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Abstract

In this article, we introduce an extended, freely available resource for the Romanian language, named
RoLEX. The dataset was developed mainly for speech processing applications, yet its applicability extends
beyond this domain. RoLEX includes over 330,000 curated entries with information regarding lemma, mor-
phosyntactic description, syllabification, lexical stress and phonemic transcription. The process of selecting
the list of word entries and semi-automatically annotating the complete lexical information associated with
each of the entries is thoroughly described.

The dataset’s inherent knowledge is then evaluated in a task of concurrent prediction of syllabification, lex-
ical stress marking and phonemic transcription. The evaluation looked into several dataset design factors,
such as the minimum viable number of entries for correct prediction, the optimisation of the minimum
number of required entries through expert selection and the augmentation of the input with morphosyn-
tactic information, as well as the influence of each task in the overall accuracy. The best results were
obtained when the orthographic form of the entries was augmented with the complete morphosyntac-
tic tags. A word error rate of 3.08% and a character error rate of 1.08% were obtained this way. We show
that using a carefully selected subset of entries for training can result in a similar performance to the per-
formance obtained by a larger set of randomly selected entries (twice as many). In terms of prediction
complexity, the lexical stress marking posed most problems and accounts for around 60% of the errors in
the predicted sequence.

Keywords: Lexical dataset; Romanian; Transformer; Concurrent lexical prediction

1. Introduction

Natural language processing (NLP) is increasingly present in all human-computer interaction
applications. Personal assistants, machine translation engines, chat bots or speech synthesis and
recognition systems enable a more immersive virtual experience. Yet all these applications rely
on the availability of high-quality language resources, as well as accurate automated knowledge
processing and extraction tools. The lack of any of these items hinders the development of
state-of-the-art applications in the target language or language group.

The fundamental text processing tasks refer to basic lexical annotations of an orthographic
transcript. The annotations commonly include lemmatisation, part-of-speech (POS) tagging and
phonemic transcription. However, it is also common to require syllabification, lexical stress
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Table 1. An example entry from the RoLEX dataset and the manner in which the
lexical information was validated. The example entry is for the word iarna, the
equivalent of the definite form of the English noun ‘winter’

Lexical information Example Validation method
Orthographic form iarna manual
Lemma iarnd manual
POS tag Ncfsry manual
Syllables iar.na automatic/manual
Stress i’arna automatic/manual
Phonemic transcription jarmna automatic/manual

marking or complete morphosyntactic descriptors (MSD). Some of the applications that can bene-
fit from the extended list of annotations include language learning interfaces, machine translation
tools or most prominently speech-based applications, and especially text-to-speech synthesis
(TTS) systems. For example, lemma and morphosyntactic information can help a machine
translation system distinguish between homographs in a specific context. Exposing the correct
phonemic transcription, lexical stress and syllabification sequence of a word can speed up the
learning process of a foreign language. Phonemic transcription is also essential in speech recogni-
tion systems, where the models generally learn representations of the speech signal at phone-level
(Zeineldeen et al. 2020). For TTS systems, the complete lexical annotation of the orthographic
transcript is essential, and many recent studies augment the text input with this annotation and,
as a result, enhance the naturalness and adequacy of the output speech (Peird-Lilja and Farris
2020; Taylor and Richmond 2020).

In this article, we describe the design and development of a large lexical dataset for Romanian
which includes all the information enumerated above and the evaluation of the dataset’s usability
in predicting different lexical tasks. The main contributions of our paper can be summarised as
follows:

[C1] We introduce RoLEX,? the largest freely available lexical dataset for Romanian with over
330,000 tokens. It includes information about lemma, POS, syllabification, lexical stress and
phonemic transcription; [C2] we thoroughly describe the process of:

(1) selecting the words in the dataset based on a speech corpus,

(2) annotating them automatically with reliable lemma and POS information and partially
reliable syllabification, lexical stress marking and phonemic transcription and

(3) validating, both automatically and manually, an important part of the entries: this was not
an entry-by-entry validation, which would have implied an extensive manual work effort
that we could not afford; instead, error patterns and entries with high error probability
were automatically identified and manually or automatically corrected.

An overview of the information contained in RoLEX and the manner in which it was obtained
and validated is presented in Table 1.

[C3] We analyse the accuracy of advanced neural network architectures in a task of concur-
rently predicting the syllabification, lexical stress marking and phonemic transcription from the
context-free orthographic form of a word or from the orthographic form plus additional POS or
MSD word tagging.

*The dataset can be found at the following URLs: www.racai.ro/p/reterom/results.html, https://github.com/adrianastan/
rolex.
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2. Related work
2.1. The Romanian language and Romanian lexical datasets

Romanian is an Indo-European Romance language with a rich history of Slavic, German, Turkish
and Hungarian influences. The Romance origin lends the highly inflected verb forms for per-
son, number, tense, mood, and voice, while a large number of Slavic loan words influence its
phonology.

With respect to the language particularities and their automated learning and prediction, Stan
and Giurgiu (2018) acknowledge the regularities of the Romanian language that allow for imple-
menting processing rules, but also enumerate the ambiguities that cannot be dealt with by these
rules. For example, Romanian has 7 base syllabification rules (DOOM 2005), but there are several
exceptions. Some are more general, like the hiatus-diphthong ambiguities or the different surfac-
ing of the letter i’ as a vocalic or non-vocalic element (Dinu, Niculae, and Sulea 2013). Others are
rather particular, like the ones generated by foreign or compound words.

The Romanian phonetic spelling is generally a direct mapping from the orthographic form.
Some exceptions are the two different sounds associated with letter X’ (/cs/ and/gz/), or the sev-
eral groups of letters (e.g., ‘ce’, ‘ci’, ‘ge’, ‘gi’, ‘che’, ‘chi’, ‘ghe’, ‘ghi’) that correspond to either a
sound or two depending on the right-hand side phonetic neighbourhood of these groups. At the
lexical level, non-homophone homographs are encountered. For example, the Romanian word
‘hain’ can be pronounced® as/h a j n @/ (syl. hai.ni, stress: h’aind, En. coat) or as/h a in @/ (syl.
ha.i.nd, stress: ha’ina, En. wicked). This example also illustrates the hiatus-diphthong ambiguity
that affects syllabification.

Even though it serves to distinguish between different lemmas or between different forms of
the same lemma, unlike other Romance languages such as Italian or Spanish, lexical stress is not
graphically marked in written Romanian.

Although it has a relatively large number of native speakers (around 25 million), Romanian is
still considered a low-resourced language in terms of digital resources and NLP tools (Trandabat
et al. 2012). In the recent initiative called European Language Grid (Rehm et al. 2020), Romanian
continues to be under-represented (with only 183 resources, tools and services) as compared to
English (3039), Spanish (789), French (809) or German (934).€

The available lexical resources include RoSyllabiDict, NaviRo and MaRePhor. RoSyllabiDict
(Barbu 2008) is a dictionary that contains syllabification and stress marking information for
525,534 word forms, corresponding to 65,000 lemmas. The resource was created by implementing
the standard set of Romanian syllabification rules, using an inventory of Romanian diphthongs
and triphthongs and the partial syllabification information provided in the database of the online
Romanian Explicative Dictionary — Dexonline.¢ Dexonline was also the source for stress marking
in RoSyllabiDict. The authors maintain that they performed partial validation of their resource at
syllabification level. NaviRo (Domokos, Buza, and Toderean 2012) consists of more than 100,000
words extracted from Dexonline and transcribed in their phonemic form using an artificial neu-
ral network-based method starting from a seed set of manually transcribed entries. The authors
report that they performed a manual check of the final dataset, but also mention that errors can
still be found. MaRePhor (Toma et al. 2017) is a dictionary that provides phonemic transcrip-
tion for 72,375 lemmas which make up the official list of the Romanian Scrabble Association.
Therefore, this resource does not account for morphological variations. Two other resources, the
Morphologic and Phonetic Dictionary of the Romanian Language (Diaconescu et al. 2015a) and
the Phonetic Dictionary of Romanian Syllables (Diaconescu et al. 2015b), are only available as
printed material.

bSee Section 3.2 for the conventions of the phonemic transcription used for RoLEX.
€As per December 12, 2021, in the ELG Release 2: https://live.european-language-grid.eu/catalogue/

dwww.dexonline.ro
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Given the scarcity of Romanian digital resources, as well as the disjoint information contained
therein, we considered necessary to aggregate the different lexical information already available
in some of the resources into a uniform dataset, with a principled bottom-up design and devel-
opment. Additional requirements refer to the broad coverage of both morphological and lexical
levels and the use of effective semi-automatic validation and correction steps.

2.1.1. Large lexicons for other languages

While for English the most known and used dataset is CMU Pronouncing Dictionary
(CMUDict),® whose development as an open-source lexicon for speech recognition research
started in the 90’s, similar lexical datasets were gradually developed for other languages: Phonltalia
(Goslin, Galluzzi, and Romani 2014) is a phonological lexicon for Italian that also includes syl-
labification and stress information, together with numerous lexical statistics for 120,000 word
forms; for French, there is a phonetic lexicon (de Mareiiil et al. 2000) comprising 310,332 word
forms corresponding to 27,873 unique lemmas, and 10,000 proper names, with information about
lemma, morphosyntactic description, automatically generated and partially corrected phonetic
transcription; for European Portuguese, the web interface Procura-PALavras (P-PAL) (Soares
et al. 2018) offers access to a lexical database based on a corpus of over 227 million words that
contains very rich information (including morphosyntactic information, stress, syllabification and
pronunciation) for around 208,000 word forms corresponding to approximately 53,000 lemmas;
ArabLEX (Halpern 2022) is a very large lexicon covering over 530 million general vocabulary and
proper noun words, with a variety of grammatical, morphological and phonological information,
including stress and phonemic-phonetic transcription; LC-STAR German Phonetic lexicon' has
102,169 entries (55,507 common word entries extracted from a corpus of over 15 million words,
46,662 proper names and 6,763 words representing specific vocabulary for applications con-
trolled by voice translated from English) with phonetic transcriptions given in SAMPA; the ILSP
Psycholinguistic Resource (IPLR) (Protopapas et al. 2012) is a Greek lexical database with 217,000
entries comprising automatically generated information about syllabification, stress and phonetic
transcription, while GreekLex2 (Kyparissiadis et al. 2017) is a lexical database that guarantees
accurate syllabification, orthographic information predictive of stress and phonetic information
for 35,000 words.

2.2. Lexical information prediction

To the best of our knowledge, the concurrent prediction and evaluation of all three lexical tasks
is performed only in van Esch, Chua, and Rao (2016) and Lérincz (2020). van Esch et al. (2016)
uses an in-house dataset to improve the phonemic transcription and lexical stress marking by
implicitly learning these tasks in a joint recurrent network-based sequence prediction. Ldrincz
(2020) evaluates recurrent and convolutional (CNN) networks’ performance in the concurrent
prediction for English (41.04% WER) and Romanian (13.36% WER).

However, there are many studies which address the automatic annotation of each lexical task
individually by employing different rule-based, traditional machine learning or deep learning
approaches. Within these studies, the main focus language is English. For example, (Pearson
et al. 2000) present decision tree-based methods for lexical stress and syllabification prediction. In
(Webster 2004; Dou et al. 2009), decision tree and Support Vector Machine methods are evaluated
for stress prediction and then used for grapheme to phoneme conversion modules in TTS systems.
The phonemic transcription of English is also widely studied, and all levels of complexity algo-
rithms were applied. The most recent approaches include neural sequence-to-sequence models, as

http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/
fhttps://catalogue.elra.info/en-us/repository/browse/ELRA-S0245/
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described in (Yao and Zweig 2015; Milde, Schmidt, and Kohler 2017; Chae et al. 2018; Yolchuyeva,
Németh, and Gyires-T6th 2019a). The reported word error rates (WER) are between 20% and
25% for the CMUDict dataset. An encoder-decoder model with attention (Toshniwal and Livescu
2016) and a convolutional architecture combined with n-grams (Rao et al. 2015) achieve similar
results when applied to the same dataset. Transformer-based architectures are proposed in Sun
et al. (2019); Yolchuyeva, Németh, and Gyires-T6th (2019b); Stan (2020) and slightly improve the
error rates. Sun et al. (2019) report a WER around 20% obtained with a model enriched through
knowledge distillation using unlabelled source words.

For Romanian, the three lexical tasks were also subject to a series of studies covering Marcus
Contextual Grammars (Dinu 2003), rule-based methods (Toma and Munteanu 2009), decision
trees and linear models (Cucu et al. 2014), cascaded sequential models (Ciobanu, Dinu, and Dinu
2014; Dinu et al. 2014) or neural network-based approaches (Boros, Dumitrescu, and Pais 2018;
Stan and Giurgiu 2018; Stan 2019, 2020). The reported WER for stress prediction is 2.36%, while
the reported WERs for the phonemic transcription are between 1% and 3%. However, because the
studies use different datasets, the error rates are not directly comparable to the results presented
in this paper. We hope that with the availability of the RoLEX lexicon, future lexical information
prediction tools will have a common reference point.

3. RoLEX development and validation

The development of RoLEX started within the ReTeRom project,® whose aim is to collect a large
Romanian bimodal corpus, which can serve as training and testing material for improving avail-
able instruments for processing spoken and written Romanian. The corpus is a large collection of
texts assembled from news articles, interviews on contemporary subjects, radio talk shows, tales
and novels, and Wikipedia articles. The key characteristic of this corpus is its bimodality: it con-
tains spoken Romanian language aligned with its written counterpart, either transcribed (in the
case of interviews and talk shows) or originally written (in the rest of the cases). For the RoLEX
development, only the written component was considered.

Being a corpus-based dataset (thus, a better representation of the language in use) makes it
more appropriate for use in real-life applications. The corpus aggregated for RoLEX development
contains transcriptions of the following speech corpora: the oral component of CoRoLa® (Barbu
Mititelu, Tufis, and Irimia 2018) (821,294 tokens), RSC (Georgescu et al. 2020) (590,190 tokens),
SSC-train (1,262,030 tokens), SSC-eval (Georgescu, Cucu, and Burileanu 2017) (36,424 tokens)
corpora, SWARA (Stan et al. 2017) (15,070 tokens) and MARA (Stan et al. 2021) (95,567 tokens).
The quality of the starting corpus data varies from high-quality transcripts to documents that
contain spelling and grammar errors or texts that lack punctuation, diacritics and capitalisation.
Other subsets of the data are just lists of words or sub-sentential sequences. Some parts of the
initial data collection were already processed: tokenised, lemmatised and POS-tagged with various
degrees of correctness.

From the initial data collection, the first step in obtaining the lexical dataset was to extract a
list of words containing correct contemporary Romanian words with no grammatical or spelling
errors. The development of this dataset was based on a curated general lexicon of over 1.1 million
entries of the Romanian language under development, called TBL,' containing lemma and mor-
phosyntactic descriptor’ information. The difference between TBL and RoLEX is the fact that the

Shttps://www.racai.ro/p/reterom/

bhttps://corola.racai.ro

thttps://github.com/racai-ai/Rodna/blob/master/data/resources/tbl.wordform.ro

IThe MSD follow the specifications developed for Romanian in the MULTEXT-EAST project: http://nl.ijs.si/ME/
Vault/V5/msd/html/msd-ro.html
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latter is derived from a set of contemporary texts, as opposed to just an exhaustive dictionary-like
list of words as in TBL.

Two methodologies of lexicon extraction had to be adopted, depending on whether a reliable
processed version of a document could be obtained or not. For the grammatically correct texts,
the TEPROLIN web service (Ion 2018) was used to perform lexical segmentation (tokenisation),
lemmatisation and POS-tagging.

The less accurate textual data could not be processed by automatic means since the tools
are usually trained on correct grammatical texts and would, therefore, generate poor results on
incorrect input data. In this situation, the lexical segmentation task is trivialised: the text was
automatically tokenised at each blank space. The resulting tokens were checked against TBL for
correctness. The contracted sequences, marked by a hyphen in Romanian, were treated sepa-
rately. These sequences were segmented at the hyphen, which was successively attached to the
different contraction components, generating two different possibilities for the segment tuples.
The correct segmentation was identified by looking up the segments in TBL. For example, the
sequence ‘schimbandu-si’ (En. changing-Cl.poss.refl.3) generated the tuples (‘schimbandu-’, ‘si’)
and (‘schimbéandu’, “-si"). The correct segmentation can be identified automatically by checking if
TBL contains both terms of the segment tuple: for (‘schimbandu-’, ‘si’) we find that ‘si’ is a word in
TBL, but it has a different morphosyntactic annotation and role (namely the conjunction equiva-
lent to the En. and) than the one intended in the sequence (reflexive/possessive pronominal clitic),
and ‘schimbandu- is not a correct Romanian word,* so the tuple is no longer considered as a pos-
sible segmentation; for (‘schimbandu’, “-5i’) both words occur in TBL, so this is the only correct
segmentation of the sequence. Other sequences, like ‘n-am’ (En. not-have), both possible segmen-
tations have the component words present in TBL (‘n-’, ‘am’, ‘n’ and ‘-am’); therefore, a manual
examination is necessary to choose the right segmentation.

In a next step, TBL was used to identify all the entries linked to a specific form: if TBL contains
the word form, all the corresponding (lemma, MSD) pairs associated with it and all the morpho-
logical variants of these lemmas are recovered and transferred to RoLEX. Treating the possible
homonymy, which leads to POS and lemma ambiguities, was not a purpose at this step of gener-
ating RoLEX. Duplicated lexicon entries due to two methodologies used for different sub-corpora
were searched for and eliminated. On the other hand, if a word form is not found in TBL, it is
extracted in a separate list, to be manually validated and annotated.

We envisioned, from the very beginning, that the manual validation/correction work for the
dataset will be time consuming and looked for strategies to make this work as efficient as possible.
As described in Section 5, a more automatised and efficient technique for organising and reducing
the manual correction effort can be employed, but at this point, the main solutions we found were
(i) dividing the correction task by partitioning the dataset into parts with different risks and types
of errors; (ii) automatising most of the correction tasks by means of linguistic rules.

Aside from the list of words which required complete or partial manual annotation, the auto-
matically and semi-automatically generated lexical dataset was distributed to the correction team
members for manual inspection, alongside instructions about the types of errors they needed to
focus on. As all the annotators were expert linguists and the correction task was rather trivial, with-
out ambiguities, we were not concerned with inter-annotator agreement and each data sample was
distributed to only one annotator.

The automatic and semi-automatic annotation process, as well as the manual validation
procedure with a focus on identified exceptions and rules are described in the next sections.

kThe hyphen is used here to mark the absence of a sound from the clitic structure, namely the vowel i: the phonetically
independent clitic isi occurs in its dependent form -gi, which must be attached to an independent word, in this case the
gerund. The hyphen also has the role of marking the pronunciation as one syllable of the clitic and the last syllable of the verb:
‘du-si’.
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3.1. Validation and annotation of lemma and morphological information

Because the largest part of the initial lexicon was obtained by querying TBL, the lemma and MSD
for these entries were directly transferred to RoLEX. This solution also overcame the problem of
incorrect morphosyntactic annotations found in the initial textual corpus.

For the new words, strategies for reducing manual work could also be applied in some cases,
such as that of very productive morphological processes. A largely applied principle in lexicog-
raphy is not to record exhaustive lists of words created by means of very productive derivation
mechanisms, which are well mastered by a language’s speaker. Words newly coined by means of
these mechanisms are dealt with by recognising these productive rules and listing the components
in the lexicon (e.g., very frequent prefixes, such as ‘re-’ and the numerous verbal roots it attaches
to). In our case, a specific type of new words is represented by a list of words formed by adding the
prefix ‘ne-” (En. un-) (even ‘nemai-’, in which the adverb ‘mai’ (En. more) is inserted between the
prefix and the root) to gerund and participle forms of verbs; they were automatically dealt with by
separating the prefix and the gerund suffix and looking up the roots in TBL, as they contain the
lemma and MSD that also apply to the prefixed forms.

Only after automatising all the possible tasks, the remaining words were evaluated one by
one and annotated with the corresponding lemma and MSD tag. Entries for their morpholog-
ical variants were also created. Some frequently identified errors were typos (missing, extra or
shifted letters), missing diacritics and lexical segmentation errors. 8,000 new entries (missing from
TBL) were corrected/developed and integrated into RoLEX. They are also envisaged for the further
extension of TBL.

3.2. Validation and correction for syllabification, stress marking and phonemic transcription

The rest of the lexical annotations-syllabification, lexical stress and phonemic transcription were
partially obtained from the RoSyllabiDict and MaRePhor dictionaries. The entries not found in the
two datasets were automatically annotated with the front-end tool developed in Stan et al. (2011).
The tool, referred to as RoTTS, is used in text-to-speech synthesis systems and uses decision trees
trained on a small in-house lexical dataset to predict each information individually.

The data were divided between entries coming from dictionaries and entries generated by the
RoTTS tool. The starting hypothesis was that the two dictionaries primarily used for annotation
(RoSyllabiDict and MaRePhor) were, as their authors claimed, partially validated before launch-
ing. Therefore, in theory, fewer errors for our dataset entries annotated based on these resources
should have been encountered and the focus should have been more on the entries annotated with
the RoTTS tool. In practice, MaRePhor has phonemic transcription only for words’ lemmas, leav-
ing their morphological variants to be annotated automatically. Although RoSyllabiDict offers
syllabification and stress marking information for some morphological variants, the morpho-
logical paradigms are often incomplete. Also, both resources lack morphosyntactic information,
which makes it impossible for RoTTS to correctly annotate ambiguous cases.

Some ambiguous entries are shown in the examples from Table 2. In Example 1, assigning the
correct MSD annotation helps identify the right lemma of the word in focus, and therefore, it
determines the syllabification, which in turn, according to rules concerning the phonemic tran-
scription of the vowels and semi-vowels, determines the transcription. In Example 1.1, the initial
1 is a vowel, while in 1.2 it is a semi-vowel part of the triphthong ‘iei’ always transcribed as/j e j/
(see Table 4 for more examples of hiatus/diphthong/triphthong occurrences of the same strings
of letters). Example 2 is even more problematic: the two words share the POS and most of the
morphological characteristics: type of noun (common), number (plural), case invariant, indefi-
nite form; it is only the value of the gender attribute that distinguishes between the two words:
masculine for Example 2.1 and feminine for Example 2.2. This type of specific ambiguity is rare
in Romanian.
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Table 2. Ambiguous entries for syllabification, stress marking and phonemic transcription

Word Lemma En. MSD Syll Stress Phones
Example 1.
1. iei ie blouse Ncfsoy i.ei ‘iei /i e j/
2. iei lua (to) take Vmip2s iei i’ei /j e j/
Example 2.
1. copii copil child Ncmp-n  co.pii c’opii /kopij/
2. copii copie copy Ncfp-n co.pii cop’ii /kopij/

For the data coming from the dictionaries, the correction stage targeted especially entries which
had different lemmas and/or MSD descriptors associated with the same form. For the RoTTS
generated annotations, many other types of possible errors were encountered and the correction
benefited from further division of the task, as well as from the design of a set of lexical rules, as
it will be described in the next section. Because the automatic validation/correction of phonemic
transcription depends on applying rules on correct syllabification and stress marking information,
the order in which the annotation levels are corrected is (i) syllabification; (ii) stress marking; (iii)
phonemic transcription (except proper names and abbreviations, which are treated separately and
corrected manually). For all the three annotation levels, in the first step a list of rules was derived
from the data and used to automatically annotate or detect incorrect annotations of the entries.
The result was then validated by the expert linguists.

3.2.1. Syllabification correction stage
In this step, we identified the situations which are likely to produce syllabification errors, as listed
below:

o words that contain syllables longer than four letters: this is a rare case in the language:
according to Dinu and Dinu (2006), 13% of the syllables in their corpus of 4,276 words
contain at least 5 letters;

[PERE SIS

« words that contain syllables with more than one vowel: in Romanian, the letters ‘a@’, ‘a’, 7,
‘@” are always vowels, thus, syllables that have a combination of two of these letters are,
therefore, incorrect;

« words that contain letters that could represent either vowels or semi-vowels (see Table 3):
this is the distinction between hiatus and diphthong or triphthong, that influences the
transcription as a vowel or as a semi-vowel. The vowels involved in hiatus undergo
vowel transcription, excepting the cases when they are involved in other diphthongs or
triphthongs right near the hiatus (see examples in Table 4);

o proper nouns and abbreviations: the annotation for these words was automatically gen-
erated with RoTTS and contained many errors; some reasons for this are: foreign proper
nouns usually preserve the pronunciation from their original language (which differ from
the Romanian one in the case of many languages, for example English, German, French,
Spanish, etc.), Romanian proper nouns may also have atypical pronunciations (e.g., some
proper nouns are homographs of common nouns, but the two words are not homophones:
‘Curea’ stressed C'urea versus ‘curea’ (En. belt) stressed cure’a), the syllabification for the
abbreviations is not well dealt with by RoTTS; 5,540 proper names and 373 abbreviations
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Table 3. Letters and letter groups that create ambiguities in the phonemic transcription. For the vocalic letters, we also

note their vowel/semi-vowel phonemic value

Letter/group Value

Phoneme

Example

Transcription

e

ce

che

chi

gi

ghe

qu

Semi-vowel

Special pronunciation

Vowel

Semi-vowel
Whispered 7’
Vowel

Semi-vowel

Vowel

Semi-vowel

Vowel

H/e/

le_X/

el
/il
/il

/i_0/
[of
T
/w/

1t/

e/

R

/8l

M
L=
s

[ks/
/gz/

eter, En. ether

neam, En. nation

este, En. s
vin, En. wine

iar, En. again

pomi, En. trees
acolo, En. there

soare, En. sun

sur, En. grey
sau, En. or

ceas, En. clock

cine, En. who
ciupi, En. (to) pinch

chema, En. (to) call

/k_j/ chip, En. face i
chiar, En. even
rochii, En. dresses
ager, En. agile
geana, En. eyelash

legifera, En. (to) legislate

magiun, En. jam

ghem, En. (yarn) ball

lighean, En. basin
ghi /8.l ghinda, En. acorn
ghiara, En. claw
karat, En. karat
kilogram, En. kilogram

Qatar

Maquis

exonera, En. (to) exonerate

examen, En. exam

leter/

/}1 e_Xam/ .
/Jeste/ R
./Vi n./ .
/iar/
/pomi_0/

: ,./avl.(,(.)lé./. -

- /SO_Xa .rvev/. o

/Saw/ B

/tsas/ S

fsertsejl

. /tsm e/ .....

/tSupi/

/k_jema/

[rok_jij/
lagZerx/

fezanel

/legZifera/

/magZun/

/g_jem/

Nig_jan/
fedinder
/gjar@/
/k_“ logra m/

/egzamen/
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Table 4. Examples for the use of vowel sequences in Romanian as hiatus or as diph-
thong or triphthong.

Seq Hiatus Diphthong/Triphthong Type

ai i.na.in.te can.tai desc
/Inainte/ /klntaj/
(En. before) (En. sing, past cont., 2 sg.)

au a.ur can.tau desc
Jaur/ /klntaw/

(En. gold) (En. sing, past, 3 pl.)

ei ne.is.pra.vit tei desc

/neispr@vit/ /tej/

(En. unfinished)

(En. linden)
eu ne.u.tru leu desc
neutru/ /lew/

(En. neutral) (En. lion)

ii sti.in.ta co.pii desc
/Stiints @/ /kopij/
(En. science) (En. children)

oi vo.in.ta bu.toi desc

voints @/ /butoj/

(En. will)

(En. barrel)

ou bi.ro.ul e.cou desc
/biroul/ Jekow/

(En. the desk)

(En. echo)
ui in.ga.du.i in.ga.dui desc
lng@dui/ /Ing@duj/
(En. to allow, inf.) (En. to allow, pres., 1 or 2 sg.)

ai tra.ind cai desc

reindl ke

(En. to live, ger.) (En. ways)

au ca.u.tdind du.lau desc
c@utlnd/ /dul@ w/

(En. to search, ger.) (En. big dog)

ai ma.ra.i cai.ne desc
/mlrli/ /k1ljne/

(En. to grawl) (En. dog)
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Table 4. Continued.

Seq

Hiatus

Diphthong/Triphthong

Type

au

ea

eo

0a

ua

(En. real)

(En. sleigh)

pa.ra.ul
plriul/
re.al

/real/

ar.he.o.log

arheolog/

(En. archaeologist)
spe.ri.a

/speria/

(En. to frighten)

bi.u.ni.voc

/biunivok/

sa.ni.e

/sanie/

bi.o.lo.gi.e

biologZie/

(En. biology)

co.a.li.ti.e

/koalitsie/

ac.tu.al
/aktual/

(En. current)

per.pe.tu.a

/perpetu@/

a.gre.ai

(En. the stream)

(En. two-way)

/jubit/ (En. loved)

(En. coalition)

(En. perpetual, fem.)

pa.rau

desc

/plriw/

(En. stream)

rea

/re_Xa/

(En. mean, fem.)
vreo
/vre_Xo/

(En. some)

pia.tra

asc

asc

asc

PIatr

(En. stone)

fiu

/fiw/ (En.son)

fier
fjer/

(En. iron)

mior.la.i

/mjorl@i/

oa.meni

/o_Xameni_0/

zi.ua
/ziwa/

(En. the day)

do.ua

desc

asc

asc

asc

(En. to whine, inf. or past 3 sg.)

asc

(En. people)

asc

asc

/dow @/

(En. two, fem.)

do.reai

/dore_Xaj/

[agreaj/

(En. to agree, past cont., 2 sg.)

(En. to wish, past cont., 2 sg.)
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Table 4. Continued.

Seq Hiatus Diphthong/Triphthong Type

eau a.gre.au ce.reau centred
Jagreaw/ /tSere_Xaw/

(En. to agree, past cont., 3 pl.) (En. to ask for, past cont, 2 pl.)

iai scri.ai ta.iai centred
kAl A
(En. to write, past cont., 2 sg.) (En. to cut, past cont., 2 sg.)
iau scri.au tra.iau centred
/skriaw/ /ftr@jaw/
(En. to write, past cont., 3 pl.) (En. to live, past cont, 3 pl.)
iei mi.ei miei centred
Amiel e AR

(En. thousand, dat.-gen.) (En. lamb, pl.)

oai ca.soa.iei le.oai.ca centred
c@so_Xajej/ /leo_Xajc@/
(En. the big house, dat.-gen.) (En. lioness)

ioa ca.pri.oa.ra a.ri.pioa.ra asc
/c@prio_Xar@/ Jaripjo_Xar@/
(En. doe) (En. little wing)

eoa le.oai.ca leoar.ca asc
/leo_Xajc@/ /le_Xo_Xarc@/

(En. lioness)

(En. soaking)

uea ta.tu.ea.za in.se.uea.za asc

/tatue_ Xaz@/ /inSewe Xaz@/

(En. to saddle, 3 sg. and pl.)

(En. to tatoo, pres., 3 sg. and pl.)
ioi vi.oi so.ri.cioi asc
/vioj/ /Soricjoj/

(En. lively) (En big mouse)

were manually corrected in the process, at all levels of lexical information: syllabification,
lexical stress marking and phonemic transcription;

o compound words: are a problem for RoTTS, which does not deal well with the hyphen in
the syllabification step.
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3.2.2. Stress marking correction stage

It is essential, at this level, to review the homographs that are not homophones because, as it can be
seen below,' stress can distinguish between words implicitly, through lemmas and/or POSes (e.g.,
‘razboi’) or different morphological variants of the same word (e.g., ‘atribui’). It can also influence
syllabification and phonemic transcription. Although most of the cases affect two words, there
are cases of homography affecting three words: for example, the form ‘dudui’ can be stressed as:
(i) d’'udui when it is the second person singular of the present tense of the verb ‘a dudui’ (En. to
whirr), (ii) dud’ui when it is the indefinite plural of the noun ‘duduie’ (En. madam), (iii) dudu’i
when it is the infinitive or the third person singular past simple form of the same verb ‘a dudui’
(Bacild 2011).

The common types of homonymy that introduce ambiguities are as follows:

(1) Lexical homographs
a. different POSes:

i. razboi (En. war), noun, razb’oi;
ii. razboi (En. (to)fight), verb, razbo’i
b. the same POS, different meanings

i. tarind (En. tsarina), noun, tar’ind
ii. tarind (En. cultivated land) , noun, t’arind

(2) Lexico-grammatical homographs
a. same POS

i. fotografii (En. photos), fotograf’ii
ii. fotografii (En. photographers), fotogr’afii
b. different POSes

i. data (En. thedate), noun, d’ata
ii. data (En. (to)date) verb, dat’a

(3) Morphological homographs
a. different forms in the inflectional paradigm of the same verbal lemma

i. atribui (En. (to) assign) , verb first or second person singular,
present tense, atr’ibui

ii. atribui (En. (o) assign) , verb third person singular, past tense
infinitive, atribu’i

3.2.3. Phonemic transcription correction stage

The phonetic alphabet adopted by our dataset is based on the SAMPA notation.™ The difference
between the official SAMPA phonetic notations and our phoneme list lies in our extension of the
phonemes inventory as follows:

(1) introducing two notations for transcribing the two possible pronunciations corresponding
to letter ‘x’ (which is not dealt with in SAMPA):/gz/ or/cs/. These notations are in line
with the treatment of ‘x’ as a single consonant in the syllabification phase: for example, the
word ‘examen’ contains the syllables: e.xa.men which correspond to the transcription/e gz
a m e n/; if we had transcribed the word as/e g z a m e n/, then the syllabification rule

'A comprehensive list of the possible subtypes of the three types of homographs, that is lexical, lexico-morphological and
morphological homographs, in this table is made by Bécila (2011) who considers all parts of speech, as well as all their

morphological categories when classifying Romanian homographs.
Mwww.phon.ucl.ac.uk/home/sampa
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according to which two consonants between two vowel belong to different syllables, that
is VCCV~ > ~VC.CV, would not have been observed and an exception should have been
formulated;

(2) introducing two new notations to distinguish between the voiceless palatal plosives/k_j/
and the voiced palatal plosive/g_j/, on the one hand, and the voiceless velar plosive/k/ and
the voiced velar plosive/g/, on the other hand, as they are different sounds, given their
different positions of articulation;

(3) introducing the special notation/je/ for the pronunciation of the letter ‘¢’ when occurring
in only two contexts: the initial position in the forms of the personal pronoun and in the
forms of the verb ‘a fi’ (En. to be). In all its other occurrences in initial position of a word,
e should never be pronounced like this."

Table 3 presents the phonemic transcription of the letters and letter groups in Romanian that
introduce ambiguities and, therefore, can cause transcription errors. The following rules were
derived and implemented for the automatic correction of the phonemic transcription:

(1) Rules for the letter/sound groups ‘ce/ci/ge/gi/che/chi/ghe/ghi’, concerning the transcrip-

(PR IETS)

tion of the final vowels (‘¢’, 1’):
- Case I: the group is a word ending:

a. when the group forms a syllable by itself, the final letter (‘e’/7’) is a vowel (transcribed/e/
or/i/); Examples: tre.ce (En. (to) pass)/tr e tS e/, ghi.ci (En. (to) guess)/g_jitSi/, mer.ge
(En. (to) walk, (to) go, (to) function)/m e r gZ e/, a.mi.gi (En. (to) deceive)/a m @ gZ
i/, wre.che (En. ear)/ur e k_j e/, o.chi (En. (to) aim)/o k_j i/, ve.ghe (En. watch)/v e
g je/,zbu.ghi (En. (to) gush)/zbug ji/;

b. the group does not form a syllable by itself, the final letter i” has ‘zero’ phonetic value
(it is not transcribed); Examples: mici (En. small, pl.)/m i tS/, lungi (En. long, pl.)/l u
n gZ/, ochi (En. eyes)/o k_j/, unghi (En. angle)/u n g_j/, o.blici (En. oblique, pl.)/o b
itS/;

- Case II: the group stands as a syllable ending inside the word:

a. the final letter (‘e’/7) is always a vowel (transcribed/e/ or/i/); Examples: er.ba.ce.e (En.
herbaceous, fem. sg.)/e r b a tS e e/, sal.ci.e (En. willow)/s a1 tS i e/, ge.o.log (En.
geologist, masc.)/gZ e o 1 o g/, spon.gi.os (En. spongy, masc. sg.)/s pon gZio s/,
in.che.ia (En. (to) finish)/1 n k_j e j a/, in.chi.na (En. (to) dedicate, (to) worship)/1 n
k_jina/, ghetar (En. glacier)/g_j e tS a r/, ghi.o.cel (En. snowdrop)/g_jio tSel/;

- Case III: the group is inside the syllable;

a. the final letter (‘'e’/%’) is a vowel (transcribed/e/ or/i/), when the group is followed by a
consonant; Examples: cer.ta (En. (to) scold)/tS e r t a/, in.cin.ge (En. (f0) heat)/1 n tS i
ngZe/,ger.man/gZ e r man/, ar.gint (En. silver)/ar gZin t/, chel.tui (En. (f0) spend,
indicative, present)/k_j eltuj/, chin.gd (En. strap)/k_jin g @/;

b. when the group is followed by one or two vowels/semi-vowels, the rules for diphthongs
and triphthongs transcription are applied:

i. when descendant diphthongs are involved: for example, for the sequence ‘cei’ in the
word ‘cercei’ (En. earrings), we reproduce the/tS/ symbol, followed by the descendant
diphthong transcription of ‘ei’, which is/e j/; in the case of the word ‘mijloc’iu’ (En.
middle one), we know that the group of letters ‘iu’ is a descendant diphthong tran-
scribed as/i w/, because ‘i’ bears the stress marking, and therefore ‘u’ is the semi-vowel;
Examples: cer.cei/tS e r tS e j/, mij.lo.ciu/m i Z1 o tSiw/, a.po.geu (En. climax)/ap o

"This special treatment of such cases is meant to show that this pronunciation is the norm, and not a mere allophone of/e/.
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gZ e w/, han.giu (En. innkeeper)/h an gZ i w/, in.chei (En. (to) finish, 1st person, sg.)/1
nk_j ej/, mu.chii (En. edges)/m u k_jij/, par.ghii (En. leverages)/p 1rg_jij/;

ii. for the ascending diphthongs and for ascending and centred triphthongs, the last
letter of the group ‘ce/ci/ge/gi/che/chi/ghe/ghi’ is not transcribed (it has ‘zero’ value,
because in the diphthong or triphthong it is a semi-vowel); Examples: cea.td (En.
fog)/tS a ts @/, pi.cior (En. leg)/p i tS o r/, gea.nd (En. eyelid)/gZ a n @/, giu.va.er
(En. gem)/gZ uv aer/, chea.ma (En. (to) call, imperative, singular)/k_j a m @/, chiar

(En. even)/k_j a r/, ghea.td (En. ice)/g_j a ts @/, ghioz.dan (En. shoolbag)/g_ jozda

n/;

(2) Rules for diphthong and triphthong transcriptions: in Romanian, most of these groups
can be classified in a deterministic manner, without supplementary context information.
The diphthongs can be ascending (semi-vowel + vowel) or descending (vowel + semi-
vowel). The triphthongs can be ascending (semi-vowel + semi-vowel + vowel) or centred
(vowel 4 semi-vowel 4 vowel). The diphthong ‘iu’ is the only exception: it can be both
descending (e.g., in ‘fiw’/f i w/, ‘hangiu’’h a n gZ i w/, ‘mijloci’/miZ 1o tSiw/) and
ascending (e.g., in ‘fubit’/j u b i t/, ‘iute’ (En. fast) j u t e/). The ascendance of ‘iu’ can
be identified if ‘i’ in the diphthong is correctly stressed: if ‘i’ bares a stress mark, ‘iu’ is a
descending diphthong and otherwise is an ascending one. In Table 4, you can see examples
for all the diphthongs and triphthongs in Romanian and also of the same letter group in
their hiatus form.

(3) Rule for the final ‘whispered’ i: If the last or the only syllable in the word does not bear
stress and it ends with a sequence of the form ‘vowel + consonant + (optional consonant)
+ ', then the final 1’ is transcribed as ‘i_0’. Examples: ‘priméveri’ (En. springs)/prim @ v
eri_0/, ‘beti’ (En. drunk, pl.)/b e tsi_0/, ‘conti’ (En. counts)/c o n tsi_0/, ‘cerbi’ (En. deer,
pl)/tS e r b i_0/; exceptions from the rule are the groups ‘ci/gi/chi/ghi’ (for which the rule
Lb is applied) and the sequences ‘consonant + liquid consonant (// or/r/) +/i/’: ‘co.dri’
(En. old forests)/c o d r i/, “cio.cli’ (En. grave-digger)/tS o c 11/.

For the words containing the letter or letter groups x’, ki’ and ‘qu’, no automatic correction
rules could be determined. Therefore, the entries containing the letter ‘x’, which can be pro-
nounced as either/ks/ or/gz/, were manually corrected. Manually correcting only the entries for
which the word form coincides with the lemma is enough, since the pronunciation of this letter
does not change in the inflection process and can be safely extended to its all inflected forms. The
words containing the letter groups ki’ and ‘qu’ were processed so that the groups be transcribed
as/k_j i/ and/k_j/, respectively, to deal with the ambiguities presented in Table 3.

Based on the automatic processes, the derived rules and manual correction, the entire ROLEX
dataset was validated and finalised to contain all the linguistic information set forth. Details of its
final content are described in the following subsection.

3.3. ROLEX statistics

With the dataset in place, we performed a series of statistics over its lexical components. In the final
form, RoLEX contains 330,866 entries and represents the largest phonological validated dataset
freely available for Romanian. Table 5 presents an overview of its contents. We add here a remark
regarding the number of distinct syllables found in RoLEX. Previous studies of the Romanian
syllable distribution (Dinu 2004; Dinu et al. 2006), performed on the DOOM dictionary (1982),
identified 6496 type syllables. The work in Barbu (2008), also based on DOOM, but coupled with
a paradigmatic mechanism of automatic inflectional generation, refers to an extended dataset of
525,530 entries in which 8,600 syllable types were identified. In contrast, our dataset, being a
corpus-based one, has particularities that produce 979 new type syllables derived from (i) foreign
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Table 5. RoLEX dataset statistics

Feature Count

Number of entries 330,866

Number of distinct lemmas 29,505

Maximum number of forms for a lemma (the verb ‘a fi’ (En. to be)) 117

Average number of forms for a lemma 10

Number of content words 328,631

Number of function words 2,235

Number of homographs 58,522

Number of homophones 56,737

Number of distinct phonemes 37

Number of distinct syllables 9,220

Maximum number of syllables per word (21 entries) 11

Average number of letters per syllable 3

Number of letters in the longest word (‘electroglotospectrografiilor’) 28

5 § 2 Q
[=)
g o
3 i e g 3
28 o 08 =8 8
A o b 1 + o =
: = i B

1 @ S Z a b d dZ z

Figure 1. Phoneme counts in RoLEX.

proper nouns that come with specific phonetic properties; (ii) Romanian proper nouns, including
some that preserve the old Romanian orthography (namely, the use of the letter I’ in word internal
position); (iii) new and/or borrowed words; (iv) forms occurring in contractions and displaying
apheresis; (v) archaisms or regional variants of words; and (vi) interjections.

A detailed statistic of the phoneme counts within RoLEX is shown in Figure 1. The top three
most common phonemes being the vowels ‘¢’, I’ and ‘@’, followed by the consonants ‘r’, " and
‘n’. A separate set of statistics refers to the number of syllables within a word (see Figure 2a)
and the position of the stressed syllable within the word (see Figure 2b). The majority of the
Romanian words have 3 to 5 syllables, and the most common stress pattern falls on the penul-
timate or ante-penultimate syllable. Although the lexical stress seems to adhere to a pattern, we
will show in the evaluation section that the stress marking poses most problems for the automatic
lexical information prediction tool.

In terms of morphological content, Table 6 shows RoLEX’s counts for each POS. It can be
noticed that the highly flexing POS in Romanian, especially verbs, but also some pronouns,
adjectives and nouns, take up 99% of the entire dataset.
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Figure 2. (a) Histogram of the number of syllables per word and (b) violin plot of the stressed syllable position given the
number of syllables in a word as computed from the RoLEX dataset.

4. Concurrent lexical information prediction

When such a large high-quality language resource is available, lexical information predictors
should be easily and accurately trained. With the recent advancements of core deep learning strate-
gies, as well as deep learning within NLP, predicting a single task at a time can become trivial (for
some languages), as well as time and resource consuming. Predicting multiple lexical informa-
tion at the same time using a single network would be both advantageous and challenging. Such
predictors could also exploit the correlations and additional information that would inherently
become available in this scenario. As a result, in the rest of the paper we focus on deriving simul-
taneous lexical information starting from the orthographic form of a context-free word.® The
selected tasks for the concurrent prediction are as follows: phonemic transcription, syllabification
and lexical stress marking. Examples of such input-output pairs are shown in Table 7.

Within this setup, the machine learning algorithm needs to learn a sequence-to-sequence (S2S)
mapping. Among the various state-of-the-art neural architectures, CNN (Gehring et al. 2017) and
attention-based (Vaswani et al. 2017) networks have shown the highest accuracy in NLP pipelines
(Devlin et al. 2019). In the early stages of this study, we first performed a CNN versus Transformer
evaluation. However, the CNN results were less accurate than those of the Transformer,P so we
resumed to using only the latter.

The Transformer architecture is shown in Figure 3 and is composed of an encoder and a
decoder structure. Both structures contain a sequence of attention, normalisation and feed for-
ward layers. An important aspect of the Transformer, beneficial to the tasks addressed in this
article, is the multi-head attention. By enabling the network to focus on multiple areas of the
input sequence, the decoded output can, at each time step, look both into the future and into the
past input characters, and adjust the predictions accordingly, yielding a higher accuracy.

The Transformer’s hyperparameter selection is based on the strategy introduced in (Stan 2020).
The set of hyperparameters which were optimised are shown in Table 8. The optimisation used
a randomly selected 150,000 entries subset of RoLEX and evaluated the fitness of the individuals
using the word error rate measured for 500 held-out samples. The evolution took place over 10
generations with a population size of 10. This setup does by no mean explore the entire hyperpa-
rameter space, yet it allows to evaluate some key topological aspects of the network and prevent
overfitting.

°We should note here that RoLEX contains only context-free words, and a GOLD standard context corpus with correct
annotations is not available for Romanian. Therefore, although context can help disambiguate non-homophone homographs,
we could not use contextual information in the prediction at this point.

PPrevious studies also reported this result on similar tasks (Yolchuyeva et al. 2019b).
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Table 6. RoLEX POS statistics

Tag POS Count

\ Verb 129,211
N Noun 110,232
A Adjective 89,188
R Adverb 730
P Pronoun 345
M Numeral 340
D Determiner 268
Y Abbreviation 251
| Interjection 156
S Adposition 75
C Conjunction 31
T Article 28
Q Particle 11

Table 7. Examples of input-output pairs for the concurrent prediction task. Dots
mark the syllabification. The lexical stress is marked with an apostrophe before the
stressed vowel. The phonemic transcription uses the SAMPA notation

Input Output

abandonat a.ban.do.n’at (En. abandoned)
bascula bas.ku.l’a (En. to swing out)
ciclopul tSi.kl’o.pul (En. the cyclop)

astea ‘@s.te_Xa (En. these)

schioapa Sk jo X’a.pa (En. the limping woman)

The derived Transformer structure uses 3 encoder units, 4 decoder units, 4 attention heads,
a hidden layer of 1024 nodes and an embedding dimension of 128. The embedding weights are
randomly initialised before training. The batch size was set to 512, and the Adam optimiser was
used to update the weights with an initial learning rate of 2 * 104, After 50 epochs, the learning
rate was reduced by a factor of 0.2. An early stopping criterion based on the validation loss over 5
epochs stopped the training process.

5. Evaluation
5.1 Romanian: RoLEX
The evaluation of the newly built RoLEX dataset attempts to answer the following five questions:

[Q1] Is the performance of prediction tools trained on RoLEX better than of those trained
on other available Romanian datasets?
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Figure 3. Transformer architecture (Zhang et al. 2020).

[Q2] Can the prediction tools trained on a smaller, randomly selected subset of entries
from RoLEX obtain similar performance measures to those obtained when trained on the

entire dataset?

[Q3] Can the prediction tools trained on a smaller, carefully selected subset of entries
from RoLEX obtain similar performance measures to those obtained when trained on the

entire dataset?

[Q4] What is the contribution of each of the three lexical tasks (i.e., phonemic transcrip-
tion, syllabification and lexical stress assignment) to the global error rates?

[Q5] To what extent do supplemental lexical input features, in the form of POS or
morphosyntactic description (MSD) tags, improve the overall accuracy of the prediction

tools?

To answer these questions, a 20% randomly selected subset of the RoLEX entries was held out
and used in all testing scenarios. Word error rate (WER) and symbol error rate (SER)
were used as objective metrics. The WER was measured as the percentage of incorrectly predicted
output sequences. The SER is very similar to the phone error rate, but we would like to make
the distinction that the prediction also includes the syllabification and lexical stress symbols. The
SER was computed using the Levenshtein distance (Levenshtein 1966) between the predicted and
target sequences. For homographs, the pronunciation with the lowest Levenshtein distance was
selected. Because the output of the network contains 3 separate types of lexical information, the
WER and SER were also computed over the output sequence when removing either the sylla-
ble marks, the lexical stress marks, or both. This computation helps us understand which task
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imposed more learning and prediction problems for the neural network.
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Table 8. Set of genes and gene values used in the evolution strategy. The first
column marks the gene ID within the genome

ID Gene Values

Gl encoder layers 2,3,4

G2 decoder layers 2,3,4

G3 embedding dimension 32,64,128

G4 attention heads 2,4

G5 dropout rate 0.01,0.05,0.1,0.15

G6 hidden layer dimension 32, 64,128, 256,512,1024
G7 batch size 32, 64, 128, 256, 512

Table 9. WER and SER measures for individual task predictions

Task WER SER

Phonemic transcription 1.60% 0.45%
Syllabification 2.03% 0.48%
Lexical stress marking 4.16% 0.79%

As a preliminary step, the accuracy of the selected neural architecture for each individual task
was examined. The results are shown in Table 9 and used the same train-test split as in the follow-
ing experiments. It can be noticed that the largest error rates are encountered for the lexical stress
prediction.

In trying to answer [Q1], we compared the accuracy of the RoLEX-based prediction with the
one obtained from the combined information available in MaRePhor, RoSyllabiDict and DEX,
while using the same neural architecture. The latter set contains around 72,000 entries and
obtained a WER of 10.47%, and a SER of 3.93% for the combined prediction when using only
the orthographic form of the word as input. In the same setup, the RoLEX-based prediction halved
the error rates of the predictions, with a 5.6% WER, and a 1.97% SER. Given that RoLEX is about
five times the size of the MaRePhor-based dataset and more morphologically diverse, the accu-
racy leap was not unexpected. When also using the MSD information, available in RoLEX and not
available in the other resources, the results become highly accurate (3.08% WER and 1.08% SER),
with most of the errors pertaining to exceptions. This shows once again the value of extended,
manually validated resources, with complex annotation.

A combination of the WER and SER results for answering [Q2], [Q4] and [Q5] is shown in
Figure 4. The results are grouped by the increasing number of randomly selected entries used in
the training process. The different colour shades mark the lexical information maintained in the
prediction, meaning that the network still predicts the complete lexical information, but we do
not take into account all of it. The hatch pattern indicates the information used as input to the
neural network: only the orthographic form of the word (Ortho); the orthographic form plus the
POS tag (wP0S); or the orthographic form plus the complete MSD tag (wMSD).

For [Q2], it can be noticed that beyond 100,000 entries the accuracy gains seem to plateau, yet
there is still a 15% relative WER improvement going from 100,000 entries to the complete dataset
in the Ortho:PH+ SYLL + ACC setup.
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Figure 4. (a) WERs and (b) SERs for different amounts of randomly selected training samples, evaluated for the complete
lexical information prediction (PH 4 ACC + SYLL); by discarding the syllable information (PH + ACC); by discarding the lexical
stress information (PH + SYLL); and by discarding both the syllable and the lexical stress information (PH). Figures also show
results of the networks using as input only word forms (0Ortho); word forms plus POS tags (wP0S); word forms plus MSD tags
(wMSD).

With respect to the influence of each of the three tasks ([Q4]), the lexical stress poses the
most problems. On average, the lexical stress errors amount to 60% of the overall errors (com-
pare PH+ ACC + SYLL with PH+ SYLL). This was to be expected for Romanian, as the lexical
stress does not adhere to any predefined rules and it is mostly dependent on the word’s inflection
(DOOM 2005). A similar result was found in (Stan and Giurgiu 2018) and also in the individual
task predictions shown in Table 9. Another important aspect to notice in these results for [Q4] is
the fact that the error rates of the concurrently predicted phonemic transcriptions (Ortho:PH) —
when discarding the other tasks — are better than those obtained when the network predicts just
this task: 1.60% WER, 0.45% SER (see Table 9). This means that, again as expected, although the
network had a more complex learning task, the presence of the other lexical information in the
output sequence helps the individual tasks’ learning.

In scenario [Q5], the additional lexical information appended to the input in the form of the
POS or complete MSD tags should help the network differentiate non-homophone homographs.
RoLEX contains only 2000 such type of homographs and we did not envision that the error rate
would be significantly impacted by their discrimination. But solving this disambiguation problem
can bring more linguistic accuracy to the overall system. Also, when POS and MSD informa-
tion is used to improve the task’s performance, the assumption is that they can compensate for
some missing words in the training data. For example, the network can learn to associate cer-
tain morphological suffixes (and their specific pronunciations) to certain POSes or MSDs. This
assumption holds true across all random dataset partitions and all output sequence tasks pre-
sented in Figure 4. MSD systems (wMSD) perform better than the POS systems (wP0S), which in
turn are less erroneous than the orthographic ones (Ortho).

Questions [Q1, Q2, Q4, Q5] analysed the dataset from the given, available resource perspec-
tive. However, the development of such a large resource is extremely time consuming and requires
expert linguists to perform the manual annotation. Therefore, in [Q3] we investigate if the careful
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Figure 5 (a) WERs and (b) SERs at for the LEMMA, 1-FORM, and 2-FORMS subsets, evaluated for the complete lexical infor-
mation prediction (PH+ ACC + SYLL); by discarding the syllable information (PH+ ACC); by discarding the lexical stress
information (PH + SYLL); and by discarding both the syllable and the lexical stress information (PH). Figures also show results
of the networks using as input only word forms (0rtho); word forms plus POS tags (wP0S); word forms plus MSD tags (wMSD).

design and selection of entries can minimise the required manual annotation and validation
processes as a more efficient alternative to the validation techniques described in Section 3. Three
new subsets of ROLEX were generated. The subsets are based on the number and nature of the
forms of content words (adjectives, nouns and verbs), which have a rich morphology in Romanian:
LEMMA subset contains 30,150 entries, corresponding to all forms for the function words and the
lemma form for the content words; 1-FORM subset contains 30,150 entries, corresponding to all
forms for the function words and one form for content words, where the selection of the form was
performed such that the combined entries ensured the morphological diversity within the cor-
responding POS category; 2-FORMS subset contains 55,185 entries and is similar to 1-FORM but
with two forms for each content word entry. The results of the concurrent prediction using these
subsets are shown in Figure 5.

The first thing to notice is the very high error rates for the LEMMA subset — twice as high as the
rates achieved by the randomly selected 5,000 entries (see Scenario [Q2]). This can be explained by
the very low morphological diversity within the subset. In this case, the POS or MSD tags cannot
truly compensate for the lack of morphological variation within the training set. More so, the
POS information reduces the accuracy of the prediction. Compare for example the 41.56% WER
of wPOS:PH + ACC + SYLL vs. 40.13% WER for Ortho:PH+ ACC 4 SYLL. One exception is the
wPOS : PH setup where the POS tags help the phonemic transcription better than the Ortho or wMSD
inputs. However, it seems that the complete MSD tags do aid the concurrent prediction process
and lower the WER and SER by approximately 10% relative. We should reiterate the fact that the
test set is the same across all evaluation scenarios and includes entries with various morphological
forms.

By thoroughly analysing the network’s predictions, we discovered that most of the errors are a
consequence of a biased learning of lexical stress behaviour. In the LEMMA set, more than half of the
entries and the majority of the verbs have the lexical stress marking on the last syllable. This feature
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Table 10. WERs and SERs for the complete lexical information prediction over
the augmented CMUDict English dataset

Output sequence WER SER

PH + ACC + SYLL 24.11% 4.09%
PH + ACC 23.65% 3.80%
PH + SYLL 22.62% 3.59%
PH 21.98% 3.54%
PH (Yolchuyeva et al. 2019a) 22.10% 5.10%

is not characteristic of Romanian’s diverse morphological forms. Also, there are numerous errors
for syllabification and phonemic transcription in the morphological termination of the words.
This means that using only dictionary forms of the entries is not a correct manner to go about
selecting the core entries of a lexical dataset.

Looking at the 1-FORM and 2-FORMS results in conjunction with the randomly selected subsets,
we can see that the careful design of morphologically diverse entries yields performances compa-
rable to those obtained by twice as many random entries: compare the WER of 1-FORM versus the
WER of 50,000 random entries, and the WER of 2-FORMS to the WER the 100,000 random sub-
set (see Scenario [Q2]). These results demonstrate that a strategic morphological selection of the
entries substantially reduces the amount of necessary manual validation work for the same target
performance. However, the selection process needs to be adapted according to the characteristics
of the target language.

5.2. English: CMUDict

The ability to concurrently predict the three lexical tasks in any language using the same neural
architecture can enable the development of a flexible multi-lingual framework. We therefore test
the Transformer-based structure’s feasibility and accuracy for the English CMUDict dictionary,
as well. This pronunciation dictionary, developed by the Carnegie Mellon University, consists
of more than 135,000 entries, each being associated with its phonemic transcription and lexical
stress. The original phonemic and lexical stress transcriptions from CMUDict were combined
with the syllabification? derived by a method described in (Bartlett, Kondrak, and Cherry 2009).
This augmented dataset was used in our experiments and contains 129,420 entries. The results are
summarised in Table 10.

The train-validation-test split follows that of Yolchuyeva et al. (2019a), with the remark that a
fraction of the entries (less than 0.2% of the test set) were not present in the augmented version
of the CMUDjct. POS/MSD information was not available for the English entries, so that only
the concurrent prediction of phonemic transcription, lexical stress and syllabification based on
the orthographic representation of the word entries was evaluated. Again, the WERs and SERs
of the predicted phonemic transcription (PH) when discarding the other lexical information are
comparable to the ones obtained by the state-of-the-art methods (Yolchuyeva et al. 2019b). As
was the case for Romanian, the results show that concurrent task learning can lead to a better
performance of the individual tasks - also indicated by van Esch et al. (2016).

9Available online: https://webdocs.cs.ualberta.ca/~kondrak/cmudict.html
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6. Conclusions

Creating and testing tools for processing language are to a large extent sustained by the existence
of language resources, on which the tools are trained and/or tuned, and against which they are
further tested. When a language lacks such a resource (mainly because of the costs involved), alter-
native, multi-lingual approaches are sought. This article introduced the collection, development,
annotation and validation of an extended Romanian lexical dataset, named RoLEX, comprising
over 330,000 entries. The dataset is the largest of this kind for Romanian and even the most
comprehensive as far as the types of information consistently and systematically encoded are
concerned: each entry contains lemma, morphosyntactic information, syllabification, stress and
phonetic information.

To test ROLEX’s feasibility in deriving automatic lexical annotation tools, we used the dataset
to train a concurrent prediction, Transformer-based neural network. The network was set to pre-
dict the phonemic transcription, lexical stress and syllabification of a written word (i.e., having
its orthographic form as input), or with the additional help of POS tags, or full morphosyntac-
tic descriptions. The evaluation included the analysis of 5 different scenarios which targeted the
amount and quality of training data, input augmentation and the cumulative effect of each task
in the overall error. The results show very high accuracy for all tasks and are in line with state-of-
the-art methods applied to each individual task. We also showed that by carefully selecting data
subsets that reflect the morphological diversity of the language, manual validation can be signif-
icantly reduced if an incremental setting of validation-training-validation is designed. As future
work, we aim to deliver the full prediction system as a freely accessible API, and we already started
to use the combined lexical information as input for end-to-end speech synthesis systems.
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