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Abstract. It is proved that for a sequence of arbitrarily small piecewise linear
perturbations of the twist map, there is a domain with stochastic behaviour (almost
hyperbolicity). The measure of this domain has the asymptotics

uA In-^-(1+0(1)), A->0
A

where A is the magnitude of the perturbation.

Introduction
It is not known whether a small area-preserving perturbation of the twist map has
an ergodic component of positive measure. The simplest example of such a perturba-
tion is the so-called standard mapping [1]

( K K \

1 + — sin27T0, 6+I-\ sin27T0), (1,6) mod l,K eU.
2TT 2TT /

In the present paper, we consider a family of transformations defined by the formula
above in which the sinus is replaced by a piecewise linear function with zero mean
value. We obtain a two-parameter family of piecewise linear transformations of
the torus. For the zero value of the parameters, we get the twist mapping. We
prove that, for a sequence of parameters converging to zero, there is an invariant
domain in which the transformation has strong mixing properties. In particular, it
consists of ergodic components of positive measure. We conjecture that actually
in all cases under consideration, there is only one ergodic component and so, as a
consequence, the transformation is Bernoulli in the domain. This domain is a small
neighbourhood of the transversally intersecting stable and unstable separatrices of
a hyperbolic fixed point. Its area has the asymptotics

where A \0 is the parameter.
In the appendix, we prove that, at least for some values of the parameters, the

transformation possesses an infinite number of elliptic periodic points with different
periods.
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526 M. Wojtkowski

The present paper is the continuation of the paper [2] in which only large
perturbations were considered. The reader is advised to consult [2] for more
motivations and references.

1. Description of the transformation
Let n 2 be a two-dimensional torus with coordinates (<£i, <f>2) mod 1. Let us consider
the twist mapping F\: T2 -» T2,

Fl{((> 1, <t>z) = (<f> 1+ <f>2, <t>2)

and the mapping F2: T
2 -» T2 defined by

where / is a real function, periodic with period 1.
Both Fi and F2 preserve the Lebesgue measure d<f> i d<f>2. We shall study transfor-

mations of the form

F=Fi°F2, F(<f>u <f>2) = (tfn + fa+fifa), <t>7+f(4>x)).

This transformation with
is

f{t) = — sin 2irt
2TT

is called the standard mapping and appears quite frequently in physical
applications [1].

Such transformations can be viewed as perturbations of the twist mapping F\ if
only / is in some sense small. Our aim is to study ergodic properties of such
transformations with respect to the Lebesgue measure.

It is useful to introduce the following change of variables

Xi = 4>i-<f>2, X2 = <{>\.

We denote our transformation in x-coordinates by T. We have

T(xu x2) = (x2, -xx + 2x2+f(x2)).

Our transformation possesses important symmetry properties. Let

T is 5-reversible, i.e.

S°T°S = T \ (1)

Further, suppose that / is odd with respect to one of its zeros, i.e. f(z) = 0,

/ (2z- r ) = -/(r).
Consider the symmetry Pz,

Pz(xu x2) = (2z -x2, 2z -xi).

T is also Pz-reversible

PZ°T°PZ = T~\ (2)

Combining (1) and (2), we obtain

(SP2)oro(sp,r1 = r 0)
and SPZ is the central symmetry with respect to the point (z, z).
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Ergodic properties of piecewise linear perturbations 527

We specify / to be piecewise linear with two pieces in the domain of one period
and such that

f f(t)dt = O.
Jo

The last equality is the necessary condition for transformation F to have an invariant
curve of the form <(>2 = h(<t>i), where h is a continuous periodic function. Indeed,
consider the transformation F on the cylinder (<j>i, <f>2), <f>\ mod 1. The curve

does not intersect the curve

4>2 = —f(4>i) if N is sufficiently large.

The areas of the annulus between the curves and its image coincide. But the first
curve is invariant and the image of the second has the form <f>2 = 0. We conclude that

f f(t)dt = O.
Jo

Clearly, the shift of the function / is equivalent to the shift of coordinates. So
we are left with a two-parameter family of periodic functions with period 1

\-At-c/4 - 2 a < f < 0 ,
Bt-c/4 0<r<26,

where c is the harmonic mean of A and B,

c = 2AB/{A +B), a = c/4A, b = c/4B,

A>0, B>0. We see that / is odd with respect to its zeros: -a and b. The
symmetry transformations P-a and Pb coincide when considered on the torus.

It was proved in [2] that, for A = B, T has strong mixing properties in the whole
torus if A > 4 and in some invariant domains for a sequence of parameters A from
the interval [1, 4]. So A was quite far from zero. To obtain analogous results for
arbitrarily small /, we shall need two parameters (we shall consider 'co-dimension
2 phenomenon').

We take the following fundamental domain in the coordinate plane (xi, x2):

{(*i, x2)|-2a <xf <2b, i = 1, 2}.

Further let

!, x2) |-2a

We have that T is linear in 38+ and in $L and T(S8±) = ^±. In 53+, there is a fixed
point (b, b) and in 98- a fixed point (-a, - a ) . The matrix of T(DT) in 38+ is

and in 59 _,
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The first matrix is hyperbolic when B >0 i.e. it has real eigenvalues outside the
unit circle. We assume that 0 < A < 2 , so that the second matrix is elliptic i.e. it
has complex-conjugated eigenvalues on the unit circle.

2. Invariant curves
We are going to show that, for arbitrarily small special values of A and B, there
is a domain in the torus in which the transformation is almost hyperbolic. This
domain is bounded by piecewise linear invariant curves. We shall see that such
curves exist for special values of A and B.

We are interested in invariant curves in some sense close to the diagonal X\ = x2.
The orbit of any point, unless it stays all the time in ̂ 8+ or 38 _, has to pass through
S8_n^+. These remarks justify the following assumption. Let 8 be a piecewise
linear invariant curve such that its intersection with 53- n <&+ is a segment with ends

and

7> = (0,-x-c/4).

In view of the reversibility properties of T, we have that 55 and P-a8 are also
invariant curves. But the curve S has to intersect the axis of the symmetry P_a.
Hence 8 and P-iS intersect. It is not difficult to see t'.at either 8 is P_a-symmetric
(i.e. P-JS = 8) or 8<uP-a8 is the sum of two P-a-symmetric invariant curves (the
last possibility will be actually ruled out by the subsequent analysis). So we assume
that 8 is P-a-symmetric.

Consequently, our symmetric invariant curve 8 must contain the segment with
ends P-aP and P-aTp. Moreover, some positive iterate TKp, K 2 2, belongs to the
segment and the whole orbit {T'p}, 0<i<K, lies on a P_a-symmetric ellipse with
the centre at (-a, -a). We conclude that there exists K>2 such that

TKp=P.ap.

LEMMA 1. For any 0<A<2,B > 0, there exists a finite sequence u 2 > «3 > • • ->un>
0 such that, for pK - (uK, 0), we have

TKpK=P-apK and T'pKe3S- forO<i<K-l

and there are no other points p = (x, 0), x > 0 , with this property. Moreover,

uK = 18c{ctg{K-l)a/2ctga/2-l), k = 2,...,n (4)

where

cos a = 1 - A / 2 , 0<a<-rr/2

and

([ • ] stands for integer part).

Proof. The lemma is obtained by straightforward computations once we observe
that we have to apply only iterations of one linear map with the matrix M— We
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Ergodic properties of piecewise linear perturbations 529

: by expressing M_ in the :

/-sin (K - \)a sin Ka

get the specific formula for uK by expressing M_ in the following form

sin a sin a
-sin Ka sin (K + \)a

\ sin a sin a

where a e (0, TT/2) is the angle of rotation of the matrix M_, i.e.

cos a = l - A / 2 .

We get immediately

sin a + sin Ka

Using trigonometric identities, we obtain the formula above. •

Further we assume that our curve S is either /^-symmetric or S-symmetric (the
justification of this assumption is the same as above). We conclude in the analogous
manner that there is L > 0 such that

T~Lp = Pbp in case of /Vsymmetry

and

T~Lp = Sp in case of S-symmetry.

We use the fact that, for linear hyperbolic transformations, the orbits lie on branches
of hyperbolae, in our case either iVsymmetric or S-symmetric.

LEMMA 2. For any 0 < A < 2, B > 0, there exist two infinite sequences

2b = Vi>v2>-• • \Vco and 0=v-i<v-2<- • • ?v<*>

such that, for pt = (VJ, 0), we have T~'p, e <@+ for 0 < i < |/| - 1 ,

and

and there are no other points p = (x, 0), 0 < x s 2b with this property. Moreover,

u_iL = k(thL/3/2cth/3/2-l),

vL = §c(cth L/3/2 cth 0/2 -1 ) , L = 1, 2,...,

»» = fc(cth 0/2-1)
where

/3>0.

Proof. The existence of the two sequences is clear once we observe that we apply
only iterations of one linear map with the hyperbolic matrix M+. To obtain a
convenient expression for M+, we go over to the coordinates in which M+ is given
by the matrix of a hyperbolic rotation

/ ch/3 -sh/8\
l-sh/3 ch/3/
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where ch /3 = 1+ B/2. Such change of coordinates is defined by the matrix

/I -ch/3\
V0 sh/3/"

In these coordinates, the matrix M+ has the form

-shA73\
)\-sh AT/3

Returning to the original coordinates, we obtain

sh/3

shgff \
sh/3

sh (K +1)/3

\ sh/3 sh/3

Now we get immediately the following formulae

sh(L-l)/3+sh

sh(L-l)|8-sh

Using the identities for hyperbolic functions, we obtain the formulae above. •

In the following, we will use a and /3, 0 < a < TT/2, /3 > 0, as alternative parameters
of our transformation T, instead of A and B. For small a and /3, the connection
between the parameters is given by

A=a2 + 0(a4), 5 = / 3 2 + 0Q34). (5)

If our transformation T has an invariant curve S with properties specified above,
then there must be a coincidence between some uK, K>2, and vL or v-L, L> 1,
and vice-versa; if there is such a coincidence, then T has an invariant curve. We
will call such an invariant curve a curve of type (K, ±L). A curve of type (K, oo) is
a separatrix: the curve consisting of the stable and unstable 'manifolds' of the
hyperbolic fixed point (b, b).

LEMMA 3. Let us fix K, K > 2, and L, L = 1, 2 , . . . , oo. For every /3 >0, there is a
unique

such that the corresponding transformation T possesses the invariant curve of type
(K, ±L). Moreover, FK±L is an increasing differentiate function,

lim FK.±iXfi) = ^,
0-»+°o

where

tg(K--l)ao/2tgao/2=l/L.
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Proof. T possesses an invariant curve of type (K, +L) when uK = v+L. This equation
is equivalent to

tg(AT-l)a/2tga/2 = thL/3/2th/3/2. (6)

We see that the left-hand side is an increasing function from [0, ir/K] to [0,1] and
the right-hand side is an increasing function from [0, +oo) to [0,1). Hence, we
obtain the increasing differentiable function

such that (6) is equivalent to

<X=FK.+L(0).

Analogously, the equation uK = v-L can be written as

tg (K - l)a/2 tg a/2 = cth Lp/2 th 0/2. (7)

Now, the right-hand side is an increasing function from [0, +oo) to [1/L, 1). So we
obtain the increasing function FK_-L: [0, +oo)-» [a0, ir/K) where

tg ( t f - l ) ao /2 tga o / 2= l /L . •

It follows from lemma 3 that generally in one-parameter families of transformations
T, we have piecewise linear invariant curves for a sequence of parameters. For
instance, if we consider the one-parameter family with A = B, we obtain that, for
every K >2 and L > 1, there is a transformation with an invariant curve of type
(K, -L) and, if L>K, then there is also a transformation with an invariant curve
of type (K, +L). We obtain this corollary by inspecting the intersection of the graph
of the function FKt±L with the curve A=B in the (a,(3) place. The sufficient
condition for the intersection with the graph of the function FK,+L is in view of (5)

dp 0 = 0

Expanding (6) in powers of a and 0, we obtain

so that

dFK,+

dp
On the other hand, the presence of two piecewise linear invariant curves in a
one-parameter family of transformations T is a rare phenomenon. In this case we
need essentially two parameters.

PROPOSITION 1. For every integer Ku K2, Lx, L2, K2 >Ki > 2, L\ > 1, L2 ^ 1, there
exist A and B, 0<A <2, B >0, such that the corresponding transformation Thas
invariant curves of type {Ki, +Li) and of type (K2, -L2).

Proof. We have to prove that the graphs of FKlt+Ll and FK2,-L2 intersect in the
(a, j8)-plane which is obvious from figure 1. •
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<*0

FIGURE 1

Note that we have not proved the uniqueness of A and B.
Hence, we obtain a sequence of transformations with the invariant domain 0t

between the invariant curve of type (Ku +Li) and its S-image (these two curves
cut the torus U2 into two parts, 0t is the one containing the diagonal x\ = x2). In
this domain, we have the invariant polygon & bounded by the invariant curve of
type (K2, -L2). We shall consider the invariant domain 3> = 0t\m\ §>. So the domain
3> and the corresponding transformation T depend on four natural parameters Ki,
K2, L\, L2. For simplicity of notation we will not indicate this dependence explicitly.

There is the hyperbolic fixed point (b, b) in 3). If the global unstable 'manifold'
of the fixed point coincides with the global stable 'manifold', then they form an
invariant curve of type (K, +00) with Ki<K <K2. Hence, if K2-Kx = 1, then the
global stable and unstable manifolds intersect transversally on the axis of the
symmetry P-a, i.e. there exists a homoclinic point in 3) (figure 2).

The domain 3) can thus be considered as a thin layer around intersecting stable
and unstable manifolds of a fixed hyperbolic point, where there are no more
invariant curves except for the curves contractible in the domain to a point (which
encircle elliptic periodic points). This kind of domain can be considered for smooth
perturbations of the twist map. There is a common belief that, in such domains,
the stochastic behaviour is best developed (of course in general elliptic period
points can be dense in them [3]). In the next paragraph, we prove that, under some
assumptions for our piecewise linear transformation T, there are no elliptic periodic
points in 3) and T has strong mixing properties in it (is almost hyperbolic).

3. Almost hyperbolicity of T in 3>
For the sake of completeness, we repeat the definition of almost hyperbolicity from
[2].

DEFINITION. We say that a piecewise linear measure-preserving transformation
T: II2 -»II2 is almost hyperbolic in an invariant domain f e l l 2 if and only if there
are two families of disjoint segments passing through almost all points of X, called
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FIGURE 2

respectively the local contracting and expanding fibres, with the following properties.
Denote by ys [p),(yu (p)) the local contracting (expanding) fibre passing through p e 3T.

(i) ys(p) and y"(p) intersect transversally;
(ii) T(ys(p))c ys(T(p)) and T" V ( p ) ) = yu(T-\p));
(Hi) //pi,p2€-ys(p)(yu(p)), f/ten,/orn>0(n<0),

dist ( r > i , Tnp2) < const A'"',

where 0 < A < 1 and A a«d the constant depend on the fibre.

Actually almost hyperbolicity as defined above is equivalent to the non-vanishing
of the Lyapunov characteristic exponents almost everywhere in JC. The consequence
of almost hyperbolicity are the strong mixing properties of T in 3C. Namely, there
is a family of invariant subsets of positive measure jfCt, i = 1, 2 , . . . ,

such that T\x. is ergodic. Moreover,

/•L+l
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and T"'\x\ is Bernoulli (see [4] and references in it). The question of ergodicity
(number of ergodic components) has to be decided individually.

To establish almost hyperbolicity for S-reversible transformations it suffices to
find only expanding fibres. Then contracting fibres are given by

ys(p) = S(yu(Sp)).

We will use the following criterion of almost hyperbolicity for S-reversible transfor-
mations T.

Let yC be some domain on the torus not necessarily invariant and suppose for
almost all points peX, there is a sector U(p) in the tangent space so that the
following properties hold:

(i) DTx(U(p)) <= U(Txp) where Tx: X ^ % is the first return map;
(ii) for v € U{p), WDTxvW^WvW and for almost all p eX, there are A, 0<A < 1,

and L > 0 such that

\\DTxvW^X-'M for veU(p);

(iii) there is /it, 0<fi < 1, such that, for every v e U(p) and for every n >0,

|| • || denotes some smooth norm (defined, for example, by a Riemannian metric).

THEOREM 1. If an S-reversible transformation T satisfies (i)-(iii), then it is almost
hyperbolic in 9CU

3fTi= U T3K.
; = - o o

This criterion was proved in [2] (theorem 2) for the special case of /x = 1. The
proof of the proposed generalization is almost the same so it will be omitted.
Actually, assumption (iii) could be dropped but instead of it, we would have to
study the singularity lines of the first return map Tx (see [5]).

Applying theorem 1, we will obtain the following main result.

THEOREM 2. IfK2-Kl = l and L2<Lt<L2 + l, then Tis almost hyperbolic in 2.

Proof. It is convenient to go over to coordinates (yi, y2):

in which T (and DT) in 5#_ is the rotation by the angle -a.
Consider the domain S>_ = ® n$-nc&+. It consists of two quadrilaterals. We

take 9i- for 5f in theorem 1. (It is helpful to keep in mind that, in view of (3) the
transformation T factors by central symmetry so that the dynamics of both com-
ponents of 3l- is essentially the same.) It is clear that

+00

U T'2
i = — 00

coincides with 21 without the hyperbolic fixed point.
Consider the constant vector bundle U on 3>- defined in the following way. By

the construction of the invariant curves, the unstable line of the hyperbolic fixed
point cuts the quadrilaterals constituting 3)~. Take the opposite sides of one of the
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quadrilaterals which are not cut by the unstable line. Further take two lines in the
tangent plane with the direction of these sides and put U to be the sector between
them containing the unstable line of M+. The unstable line of M+ lies in U but
not the stable line so, under the application of M+, U goes into itself.

We will check assumptions (i)-(iii) of theorem 1.

Assumption (i). DT^U^U. Points from 3)- leave 33- either under TK~l or TK

where K = K\ =K2-1. Denote the corresponding subsets of Sd- by 2K~1 and <B-
(obviously in one component of 2>_, they are triangles see figure 3).

FIGURE 3

Consider the sector PU which in particular contains the stable line of M+. We
use the same letter P for the symmetry P_a =Pb=P on the torus and for its
differential in the tangent plane. Because of the symmetry properties of the invariant
curves, we obtain that, for p e3) - ' 1 ,

(DTK~1)DU = M^~1U = UK-I
def.

is a sector which has a common line with PU and lies outside of PU (between PU
and U with respect to counterclockwise orientation). Analogously, for p e££K,

(DTK)PU = M«U = UK
def.

is a sector which has a common line with PU and lies between U and PU (see
figure 4).

After the point p e3)- has left S8_, it can move either along the curve of the
type (K +1, -L2) or of the type (K, +L{) (it depends on which side of the stable
'manifold' of the hyperbolic fixed point we are). Hence, before leaving 3S+, we
apply M+ at least L2 times in the first case and at least L\ times in the second. By
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FIGURE 4

the symmetry of invariant curves, we obtain that the sector

= U
K,L2

is contained in U and has a common side with it. Analogously, the sector

def.

is contained in U and has a common side with it (the other side of U). A point

from TK~1(3)*~1)=P3i-~1 leaves 33+ not earlier than under the iteration TL> if

it goes along the curve of type (K, +L\) and not earlier than under the iteration

r L 2 + 1 ( ! ) if it goes along the curve of type (K + l, -L2). This conclusion can be

obtained by the inspection of figure 3 . In the same manner , a point from TK (3>*1) =

PSd- leaves £38+ not earlier than mnder the iteration TLl if it goes along the curve

of type (K, +L\) and not earlier than under the iteration T1"* if it goes along the

curve of type (K + l, -L2).

We conclude that the necessary and sufficient condition for the preservation of

the constant sector bundle U by DTa,_ is L2 +1 > L t and L\ >Z,2- (i) is proved. •

Assumption (ii). From the previous analysis, it follows that Af+ 'A/^" 1 is equal to

the identity on the common line of the sectors U and UK-i,Li- Hence M+1Af!c~1

is a Jordan block type matrix and it is not difficult to see that, for v eU,
c-i

'•" v > v

where || • || denotes the Euclidean norm in the coordinates (yi, y2)-

Analogously M±2M- is equal to minus the identity on the common line of the

sectors U and UK,Li a n d so it is also a Jordan block type matrix and for v e U
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We conclude that, for v sU,

\pTa_v\\^\\v\\,
i.e. the differential of the first return map at least does not decrease the norm of
vectors from U. Moreover it is not difficult to see that, if we stay in 2%+ for a time
longer than minimal, then the vectors from U will be stretched under the return
to 2— More exactly, there is A, 0<A < 1, such that, for v e U,

\\M+MK-1v\\>\-1\\v\\ ifonlyLsLi + 1

and

llAf+M-ullsA^IMI ifonlyL2L2 + l.

Moreover, for v e U and A sufficiently close to 1,

WiM^M^iM^M*-1 )«|| > A "'IMI
and

So, if, for a point p e 2)_, there is no L > 1 such that, for v e U,

then, either

i = 0

or

But it is not difficult to see that these sets have zero measure (they coincide with
the boundary segments of 3)-'1 a n d 2 - respectively).

Assumption (iii). When we apply M+ to a vector from sectors UK-\ or UK, then
its norm decreases. But, since these sectors are bounded away from the stable line
of M+ (they lie outide of PU), there is n, 0 < /x < 1, such that, for all n > 1,

I I A O H ^ H I ifuel/jc-iut/k.
Hence assumptions (i)-(iii) hold and our theorem follows from theorem 1. •

In particular, if we take Ki = 2, K2 = 3, Lx = 1, L2 = 2, then we obtain A=B = 1
and our theorem gives us theorem 6 of [2].

4. Asymptotics of the area of 3)
Denote by AKX and BK,L the parameters for which the transformation T has
invariant curves of types (K,+L) and (K + 1,L) (we have not proved that such
parameters are unique for given K, L but luckily, we shall not need it).

THEOREM3. IfL = zK In K(l+o(l)), z>0, then

.. BK.L
h m — = t

K-+0O AK.L

where 2VrarctgVf=z~1.
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In the proof, we shall need the following lemmas.
Let us denote by a the angle between the stable and unstable lines of M+ in the

y-coordinates (introduced in the beginning of the proof of theorem 2).

LEMMA 3.

tg a/2 = th 0/2 ctg a/2.

Proof. In the y-coordinates, the stable vs and unstable vu eigenvectors of M+ have
the form

vs = (e0 - cos a, sin a) , vu =(l-cosaep, sinae0)

(the eigenvalues of M+ are e0 and e~0).
So we obtain

-cosae 2 ( 3 +2e 0 -cos a . (e20-I) sin a
cos a- = 2B—^ a—.—, sin a =e2e-2cosae0 + l ' " " " e20 - 2 cosae0 +1 '

.„ 1-coso- (l+cosa)(*0-l)2

tgO"/2 = ; = : —5p 7T
sin a- sina(e - 1 )

= th/3/2ctga/2. D
LEMMA 4.

sh L/3 = sin o~ ctg a/2.

Prao/. Subtracting (6) from (7), we get

tg Kail - tg (K - l )a /2 = 2 tg o-/2 / sh L/3.

Multiplying (6) by (7), we obtain

Hence,
tg a /2 = sin <r/sh L(3. •

Proof of theorem 3. For the simplicity of notation, we will drop the indices K, L in
-<4K.L. BK<L and in corresponding to them a, @ and a.

Consider a subsequence Ks such that

lim a = (To, 0 < o-0 ̂  7T.

We will prove that, for such a subsequence,

lim /3/a = V7,
S-»OO

proving thus that, for the whole sequence,

lim B/A = t.
K-*+oo

We have that (K - l)a <a <Ka which follows immediately from lemma 3, (6) and
(7) (or from figure 4). It follows that

lim KsCt = o-0

and hence, in view of lemma 4,

lim sh L(3/Ks = 2 sin cro/o-0. (8)
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Since the last limit is always finite, then we must have

In view of lemma 3,

lim 0 = 0 .
s-»+oo

lim /3/a = tg o-o/2
S-*+CO

and hence

lim Ks/3 =a-0tgo-o/2.
S-*+0O

From (8), we obtain
lim eLI3/Ks = (2 sin <T0)lcr0.

But, by the assumption of our theorem,

C / A s — A s

where e(A") converges to 0 when A' -+ +oo. So, we must have

lim Kg = z~\
s-*+oo

We conclude that
lim /3/a = Vf

s-*+ao

where
t = tg2(To/2 and o-0tgo-0/2 = z~1. D

In particular, if

then

lim B/A = 1 and lim a = TT/2.
K-«+oo /C-.+00

Hence asymptotically, A = B. In the following, we shall consider only this case and
compute the asymptotics of the area of the domain 2 in which T is almost
hyperbolic.

Using the area-preserving property of T, we get immediately

Area (3> n (38_u «_)) = (AT +1) Area (05) +JC Area (®^"1).

Obviously (see figures 2 and 3),

Area (S>_) = (uK - MK+I)(MK+I + C/4),

Area (Si^"1) = ( « K - H K + I ) M K .

The area is computed in the x-coordinates.
After simple geometric considerations, we also obtain

Area (2> n®+n<S+) = (L-l) Area (2>J) + 2(uK-uK+i)b.

THEOREM 4.

Area (») = &A In ~{l + o(l)).
A
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Proof. In view of (4),

c cos a/2
8 sin (AT-l)a/2sin/(ra/2 4

^ c c • »* sin(2A--l)a/2 , cc+i+T = -c tga /2 . — .—rr-TX + T
4 8 sin (X - l)a/2 sin Ka/2 4

VA

= —(
It is not difficult to see that the main contribution to the asymptotics of the area
of 3) as A -> 0 is L Area (0_). But,

AT = -77-/2VA(l+o(l))

so that

L = (1/VA) In (1/VA)(1 +o(l)).

Finally, we obtain

L Area (2-) = Te In -J-(l + o(l)). •
A

We know that the stable and unstable separatrices of the hyperbolic fixed point
(b, b) intersect transversally. It is interesting to see what is the asymptotics of the
angle of intersection. We take the point of intersection on the axis of symmetry
P-a- Denote the angle of intersection in x-coordinates by x-

PROPOSITION 2.

Proof. We shall first consider the angle of intersection in y-coordinates. Denote it
by £. It is clear (see figures 2 and 4) that

i = tr-(K-l)a
if K is odd and

if K is even. But we have

o-- (A"- l )a= | ( l+o( l ) ) and

Indeed,

By (6), (7) and lemma 3,

t g ( t f - l W 2

tg Xa/2 = cth L/3/2 tg cr/2.
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Hence
tg(<r/2-(K-l)a/2)_ l-thLfl/2

tg(Ka/2-<r/2) cOiLfi/2-V

Thus we have

The stable and unstable separatrices at the point of intersection have, in y-
coordinates, directions of the vectors:

(sin (a/2 + 4/2), cos (a/2 + £/2)) and (sin (a/2 - f/2), cos (a/2 - £/2)).

Returning to the x-coordinates, we obtain that the directions are now given by the
vectors

(cos(a/2-£/2),cos(a/2 + £/2)) and (cos (a/2 + £/2), cos (a/2-£/2)).

So we have
. cos2 (a/2 - g/2) - cos2 (a/2 + g/2)

S m * " cos2 (a/2 -1/2) + cos2 (a/2 + f/2)

= 2 sin a sin£(l+o(l)).
Hence,

2 D

Appendix
The complexity of the stucture of ergodic components of positive measure of a
smooth perturbation of the twist map (if there is any at all) stems from the presence
of an infinite number of elliptic periodic points which are generically dense [3].
We found domains with almost hyperbolicity for the piecewise linear perturbations
and hence with no elliptic periodic points in them. A question arises: can the
transformation T have infinitely many elliptic periodic points with different periods?
In this appendix, we prove the following theorem.

THEOREM 5. For parameters A and B for which T has the invariant curve of type
(K, oo), K > 2 (i.e. uK = v&), there is an infinite number of elliptic periodic points with
different periods.

In particular, for A=B, there is a sequence of parameters AK \0, K > 2, for which
the stable and unstable 'manifolds' of the hyperbolic fixed point coincide (the invariant
curve of the type (K, oo)). For these parameters, the transformation T has an infinite
set of elliptic periodic points with different periods.

Proof. Let us consider the domain bounded by the coinciding stable and unstable
'manifolds' (the separatrix) of the hyperbolic fixed point (b, b) and containing the
elliptic fixed point (-a, -a). Consider the segment C with ends

PK = (uK, 0) = (w«, 0) and TpK = (0, -uK - c/4),

contained in the separatrix. This segment has the direction of the unstable line of
the hyperbolic fixed point (b, b).
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Denote the centre of f by s. We have

TK~1s=P-j and T'se®. for 0</<A" - 2 .

All the points from the segment 17 with ends (-a, - a ) and s have the same property,
i.e., forp €17,

Tlc~1p=P-ap and Tlpe0S- for0^i<K-2.

At the same time, there is a sequence of points qL e 17, L = n, n +1,..., qc -* s as
L -* +00, where n is sufficiently large, such that

T~LqL = SqL and T~iqLs.c8+ f o r O < / < L - l .

We obtain these points as the intersection of 17 and TLSr\.
By the symmetry properties of T ((1), (2) and (3)), all qL, L^n, are periodic

points with periods 2(L +K -1). The differential of T2(L+K~X) at qL clearly has the
form {M+M-'1 f.

We claim that all qL are elliptic periodic points. It suffices to prove that the matrix
M+M-'1 is elliptic. But clearly M*'1 takes the unstable line of M+ (of the
hyperbolic fixed point) onto the stable line. So in the basis of eigenvectors of M+,

with d e (-2, 2). The trace of M+M- * is thus equal to e L0d. Hence all the
matrices M+M-'1 are elliptic. We conclude that qL,L = n,..., are elliptic periodic
points with different periods.

Analogously, there is a sequence of elliptic periodic points converging to the
separatrix outside of our domain. •
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