem 3.6, R/J(R) is Boolean. So Nil(R) = J(R) and U(R) = 1 + J(R).
If u ∈ U(R), then u = 1 − j for some j ∈ J(R). By (ii), j = 2e for some e2 = e. Hence,
u = 1 − 2e.

(v). Let e2 = e ∈ R. Note that eR(1− e), (1− e)Re ⊆ J(R), so eR(1− e) ⋅ (1− e)Re =
(1 − e)Re ⋅ eR(1 − e) = 0. Consider the Peirce decomposition

R = ( eRe eR(1 − e)
(1 − e)Re (1 − e)R(1 − e))

with respect to the idempotent e. Let z ∈ eR(1 − e). By (ii), ( 0 z
0 0 ) = 2( a x

y b ) , where

(a x
y b) = (a x

y b)
2

= ( a2 ax + xb
ya + by b2 ) .
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_us, z = 2x = 2(ax + xb) = (2a)x + x(2b) = 0x + x0 = 0. So eR(1 − e) = 0 and,
similarly, (1 − e)Re = 0. So e is central.

(vi) Assume 0 /= j ∈ J(R) with j /= 2. So, by (ii), j = 2e where e is a non-trivial
idempotent. Since e is central, R = A × B, where A = eR and B = (1 − e)R. Note
that 0 /= 2e ∈ J(A) and 0 /= 2(1 − e) ∈ J(B). _erefore, by _eorem 2.1, there exists
a ∈ A such that a is not a sum of two commuting idempotents, and, by Proposition
2.2, there exists b ∈ B such that b is not a diòerence of two commuting idempotents.
_us, r ∶= (a, b) ∈ R is neither a sum nor a diòerence of two commuting idempotents,
a contradiction.

_eorem 4.3 _e following are equivalent for a ring R.
(i) Every element of R is either a sum or a diòerence of two commuting idempotents

with 2 ∈ J(R).
(ii) R/J(R) is Boolean with J(R) = 0 or J(R) = {0, 2}.

Proof (i)⇒(ii). Given (i), we see that R/J(R) is Boolean by _eorem 3.6, and that
J(R) = 0 or J(R) = {0, 2} by Corollary 4.1 and Lemma 4.2.

(ii)⇒ (i). By (ii), 2 ∈ J(R) and 4 = 0. Moreover, R is strongly nil clean by [3]. Let
a ∈ R. _en a = j + e where j ∈ J(R) and e2 = e. We next show that a is either a sum
or a diòerence of two commuting idempotents. We can certainly assume that j /= 0.
So j = 2 and a = 2 + e. As 2e ∈ J(R), we have 2e = 0 or 2e = 2.

If 2e = 0, then e = −e, so a = 2 + e = 1 + (1 − e) is a sum of two commuting
idempotents. If 2e = 2, then a = 2 + e = (1 − e) + (1 + 2e) = (1 − e) + 3 = (1 − e) − 1 is
a diòerence of two commuting idempotents.

_eorem 4.4 _e following are equivalent for a ring R.
(i) Every element of R is either a sum or a diòerence of two commuting idempotents.
(ii) R is one of the following types:

(a) R/J(R) is Boolean with J(R) = 0 or J(R) = {0, 2}.
(b) R is a subdirect product of Z3’s.
(c) R ≅ R1 × R2, where R1/J(R1) is Boolean with J(R1) = 0 or J(R1) = {0, 2}

and R2 is a subdirect product of Z3’s.

Proof (i)⇒(ii). By _eorem 3.10, R ≅ R1 × R2, where 2 ∈ J(R1) and R2 is zero or
a subdirect product of Z3’s. Since every element of R1 is either a sum or a diòerence
of two commuting idempotents, we infer, by _eorem 4.3, that R1/J(R1) is Boolean
with J(R1) = 0 or J(R1) = {0, 2}.

(ii)⇒(i). _is is by _eorems 4.3 and 2.1 and Proposition 2.2.

5 Elements as Sums of Two Commuting Tripotents

_e following lemma can easily be proved.

Lemma 5.1 _e R = ∏Rα be direct product of rings. _en every element of R is a
sum of two commuting tripotents if and only if, for each α, every element of Rα is a sum
of two commuting tripotents.
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_eorem 5.2 _e following are equivalent for a ring R.
(i) Every element of R is a sum of two commuting tripotents.
(ii) R ≅ R1 × R2 × R3, where R1 is zero or R1/J(R1) is Boolean with U(R1) a group of

exponent 2, R2 is zero or a subdirect product of Z3’s, and R3 is zero or a subdirect
product of Z5’s.

Proof (i)⇒(ii). Write 3 = e + f where e , f are (commuting) tripotents. _en

8(e + f ) = 24 = 33 − 3 = (e + f )3 − (e + f ) = 3e2 f + 3e f 2 .

Multiplying both sides by e f gives 8e2 f + 8e f 2 = 3e f 2 + 3e2 f , i.e., 5(e2 f + e f 2) = 0.
So 23 ⋅ 3 ⋅ 5 = 5 ⋅ 24 = 3 ⋅ 5(e2 f + e f 2) = 0. Hence,

R = R1 × R2 × R3 , where R1 ≅ R/23R, R2 ≅ R/3R, and R3 ≅ R/5R.

_en 8 = 0 in R1. For a ∈ R1, write a = e + f where e , f are commuting tripotents.
_en we have

a4 = e4 + 4e3 f + 6e2 f 2 + 4e f 3 + f 4 = e2 + 8e f + 6e2 f 2 + f 2 = e2 + 6e2 f 2 + f 2

and

a6 = a4a2 = (e2 + 6e2 f 2 + f 2)(e + f )2 = e2 + 16e f + 14e2 f 2 + f 2 = e2 + 6e2 f 2 + f 2 .

So a6 = a4. Hence, R1 has the identity x6 = x4. By _eorem 3.6, R1/J(R1) is Boolean
and U(R1) is a group of exponent 2.
Assume that R2 /= 0. We have 3 = 0 in R2. If b2 = 0 in R2, write b = e + f where

e , f are commuting tripotents in R2. _en we have 0 = (e + f )3 = e3 + 3e2 f + 3e f 2 +
f 3 = e + f = b. _is shows that R2 is a reduced ring, so R2 is a subdirect product
of the domains {Rα}. Since Rα has only the trivial tripotents 0, 1,−1, we infer that
Rα = {−2,−1, 0, 1, 2}. But 3 = 0 in Rα , so −2 = 1 and −1 = 2. _us, Rα = {0, 1, 2},
which is isomorphic to Z3. Hence, R2 is a subdirect product of Z3’s.
Assume that R3 /= 0. We have 5 = 0 in R3. If b2 = 0 in R3, write b = e+ f where e , f

are commuting tripotents in R3. _en 0 = (e + f )5 = e5 + 5e4 f + 10e3 f 2 + 10e2 f 3 +
5e f 4 + f 5 = e + 5e2 f + 10e f 2 + 10e2 f + 5e f 2 + f = e + f = b. _is shows that R3 is
a reduced ring, so R3 is a subdirect product of the domains {Rα}. Since Rα has only
the trivial tripotents 0, 1,−1, we infer that Rα = {−2,−1, 0, 1, 2}. But 5 = 0 in Rα , so
Rα ≅ Z5. Hence, R3 is a subdirect product of Z5’s.

(ii)⇒(i). Let R1 , R2 , R3 be given as in (ii). By_eorem 3.10, every element of R1×R2
is a sum of two commuting tripotents. _us, we only need to show that every ele-
ment of R3 is a sum of two commuting tripotents. Let us assume that R is a subdi-
rect product of {Rα ∶ α ∈ Λ} where Rα = Z5 for all α ∈ Λ. So R is a subring of
∏α∈Λ Rα . Let x = (xα) ∈ R. _en Λ is a disjoint union of Λ0 , Λ1 , Λ2 , Λ3, and Λ4
such that xα = i if and only if α ∈ Λ i for i = 0, 1, 2, 3, 4. Without loss of general-
ity, we can denote x = (0Λ0 , 1Λ1 , 2Λ2 , 3Λ3 , 4Λ4). As x4 = (0Λ0 , 1Λ1 , 1Λ2 , 1Λ3 , 1Λ4) ∈ R,
y ∶= x − x4 = (0Λ0 , 0Λ1 , 1Λ2 , 2Λ3 , 3Λ4) ∈ R. As y4 = (0Λ0 , 0Λ1 , 1Λ2 , 1Λ3 , 1Λ4) ∈ R,
z ∶= y − y4 = (0Λ0 , 0Λ1 , 0Λ2 , 1Λ3 , 2Λ4) ∈ R. As z4 = (0Λ0 , 0Λ1 , 0Λ2 , 1Λ3 , 1Λ4) ∈ R,
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w ∶= z − z4 = (0Λ0 , 0Λ1 , 0Λ2 , 0Λ3 , 1Λ4) ∈ R. Let
e4 = (0Λ0 , 0Λ1 , 0Λ2 , 0Λ3 , 1Λ4) ∈ R,

e3 = z4 − e4 = (0Λ0 , 0Λ1 , 0Λ2 , 1Λ3 , 0Λ4) ∈ R,

e2 = y4 − e3 − e4 = (0Λ0 , 0Λ1 , 1Λ2 , 0Λ3 , 0Λ4) ∈ R,

e1 = x4 − e2 − e3 − e4 = (0Λ0 , 1Λ1 , 0Λ2 , 0Λ3 , 0Λ4) ∈ R.

_en
e = e2 + 4e3 = (0Λ0 , 0Λ1 , 1Λ2 , 4Λ3 , 0Λ4) ∈ R,
f = e1 + e2 + 4e3 + 4e4 = (0Λ0 , 1Λ1 , 1Λ2 , 4Λ3 , 4Λ4) ∈ R.

It can be seen that e3 = e, f 3 = f , e f = f e, and x = e + f . _is shows that every
element of R is a sum of two commuting tripotents.

If R ≅ R1 × R2 × R3 as given in _eorem 5.2, then R1 × R2 has the identity x6 = x4

and R3 has the identity x5 = x. So R has the identity x8 = x4. But a ring with identity
x8 = x4 need not be a strong SIT-ring.

Example 5.3 _e ring Z16 has the identity x8 = x4, but it is not a strong SIT-ring.

Proof Let R = Z16. _en R is local with J(R) = 2R. As 24 = 0, for any a ∈ J(R) we
have a4 = 0 and so a8 = a4. For any a ∈ R/J(R), we have a4 = 1, so a8 = a4. Hence,
R has the identity x8 = x4. But 42 = 0 /= 8 = 2 ⋅ 4, so R is not a strong SIT-ring by
_eorem 3.6.

Proposition 5.4 A ring R has the identity x8 = x4 with 2 ∈ J(R) if and only if R/J(R)
is Boolean, j4 = 0, 2 j2 = 4 j, and 8 j = 0 for all j ∈ J(R).

Proof (⇒). For j ∈ J(R), j8 = j4, so j4(1− j4) = 0. As 1− j4 ∈ U(R), we have j4 = 0.
Moreover, (1± j)8 = (1± j)4, so (1± j)4 = 1 as 1± j ∈ U(R). _us, 1+4 j+6 j2+4 j3+ j4 = 1
and 1 − 4 j + 6 j2 − 4 j3 + j4 = 1. _at is, 4 j + 6 j2 + 4 j3 = 0 = −4 j + 6 j2 − 4 j3 . We see
that 12 j2 = 0, so 4 j2 = 0 as 3 ∈ U(R). It follows that 4 j + 2 j2 = 0 = −4 j + 2 j2.
_erefore, 2 j2 = 4 j and 8 j = 0. To see that R/J(R) is Boolean, let a ∈ R. _en
(a − a2)4 = a4 − 4a5 + 6a6 − 4a7 + a8 = 2(a4 − 2a5 + 3a6 − 2a7), which is nilpotent
as 2 ∈ J(R). So a − a2 is a nilpotent. By Lemma 3.5, there exists e2 = e ∈ R such that
ae = ea and a− e is nilpotent. _us, a is strongly nil clean, and R is strongly nil clean.
By [3], R/J(R) is Boolean.

(⇐). For a ∈ R, we have a − a2 ∈ J(R) by hypothesis, so a − a2 is nilpotent. As
argued above, a is strongly nil clean; that is, a = j + e, where j ∈ Nil(R), e2 = e and
ea = ae. As R/J(R) is Boolean, j ∈ J(R). So j4 = 0, 2 j2 = 4 j, and 8 j = 0, showing
4 j2 = 0. _us, we have a4 = ( j + e)4 = j4 + 4 j3e + 6 j2e + 4 je + e = 2 j2e + 4 je + e =
8 je + e = e, and hence a8 = e2 = e = a4. So R has the identity x8 = x4. Moreover,
R/J(R) Boolean implies that 2 ∈ J(R).

_eorem 5.5 A ring R has the identity x8 = x4 if and only if R ≅ R1 × R2 × R3,
where R1/J(R1) is Boolean and j4 = 0, 2 j2 = 4 j, 8 j = 0 for all j ∈ J(R1), R2 is zero or a
subdirect product of Z3’s, and R3 is zero or a subdirect product of Z5’s.
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Proof (⇐). By Proposition 5.4, R1 has the identity x8 = x4. As R2 has the identity
x3 = x and R3 has the identity x5 = x, they both have the identity x8 = x4. Hence, R
has the identity x8 = x4.

(⇒). We have 28 = 24 in R, so 24 ⋅ 3 ⋅ 5 = 0 in R. Hence, R = R1 × R2 × R3, where
R1 ≅ R/24R, R2 ≅ R/3R and R3 ≅ R/5R. As R1 has the identity x8 = x4 and 2 ∈ J(R1),
by Proposition 5.4 we see that R1/J(R1) is Boolean, j4 = 0, 2 j2 = 4 j, and 8 j = 0 for all
j ∈ J(R).
Assume that R2 /= 0. We see that R2 has the identity x8 = x4 and 3 = 0. From

(x + 1)8 = (x + 1)4, we obtain

(5.1) x + x2 + x3 + x4 + 2x5 + x6 + 2x7 = 0.

From (x − 1)8 = (x − 1)4, we obtain

(5.2) −x + x2 − x3 + x4 − 2x5 + x6 − 2x7 = 0.

Adding (5.1) to (5.2), we obtain 2x2 + 2x4 + 2x6 = 0. So x2 + x4 + x6 = 0, giving
x3 + x5 + x7 = 0. Subtracting (5.2) from (5.1), we have 0 = 2x + 2x3 + x5 + x7 =
(2x + x3) + (x3 + x5 + x7) = 2x + x3. _is shows that x3 = −2x = x. So R2 has the
identity x3 = x, and hence R is a subdirect product of Z3’s.
Assume that R3 /= 0. We see that R3 has the identity x8 = x4 and 5 = 0. From

(x + 1)8 = (x + 1)4, we obtain

(5.3) −x + 2x2 + 2x3 + x5 + 3x6 + 3x7 = 0.

From (x − 1)8 = (x − 1)4, we obtain

(5.4) x + 2x2 + 3x3 + 4x5 + 3x6 + 2x7 = 0.

Adding (5.3) to (5.4), we obtain 4x2 + x6 = 0; that is,

(5.5) x6 = x2 .

Replacing x by 1+x in (5.5), we have 1+6x+15x2+20x3+15x4+6x5+x6 = 1+2x+x2.
_at is, x5 + x6 = x + x2, showing x5 = x. So R2 has the identity x5 = x, and hence R
is a subdirect product of Z5’s.

6 Discussions and Comments

So far, no structure theorem is available for the rings for which every element is a
sum of two idempotents, though some partial results were obtained in [2]. Here we
present a structural result that reduces the situation to the case of characteristic 2.

Proposition 6.1 _e following are equivalent for a ring R.
(i) Every element of R is a sum of two idempotents.
(ii) R ≅ R1 × R2, where ch(R1) = 2 and every element of R1 is a sum of two idempo-

tents, and R2 is zero or a subdirect product of Z3’s.

Proof (ii)⇒(i). _is is clear.
(i)⇒(ii). Given (i), write 3 = e + f where e , f are idempotents of R. _en e f = f e

and so 9 = (e + f )2 = e + 2e f + f = 3 + 2e f . _us, 2e f = 6 = 2(e + f ). It follows that
2e f = (2e f )e = 2(e + f )e = 2e + 2e f , showing that 2e = 0. Similarly, we have 2 f = 0.
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Hence, 6 = 2(e + f ) = 0. By the Chinese Remainder _eorem, R = R1 × R2, where
R1 ≅ R/2R and R2 ≅ R/3R. Of course, every element of R i is a sumof two idempotents
(i = 1, 2). Assume that R2 /= 0. If a2 = 0 where a ∈ R2, then by [2, Lemma 2], 4a = 0.
As 3R2 = 0, we infer a = 0. _us, R2 is a reduced ring, and hence an abelian ring. So,
by _eorem 2.1, R2 is a subdirect product of Z3’s.

_e next result improves [2, Corollary 1] by removing the assumption that R is
semiprime. Let C(R) denote the center of a ring R.

Corollary 6.2 Suppose that every element of R is a sum of two idempotents. _en
C(R) = A× B, where A is Boolean and B is zero or a subdirect product of Z3’s.

Proof By Proposition 6.1, R = R1 × R2, where ch(R1) = 2 and every element of
R1 is a sum of two idempotents, and R2 is zero or a subdirect product of Z3’s. So
C(R) = C(R1)×R2. Let a ∈ C(R1). Write a = e + f where e , f are idempotents of R1.
_en e f = f e, so a2 = e + 2e f + f = a as 2e f = 0. Hence, C(R1) is Boolean.

A Morita context is a 4-tuple ( A M
N B ) , where A, B are rings, AMB and BNA are

bimodules, and there exist context products M × N → A and N × M → B written
multiplicatively as (x , y) ↦ xy and (y, x) ↦ yx, such that ( A M

N B ) is an associative
ring with the obvious matrix operations. A Morita context ( A M

N B ) is called trivial if
the context products are trivial, i.e., MN = 0 and NM = 0. A trivial Morita context
( A M

N B ) with N = 0 is commonly called a formal triangular matrix ring. By [2], if A, B
are Boolean rings and M is an (A, B)-bimodule, then every element of ( A M

0 B ) is a
sum of two idempotents. Indeed, if T = ( A M

N B ) is a trivial Morita context with A, B
Boolean, then every element of T is a sum of two idempotents: For ( a x

y b ) ∈ T ,

(a x
y b) = ( 1 x

y 0) + (a − 1 0
0 b)

is a sum of two idempotents. Generally, for every element of ( A M
0 B ) to be a sum of

two idempotents, A, B need not be Boolean. For instance, one can show that, for a
Boolean ring B, every element of

(T2(B) M2(B)
0 T2(B)

) (≅ T4(B))

is a sum of two idempotents.

Question 6.3 Characterize the rings R with ch(R) = 2 such that every element of R
is a sum of two idempotents.

Let p be a prime. An element a in a ring is called a p-potent if ap = a. We end the
paper by raising the following question.

Question 6.4 What can be said about the rings for which every element is a sum of
two p-potents (that commute)?
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