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Abstract

Phase-contrast transmission electron microscopy (TEM) is a powerful tool for imaging the local atomic structure of materials. TEM has
been used heavily in studies of defect structures of two-dimensional materials such as monolayer graphene due to its high dose efficiency.
However, phase-contrast imaging can produce complex nonlinear contrast, even for weakly scattering samples. It is, therefore, difficult to
develop fully automated analysis routines for phase-contrast TEM studies using conventional image processing tools. For automated anal-
ysis of large sample regions of graphene, one of the key problems is segmentation between the structure of interest and unwanted structures
such as surface contaminant layers. In this study, we compare the performance of a conventional Bragg filtering method with a deep learn-
ing routine based on the U-Net architecture. We show that the deep learning method is more general, simpler to apply in practice, and
produces more accurate and robust results than the conventional algorithm. We provide easily adaptable source code for all results in
this paper and discuss potential applications for deep learning in fully automated TEM image analysis.
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Introduction 2012), and chemical properties (Kim et al, 2014; Yasaei et al.,
2014). In a previous study, Ophus et al. (2015) used experimental
HRTEM imaging and numerical simulations to map out the param-
eter space of single-layer graphene grain boundaries as a function of
misorientation and boundary tilt angle. This previous work used
semi-automated analysis routines to map out the atomic positions
of the boundaries. Once boundary regions were identified, the atomic
position analysis was almost entirely automated. However, each of
these boundaries had to be hand selected and individually masked
due to the presence of surface contaminants. These contaminants
are likely amorphous carbon (Zhang et al., 2019), which tends to be
attracted by the charging induced by the electron beam to the boun-
dary regions. This previous work did not utilize a reliable fully auto-
mated computational method for segmenting between the desirable
and undesirable atomic structures.

Recently, however, new image analysis methods have been devel-
oped under the umbrella of deep learning (Garcia-Garcia et al,
2017). Deep learning as an approach to data processing problems has
substantially grown in popularity over the last decade. This can be
attributed to increasing availability of large labeled datasets, such as
Image-Net (Deng et al., 2009), breakthrough research publications in

High-resolution transmission electron microscopy (HRTEM) is a
very powerful technique for imaging atomic structure due to its
extremely high spatial resolution. HRTEM has found wide appli-
cation in studies of the local atomic structure of two-dimensional
(2D) materials, such as graphene (Meyer et al., 2007, 2011; Warner
et al., 2009; Mas-Balleste et al., 2011; Rasool et al, 2013, 2015;
Robertson & Warner, 2013). Monolayer graphene is composed of
a single 2D sheet of carbon atoms, with the same in-plane structure
as the parent material graphite (Cooper et al., 2012). Most synthesis
methods that can produce monolayer graphene will also produce
defect structures, including point defects (Hashimoto et al., 2004;
Jeong et al, 2008; Kotakoski et al, 2014), edges (Russo &
Golovchenko, 2012; Wang et al,, 2014), and line defects, such as
grain boundaries (Huang et al.,, 2011; Yu et al., 2011).

Grain boundaries in graphene are scientifically interesting because
of their distinctive mechanical (Grantab et al., 2010; Lee et al,,
2013; Rasool et al., 2013), electronic (Jauregui et al., 2011; Tapasztd
et al,, 2012; Fei et al., 2013), optical (Duong et al., 2012; Podila et al.,
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the field (Krizhevsky et al., 2010), and availability of high performance
deep learning frameworks, such as PyTorch (Paszke et al., 2019) and
TensorFlow (Abadi et al., 2015). Convolutional neural networks
(CNNs) have been used for various different image processing tasks,
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such as image classification (recognition of the object class within an
image), object detection (classification and detection of objects in an
image as well as generation of the bounding box around the object),
and semantic segmentation (pixel-wise classification of an image).

Various works (Ziatdinov et al., 2018; Lee et al., 2019) have suc-
cessfully applied deep learning methodologies to analyzing atomic
defects in microscopic images of materials. In particular, Madsen
et al. (2018) used a deep learning network trained on simulated
TEM data to recognize local structures in graphene images.

Various studies have made use of neural networks for the seg-
mentation of images of cells, such as Akram et al. (2016),
Al-Kofahi et al. (2018), as well as other biological datasets, such
as vasculature stacks (Teikari et al., 2016), brain tumors (Dong
et al,, 2017), and neuron structures (Dahmen et al., 2019). Many
works have introduced application specific architectures for their
studies, e.g., Kassim et al. (2017) and Roberts et al. (2019).

For the segmentation task considered in this paper, we utilize
the U-Net architecture as described in Ronneberger et al. (2015)
due to its proven ability to achieve high performance results on
image segmentation tasks with limited training data. This aspect
is crucial, as large databases of labeled data are typically not read-
ily available for most scientific imaging applications. U-Net has
been applied to various datasets, such as urine microscopic
images (Aziz et al, 2018), ADF-STEM images (Ge & Xin,
2018), corneal endothelial cell images (Daniel et al., 2019), and
fluorescently labeled cell nuclei images (Gudla et al., 2019).
Many other works performed similar microscopy segmentation
tasks on the nanoscale using modified versions of the U-Net
Architecture such as EM-Net (Khadangi et al, 2020), Fully
Residual U-Net (Gémez-de Mariscal et al., 2019), Inception U-Net
(Punn & Agarwal, 2020), and the domain adaptive approach with
two coupled U-Nets (Bermudez-Chacén et al., 2018).

In this paper, we develop a deep learning-based image seg-
mentation pipeline for detecting surface contaminants in
HRTEM images of graphene and compare it to a conventional
Bragg filtering approach (Hytch, 1997; Galindo et al, 2007).
The next section reviews materials and methods used in our
study. First, we describe image acquisition and preprocessing
methodologies as well as labeling training and test data for our
modeling approach. We also review Bragg filtering as a classical
image segmentation approach for detecting surface contaminants
in graphene, which serves as a baseline model. We then introduce
our new method that trains and evaluates a U-Net-based neural
network architecture using k-fold cross-validation. We demon-
strate that our neural network’s automated feature learning capa-
bilities outperform Bragg filtering for detecting material
properties and discuss two potential applications of this segmen-
tation model (section “Results and Discussion”). Furthermore, we
show how it can be easily used to further automate software-based
scientific image analysis pipelines. Finally, we summarize results
and suggest future extensions and uses (section “Conclusion”).

Materials and Methods

We first describe the process through which we grow our gra-
phene samples, how images are extracted, and the different classes
of surface structures observed in the data. We then introduce the
mathematical definitions for the preprocessing of this acquired
data used in this study. We then describe the conventional
Bragg filtering method for segmentation. Finally, we introduce
our deep learning approach to the segmentation task.
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HRTEM Imaging of Graphene Structures

The single-layer, polycrystalline graphene samples are grown on
polycrystalline copper substrates at 135°C by chemical vapor dep-
osition. The copper substrate is first held under 150 mTorr of
pressure in hydrogen for 1.5h, and then 400 mTorr pressure of
methane is flowed at 5 standard cubic centimeters per minute
(sccm) to form single-layer graphene. Further information of
this sample preparation method are given by Li et al. (2009)
and Rasool et al. (2011, 2013).

The majority of graphene HRTEM images utilized in the cur-
rent study are published along with the measured atomic coordi-
nates in a previous study (Ophus et al.,, 2015). Some additional
HRTEM images, including those from time- and focal-series are
from various studies of the structure of graphene grain boundaries
(Rasool et al., 2013, 2014; Ophus et al., 2017), were also included
in the image dataset. All of our HRTEM images of graphene were
recorded on the TEAM 0.5 microscope, a monochromated and
aberration-corrected FEI/Thermo Fisher Titan microscope oper-
ated at 80kV. The imaging conditions are optimized for fast
data collection with a relatively low electron dose in order to
record as many images as possible. The dose varied from approx-
imately 1,000 to 10,000 electrons/A” across all images. Note that
in these images, graphene atoms can appear as either local inten-
sity maxima or minima (colloquially referred to as “white-atom”
or “black-atom” contrast; Robertson & Warner, 2013). However,
both families of filters used in this study (Fourier Bragg and
U-Net) are not sensitive to the precise imaging condition, and
both filters work with images showing either kind of contrast.

Figures la-1f show examples of these HRTEM images. Note
that due to the monochromation of the electron beam, the inten-
sity of all images varies across the field of view. The graphene
samples used in this study contain four primary structural classes.
The first class is the graphene lattice itself, which consists of a
periodically repeating honeycomb structure. In this structure,
each carbon atom is bonded to three neighbors with 120° between
each bond, and six carbon atoms form closed hexagonal rings,
which are tiled in a close-packed triangular lattice. Figures 1g-11
show these regions marked in white. Depending on the microscope
defocus, the contrast is either white-atom or black-atom, meaning
either increased or decreased intensity at the location of each car-
bon atom, respectively (O’Keefe, 2008). Figures 1b, 1c, 1d, and 1f
show examples of white-atom contrast, while Figures la and le
show black-atom contrast. These images show varying degrees of
residual imaging aberrations; this is a consequence of the low-dose
measurement protocol used where the sample is exposed to as little
electron fluence as possible.

We can define a simple order parameter calculated by using
image convolution to measure the difference in signals between
the atoms on a hexagonal ring (using the measured graphene lat-
tice parameter) and the center of the ring. If we calculate this
parameter for a range of hexagon orientations, the signal reaches
a maximum when the measurement is oriented the same as the
underlying lattice, giving an estimate for the lattice orientation.
The regions where two different orientations meet in a disconti-
nuity define the second class, the graphene grain boundaries.
These boundaries are shown as red lines in Figures 1g-11 and
were the focus of the previous study by Ophus et al. (2015).

The third class is the vacuum regions, marked as green areas in
Figures 1g-11. No structure is present in these regions, and the
electron beam passes straight through with no modulation.
Each of these first three classes is easy to detect with simple
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Fig. 1. (a-f) HRTEM image examples of polycrystalline, single-layer graphene, and
(g-1) the corresponding labels.

algorithms. Measuring the location of the vacuum regions is triv-
ial after illumination flat-field correction (described below) since
these regions have unit intensity everywhere.

However, the fourth class, which corresponds to surface con-
taminants such as amorphous carbon, is more difficult to accu-
rately segment. These regions are shown as blue areas in
Figures 1g-1l. The regions often show strong lattice contrast of
ideal or near-ideal graphene structure, overlaid with random
modulations. These modulations can be strong or weak and

https://doi.org/10.1017/51431927621000167 Published online by Cambridge University Press

R. Sadre et al.

consist of a complex mix of white-atom and black-atom contrast.
Amorphous contaminants also tend to be attracted to the struc-
tures we would like to analyze, e.g., the grain boundaries. This
is likely due to the surface topology induced by these boundaries
(Ni et al., 2019). In the study of graphene grain boundaries by
Ophus et al. (2015), most of the analysis steps were automated,
but avoiding these surface contaminant regions was done manu-
ally. In this work, we tackle the segmentation of these regions, as it
represents the most difficult step to automate.

Image Preprocessing

For both the U-Net and Bragg filtering image segmentation, we
have applied the same preprocessing and normalization steps,
based on the image processing described in Ophus et al. (2015).
To normalize the intensity variation due to the monochromation,
we have fit the average local intensity Iy(r) for each image with a
2x2 Bézier surface (Farin, 2001) given by the following equation:

> (-

Y <n> i1 — )",
— \j

j=

Iy(r) = kij
(1)

where (u, v) are the image coordinates normalized to range from 0
to 1, and k;; are the Bézier surface coefficients. After fitting these
coefficients, the normalized intensity I(r) is given by the following
equation:

Imeas (1’)

==

()

where r = (x, y) are the real space coordinates, and I;e,(r) is the
measured image intensity. After this step, the mean intensity is
equal to one.

Next, we scale the intensity range by calculating the image
standard deviation o, which is equal to the root mean square of
the intensity o = /((I(r) — 1)%). We then normalize the image
by subtracting the mean u and dividing by the standard deviation
o as described by the following equation:

I(r) —
—

3

I output —

The images in this dataset were originally 1024 x 1024 or
2048 x 2048 images. We resize these images down to the size of
256 x 256 pixels. Training/test labels were generated by hand
using the Paint S software application for macOS.

Segmentation by Fourier Filtering

The defining feature for crystalline samples is their high degree of
ordering and long-range translation symmetry. When crystalline
samples are imaged along a low-index zone axis, the resulting
images display local periodicity inside each crystalline grain.
These periodic regions create sharply peaked maxima in the
image’s 2D Fourier transform amplitude that are closely related
to Bragg diffraction from a periodic crystal. These peaks are not
strictly speaking due to true Bragg diffraction, but are nevertheless
often referred to as “Bragg spots” (Hjtch, 1997; Galindo et al,
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Fig. 2. Segmenting surface contaminants and graphene lattices using Bragg filtering. (a) Input image data and (b) its Fourier transform amplitude. (c) Inverse
Fourier transform after applying Bragg mask and (d) difference from input image data. (e) Absolute difference smoothed and then (f) threshold segmentation

image. (g) Corresponding training data.

2007). By applying numerical masks around a given Bragg spot,
we measure the degree of local ordering over the image coordi-
nates that corresponds to the associated crystal planes (Pan
et al., 1998). We have developed a “Bragg Filtering” procedure
to segment the images into two classes, corresponding to clean
atomically resolved graphene, and the amorphous surface con-
taminants. Bragg filtering is a standard procedure in many
image processing routines for atomic-resolution micrographs
such as lattice strain deformation mapping (Hyjtch, 1997). Our
segmentation procedure is shown schematically in Figure 2.
After preprocessing the initial image and padding the bound-
aries, we calculate a weighted Fourier transform G(q) of the image
I(r), as shown in Figure 2a, given by the following equation:

G(q) = Iq| |F - LN W ()}, 4

where r=(x, y) and q=(q, g,) are the real space and Fourier
space coordinates, respectively, F,_., is a 2D Fourier transform
from real to Fourier space, and W(r) is a window function.
Next, we find the local maxima of this image that are above a
threshold value Gesn, as shown in Figure 2b.

Next, we perform Bragg filtering by applying a 2D Gaussian
distribution aperture to N Bragg peaks at positions g, given by
the following equation, where F,_,, is the inverse Fourier trans-
form, and o is the aperture size of the Bragg filter.

N
Iiragg(r) = Fgosr] Frogll(n} Y ela-ul27 4 (5)
n=1

Note that if symmetric pairs of Bragg diffraction peaks are
used, the output image will be real-valued for all pixels. The
resulting image is shown in Figure 2c. By subtracting the Bragg
filtered image and the mean intensity from the original image,
we generate an image consisting of the nonperiodic components,
as shown in Figure 2d. Since we consider both negative and

https://doi.org/10.1017/51431927621000167 Published online by Cambridge University Press

positive deviations to be signals from the surface contaminants,
we take the absolute value and then low pass filter Fip(...) the
output, giving an image like Figure 2e. In this figure, we see
weak signals in the aperiodic boundary between the two graphene
grains and a strong signal from the contaminants.

Finally, by choosing an appropriate mask threshold Myyesh, We
compute the desired segmentation output I;4(r) by Equation (3).
The output is shown in Figure 2f.

Iseg(r) = Frp[|I(r) — IBragg(r)” > Mihresh- (6)

This image compares favorably with the training dataset in
Figure 2g. We accurately mask the contaminant region while
not producing a “false postive” signal at the grain boundary.
There are some false positives (FP) at the image boundary due
to the breakdown of the lattice periodicity at the image boundar-
ies. We use padding and normalization of the filter output to
reduce the magnitude of these effects, but they are still present
in some images. In practice, however, these edge artifacts are
insignificant, since we cannot perform accurate measurements
of the local atomic neighborhood at the image boundaries.

In this study, we have optimized the parameters o, Gyresh, and
Mipresh by using gradient descent to minimize the error between
the segmentation maps generated and the training data. The
Bragg filter parameters and performance were measured using
fivefold cross-validation, giving values of o =0.0156 + 0.0005 1/
pixels, Giresh = 12.5 £ 0.1, and M resn = 0.054 + 0.000. The maxi-
mum number of Bragg peaks included was coarsely tuned but
does not strongly affect the results (as long as it is high enough)
and is therefore fixed at 24. The degree of low pass filtering both
of the initial Fourier transform for Bragg peak detection and of
the output difference image does not strongly affect the results.
These two steps were performed by convolution with a 2D
Gaussian function with 2 and 5 pixels standard deviation, respec-
tively. The cross-validation ensures that the segmentation map
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Table 1. Table of Performance Metrics.

Performance Metric U-Net Bragg Difference (%)
Accuracy score 0.979 0.956 24
Balanced accuracy score 0.950 0.897 53
Jaccard score 0.812 0.688 12.4
F1 score 0.884 0.791 9.2
Precision score 0.886 0.829 5.6
Recall score 0.889 0.792 9.6

The bold values refer to the cases where the metrics are higher.

accuracy was measured only on the validation subset of the data
using parameters optimized from the other 80% of the training
images. This procedure prevents over-fitting of the parameters
to the training data. The accuracy of the resulting segmentation
images is summarized in Table 1.

Deep Learning Segmentation

The U-Net architecture (Ronneberger et al., 2015) is a CNN
architecture based on a fully convolutional neural network, mod-
ified and extended to improve segmentation performance for
medical and scientific (microscopy) segmentation tasks with lim-
ited training data. A fully convolutional neural network (FCN) is
a common baseline deep learning architecture for semantic seg-
mentation. It is formed using convolutional layers, pooling layers,
nonlinear activation layers, and transposed convolution or upcon-
volution layers. It generates a network output equal in dimensions
to the input, offering a classification for each input pixel. U-Net,
which is a network based on the FCN, consists of a down-
sampling path and an up-sampling path. Features from the down-
sampling path are combined with features generated by the
up-sampling path.

INPUT :
ITTL\EGE > Conv 3x3, ReLU
32 32 2 MaxPool 2x2

> Copy
>E>
vV 64 64
Vv 128

PEH
Vv 256

R. Sadre et al.

Each U-Net block in the down-sampling path consists of two
3 x 3 kernel convolution layers, a Rectified Linear Unit (ReLU)
layer, and a 2 x 2 Maximum Pooling operation (MaxPool) layer.
Each block in this path doubles the number of features in the pre-
vious block. Each block in the up-sampling path starts with an
up-convolution operation that doubles the size of the feature
maps but also reduces the number of feature by a factor of two.
The features from this up-convolution operation are concatenated
with the feature maps of the corresponding layer of the down-
sampling path, bridged across the network. This is followed by
two convolution layers and a single ReLU layer. The final layer
in each U-Net block is a single 1 x 1 convolution layer that trans-
lates the final feature maps to two separate output classes, fore-
ground and background.

The original U-Net architecture consists of a total of nine
U-Net blocks. The modified U-Net architecture used in our
work is illustrated in Figure 3. First, we use padded convolution,
allowing us to produce a segmentation map with the same size as
the input image. In order to build a model optimized to our data,
we need to select the best hyperparameters. In the context of deep
learning, hyperparameters are configurations set by the developer
for a given data modeling problem. These are typically factors
such as the learning rate, number of features, and depth of the
network. The optimal hyperparameters for a given data modeling
problem are not known from the start and are usually optimized
through trial and error. In this study, we used the grid search
method for hyperparameter tuning. Grid search involves exhaus-
tive trial and error of all combinations of possible hyperpara-
meters in a search space defined by the programmer. Once each
version of the network was trained for 150 epochs, the model
with the best performance based on the accuracy score was
selected. The selected model was then retrained for an additional
300 epochs for two trials to generate accuracy metrics in order to
verify full convergence. We optimized across three hyperpara-
meters: number of features in the first block (with each subse-
quent block having an adjusted number of features to maintain

oOuUTPUT
> Up-conv 2x2 42 SIERIATION
Conv 1x1 64 32 32 2
>
128 64 A

256 128 A

28

D> N>

Fig. 3. Our neural network architecture based on a scaled down version of U-Net. Each color arrow corresponds to different operations: 2D Convolution (Conv) with
the kernel size of 3 x 3, Rectified Linear Unit (ReLU), Maximum Pooling (MaxPool) with the window size of 2 x 2, feature map Copying (Copy), and 2 x 2 Up (Up-conv).
Each dark grey box represents a multichannel feature map resulting from the previous convolution operation where light grey boxes represent features copied from
the down path to the up path. The number of feature maps between each convolution layer is labeled at that top of the box.
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network symmetry), number of blocks, and learning rate. We
found that a U-Net with seven blocks and 32 features in the
first block with a learning rate of 0.0001 achieved the highest
accuracy of 0.9792 and a Jaccard score of 0.8125. For reference,
the original U-Net model achieved an accuracy score of 0.9775
and a Jaccard score of 0.8015 using a 0.0001 learning rate,
which yielded the best results for this network architecture as
well. An additional advantage of a smaller network is achieving
higher throughput which is essential for speed-dependent appli-
cations such as compression of real-time tracking.

We train this network using an Adam optimizer (Kingma &
Ba, 2014) to estimate parameters and pixel-wise cross-entropy
as a loss function. We train for 300 epochs/approximately 41
min on an Nvidia GeForce GTX TITAN Black GPU using a learn-
ing rate of 0.0001. We use fivefold cross-validation for training. In
this scheme, the dataset is split into five different groups. For each
unique group, the data in that group are excluded, and the model
is fit (from scratch) to the remaining four groups. Then this
model is evaluated for accuracy metrics on the excluded fold in
order to have a separate test set from the training set. At the
end, the accuracy metrics from the fivefolds are averaged together.
We repeat this experiment twice over the different folds, random-
izing the dataset each trial, and then average the performance
results for evaluation. We train our model using the PyTorch
Deep Learning Framework (Paszke et al., 2019).

Image

M False Positives
W False Negatives

W True Positives
[ ] True Negatives
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Results and Discussion

In this section, we describe the results of our experiments. We
first qualitatively compare the two methods in terms of the
types of errors perceived via two separate cases. We then define
several key performance metrics that are commonly used for eval-
uating segmentation models and report the performance of each
model across these different metrics. We also describe how
these networks can be used in atomic position workflows and dis-
cuss the different results of using each model. Finally, we offer an
additional usage of the segmentation model for data reduction
and sorting.

Qualitative Comparison

Figure 4 shows the performance of each method on two different
example input images. Figure 4a shows an example of a critical
failure by the Bragg filter to detect amorphous carbon. The
Bragg filter produces incomplete segmentation results ignoring
the bottom section of amorphous carbon, possibly due to its
low contrast with respect to the other region of amorphous car-
bon at the top of the image. On the other hand, U-Net success-
fully identifies both of these regions as amorphous with
precision. The resolution of our segmented boundaries (posi-
tional uncertainty of the edges) is roughly given by the feature

Fig. 4. Comparison of the performance of the Bragg filter method and the U-Net method for segmentation. Detected errors are visualized on the left. True positives
are shown in white, true negatives in black, FP in red, and false negatives in blue. The sectioning generated by U-Net is shown on the original image in the middle

column, and the sectioning generated by the Bragg filter is shown in the right column.
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size of the structures being imaged, which is approximately equal
to the graphene lattice parameter.

Figure 4b shows an example where both the U-Net and Bragg
Filter methods produce precise results; however, the results of the
Bragg filter produce a substantial amount of false negatives (FN),
whereas the U-Net method produces visibly superior results.
Furthermore, the bright spot at the right side of the image is
incorrectly identified as deformed graphene. U-Net, in contrast,
has a much higher coverage of the main defect present in the
image and does not incorrectly classify the bright spot as amor-
phous. Moreover, the U-Net segmentation detects FP of amor-
phous graphene in the upper left-hand corner. However, if one
inspects the raw image, one will observe that there is, in fact, a
small amount of amorphous graphene present in this part of
the image that is overlooked during the labeling process. This
demonstrates that the capabilities of deep learning surpass
human performance on some tasks and effectively avoid over-
fitting to human labels in certain cases.

While we limit the learned parameters of the Bragg filtering
method to certain tunable parameters for the purposes of this
work, it is important to note that in general Bragg filtering
tends to perform poorly when using any set of global parameters
on all images. While adding more learnable global parameters for
the Bragg filtering approach might slightly improve results, it
would still not generalize well to all images. The only way to sig-
nificantly improve the Bragg filtering approach would be to hand
tune the parameters for each individual image. This is one of the
main strengths of the U-Net approach for this application and its
ability to create a general objective function that performs well on
images with varying structures and complexities.

Quantitative Comparison

Multiple metrics for evaluating segmentations and comparing
models exist (Udupa et al, 2002; Taha & Hanbury, 2015),
where the choice of a particular metric depends on the problem
scope and goals. In the following, we consider and define several
metrics, discuss their typical usage as well as limitations, and use
them to compare our U-Net-based approach to Bragg filtering.
Table 1 summarizes all results, which were computed using
SciKit-Learn (Pedregosa et al., 2011). All metrics are defined in
terms of true positives (TP), true negatives (TN), FP, and FN
(see Table 2).

One typical score for evaluating a segmentation is pixel-wise
accuracy, which is calculated as the total number of correctly clas-
sified pixels (TP, TF) divided by the number of predictions (i.e.,
total number of pixels)

. . TP + TN
Pixel-wise accuracy = TP TN L FP £ FN

Both segmentation methods achieve a pixel-wise accuracy above
95%, with U-Net performing roughly 2% better. While this metric

Table 2. Definitions of TP, FP, TN, and FN, Where Y is the Ground Truth and V' is
the Value Predicted by a Model.

y=1 Y=0
y=1 TP FN
Y=0 FP ™
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is easy to interpret, it fails to properly take large class imbalances
into account. In our case, segmentations are dominated by the
background class, making the results of this metric potentially
skewed. To avoid performance metric inflation due to class imbal-
ance, balanced accuracy weighs samples by the inverse prevalence
of their true classes. For the binary case, balanced accuracy is
computed as follows:

Balanced 1 TP N
alanced accuracy = > <TP TEN + ™ + FP>'

Using this metric, we start to see the performance of our models
to diverge numerically, with a difference of around 5% in favor of
U-Net.

The Jaccard score and the F1 score are two of the most com-
mon metrics used for evaluating semantic segmentation models
or in the presence of class imbalances. Mathematically, both met-
rics evaluate the same aspects of model performance (Taha &
Hanbury, 2015). The Jaccard score is computed as follows:

TP

Jaccard score = —————,
TP + FP + EN

and the F1 score is computed as follows:

2TP

F1 score = —————.
2TP + FP + FN

Our U-Net model shows Jaccard and F1 improvements over the
Bragg filtering method of approximately 12 and 9%, respectively.
This further shows that for our class imbalanced dataset, U-Net
holds significant advantages over Bragg filtering that are not as
clear when using other metrics like accuracy.

To analyze performance differences more specifically in terms
of FP and FN, we compare the precision and recall scores.
Precision represents the ratio of correctly predicted positives to
total predicted positives, i.e.,

. TP
Precision = ———,
TP + FP
while recall is the ratio of correctly predicted positives to the total
number of positives in the ground truth, ie.,

TP

Recall = ——.
TP + FN

High precision corresponds to a low FP rate, whereas high recall
indicates to a low FN rate. Our study shows that U-Net achieves
around 4 and 10% improvement over the Bragg filtering method
in precision and recall scores, respectively.

It is clear from these results that deep learning outperforms the
conventional Bragg filtering method across all quantitative met-
rics discussed here. An important consideration in deep learning
approaches in general is that the limitations of the network per-
formance depends on the problem being solved. In some cases
where more diverse and complex features are being modeled,
there may be need for a larger more memory intensive network
and more training data. This depends entirely on the application
and scope of the work.
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Memory Usage and Speed

Using a workstation running an Intel Xeon 6138 CPU, the Bragg
filtering routine requires 0.0203 s to process each 256 x 256 image.
The RAM requirements for this routine are approximately 10
times those required for a single image, equal to 5 MB for a
256 x 256 pixel image. The U-Net implementation requires
0.0294s per image, and uses 710MiB GPU RAM using an
NVIDIA Titan Black GPU, for 256 x 256 size images.

Segmentation in Atomic Position Workflows

First, we demonstrate the use of Bragg and U-Net segmentation as
part of an automated atom and bond-finding routine (Figure 5).
After an initial illumination correction step, we determine candi-
date atom positions using the method described by Ophus et al.
(2015). Subsequently, we discard all atom positions that fall inside
contamination regions, which is determined either by using the
mask output of the Bragg filtering routine or the U-Net segmen-
tation routines, and remove them from the list of candidates.
Finally, we connect neighboring atoms within a given distance
threshold by candidate atomic bonds. Figure 5 shows candidate
atom positions as white dots and candidate bonds colored by
the bond angle modulo 60°, which is overlaid on the masks gen-
erated by the two segmentation filters. For this paper, we do not
perform further any refinement of the atom positions and bonds
and focus on segmentation quality.

Figure 5a shows scenario where both the Bragg filter and
U-Net produce suitable results. In both cases, two surface con-
tamination regions are correctly identified and masked, in agree-
ment with the training data. In contrast, Figure 5b shows an

Normalized Intensity

Training Data

811

example where the Bragg filter produces a series of FP regions
(type I errors) at the boundary between the two graphene grains.
This error can be addressed by decreasing the masking threshold
Mhresh» but this change would overall increase the error across the
full dataset. Figure 5c shows an example of the kind of errors
introduced into the Bragg filter segmentation when My e, is
set too low. In this example, the Bragg filter failed to mask off a
region of surface contamination, which in turn leads to many
erroneous atom positions and bonds. These two examples illus-
trate one weakness of the conventional Bragg filtering routine,
which is that it relies on a small number of hyperparameters
that cannot be set to values that will successfully perform the seg-
mentation across the full dataset.

In comparison, the U-Net segmentation shown in Figures 5b
and 5c outperforms the Bragg filter and produces successful
results. These examples show that the deep learning approaches
can be both more accurate and more robust than simpler, conven-
tional imaging filters, i.e., Bragg filter. Both segmentation meth-
ods produce a FP at the left edge of Figure 5¢, due to the
correction of the low initial intensity value in that region causing
boosting of the noise. However, edge pixels are significantly less
valuable in analysis of the atomic structure, because the neighbor-
ing atomic environment is not visible at image boundaries.

Data Reduction and sorting

Lastly, we demonstrate how our segmentation methods can be
applied to a data reduction and image sorting problem.
Scientific experiments can yield tens thousands of images which
can often have a high variance in terms of information that is

Bragg Filtered U-NET Filtered

Fig. 5. Three examples comparing Bragg and U-net filtering. (a) Output masks where both filters performed well, (b) masks where Bragg filter produced FP regions,
and (c) masks where Bragg filter produced FN regions. In both (b) and (c), the U-Net filter produced a more accurate result.
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Fig. 6. A subset of the images from our dataset sorted by the percentage of pixels that contain potentially useful information as computed by U-Net in decreasing

order from left to right. Regions classified as amorphous carbon are highlighted in red.

useful for the particular experiment being practiced. To be able to
sort images by the content ratio could be very useful to scientists.
In the case of graphene images, a scientist may want to sort
images by the ratio of graphene to amorphous carbon. We dem-
onstrate the capability of our segmentation models to perform
this task in Figure 6. Images are sorted based on what percentage
is dominated by graphene rather than amorphous carbon. In
some cases where frame rates of the data acquisition instrument
are too high for the transference of the data to be done in a rea-
sonable amount of time, it might be useful to compress certain
parts of the image data. One way approach to this is the imple-
mentation of a run length compression on the content class
that may be less important to that specific experiment being car-
ried out.

It must be noted that such applications must be handled with
caution. This use case of data compression comes with the risk of
unintentionally removing valuable data from the original image.
There is the possibility of biases existing in the curated training
and test data that causes the U-net to incorrectly segment images
in structures not represented in the training data. This would, in
turn, cause incorrect segmentation and network outputs in real-
world usage of the network. There is also the potential for adver-
sarial attacks which involve the intentional crafting of modified
input samples that result in incorrect outputs. The risks and con-
cepts of adversarial attacks have been explored in various studies
such as Finlayson et al. (2019). It is vital to carefully inspect
results in this use case and consider the risks associated in mission
critical use cases of neural networks.

Conclusion

In this study, we have compared two methods to perform the seg-
mentation of complex features in phase-contrast HRTEM images
of monolayer graphene. The two methods we used were a conven-
tional Bragg filtering algorithm and a deep learning method uti-
lizing the U-Net architecture. The U-Net filter outperformed the
conventional method in every performance metric tested and was
very robust against incorrect determination of structurally impor-
tant regions. The U-Net method has the additional advantage of
being adaptable to many different pixel-wise classification prob-
lems and only requires a labeled dataset with a sufficient number
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of images that contain the desired segmentation features to per-
form the training. In the future, it may be possible to randomly
generate structures and perform image simulation to automati-
cally generate labeled training datasets, removing even this rela-
tively minor barrier. Because of their generality and robustness,
deep learning methods such as U-Net segmentation are extremely
valuable for fully automated image processing in TEM.

Availability of data and materials. The adapted U-Net source code,
HRTEM images, and the amorphous region-labeled images for training are
all available at our graphene-u-net GitHub repository.
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