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Abstract. In recent decades, in silico absorption, distribution, metabolism, excretion (ADME), and toxicity (T) modelling as a tool for
rational drug design has received considerable attention from pharmaceutical scientists, and various ADME/T-related prediction models
have been reported. The high-throughput and low-cost nature of these models permits a more streamlined drug development process in
which the identification of hits or their structural optimization can be guided based on a parallel investigation of bioavailability and safety,
along with activity. However, the effectiveness of these tools is highly dependent on their capacity to cope with needs at different stages, e.g.
their use in candidate selection has been limited due to their lack of the required predictability. For some events or endpoints involving more
complex mechanisms, the current in silico approaches still need further improvement. In this review, we will briefly introduce the develop-
ment of in silico models for some physicochemical parameters, ADME properties and toxicity evaluation, with an emphasis on the modelling
approaches thereof, their application in drug discovery, and the potential merits or deficiencies of these models. Finally, the outlook for future
ADME/T modelling based on big data analysis and systems sciences will be discussed.
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1. Introduction
Current pharmaceutical research and development (R&D) is a high-risk investment that is characterized by a high cost and
increasing attrition rate at late-stage drug development (Khanna, 2012). Balancing the risk-reward ratio and improving the
productivity of R&D have always been major concerns of the pharmaceutical industry (Paul et al. 2010). To address this
issue, several multidisciplinary approaches are required for the process of drug development, including structural biology,
computational chemistry, and information technology, which collectively form the basis of rational drug design. Rational
drug design refers to the process of finding new pharmaceutical compounds based on the knowledge of a biological target
(Liljefors et al. 2002). Because this process always relies on computer modelling techniques (although not necessarily), it
has been considered near-synonymous with the term ‘computer-aided drug design’ (Truhlar et al. 1999). So far, a wide
range of computational approaches have been applied to various aspects of the drug discovery and development process
(Durrant & McCammon, 2011; Jorgensen, 2004; Xiang et al. 2012), and it has even been proposed that extensive use of
the computational tools could reduce the cost of drug development by up to 50% (Tan et al. 2010). Rational drug design
methods can be divided into two major classes: (1) methods for lead discovery and optimization, which often play an import-
ant role in the early state of R&D and help scientists to identify compounds with higher potency and selectivity to one or a few
targets; and (2) methods for predicting compounds’ druggability, of which the aim is to prioritize lead molecules for further
development by a comprehensive assessment of their therapeutic properties.

The studies to identify leads involve target-to-hit and hit-to-lead processes. Corresponding computational methods include
drug target prediction, virtual screening, molecular docking, scaffold hopping, allosteric versus active site modulation, and
three-dimensional (3D) quantitative structure-activity relationship (QSAR) analyses (Zheng et al. 2013). Several reviews of
the development of these methods and their applications have been published (Kalyaanamoorthy & Chen, 2011; Ou-Yang
et al. 2012; Pei et al. 2014; Sliwoski et al. 2014). The efficiency of these processes and the quality of the generated leads
can be significantly improved by the deliberate selection of those computational methods. By contrast, the process to optimize
leads into a drug is more challenging. This situation can be easily understood if we roughly compare the number of newly
reported active compounds with that of newly approved drugs during the same period. For example, ChEMBL is a database
of a large number of bioactive molecules that were extracted from the literature. In 2012, the number of compounds in
ChEMBL was 629 943, whereas this number has increased to 1 638 394 by November 2014 (Gaulton et al. 2012).
Although millions of active compounds have been found, the number of new molecular entities that were approved by the
US Food and Drug Administration (FDA) in recent years did not increase. In contrast, there was a slight decline in 2013
compared with 2012 (Mullard, 2014). There are many possible reasons for this decline; except for non-technical (e.g. strategic,
commercial) issues, the most relevant are the efficacy and safety deficiencies, which are related in part to absorption, distri-
bution, metabolism and excretion (ADME) properties and various toxicities (T) or adverse side effects. However, the current
evaluation methods for ADME/T properties are costly and time consuming and often require a large amount of animal test-
ing, which is often inadequate when managing a large batch of chemicals. Accordingly, in-depth ADME/T scrutiny will not be
performed until a limited number of candidate compounds have been identified, meaning that the major chemical scaffolds or
preferred core structures have been established at that stage, for which it becomes difficult to make significant structural mod-
ifications based on the results of ADME/T evaluation. This disconnect between chemical optimization and ADME/T evaluation
has caused many candidate compounds showing excellent in vitro efficacy to be dismissed due to poor ‘druggability’. For exam-
ple, some compounds could not dissolve in aqueous solution or permeate across the membrane to reach the concentration
needed at the required therapeutic level, and some others may exhibit a removal time that is too long or have an excessive
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number of metabolically unstable sites. In addition, either the compounds or their metabolites may raise toxicity and safety
issues, which occasionally cannot be observed by in vitro assays or animal models. Consequently, these issues complicate the
assessment of the in vivo efficacy and safety of the drug and hinder the development process. Improving R&D efficiency and
productivity will depend heavily on the early assessment of the druggability of compounds. In this sense, the goal of rational
drug design is to fully exploit all ADME/T profiling data to prioritise the candidates or, alternatively, to ‘fail early and fail cheap’.

Because it is impractical to perform intricate and costly ADME/T experimental procedures for vast numbers of compounds, in
silico ADME/T prediction is becoming the method of choice in early drug discovery. The establishment of high-quality in
silico ADME/T models will permit the parallel optimization of compound efficacy and druggability properties, which
is expected to not only improve the overall quality of drug candidates and therefore the probability of their success, but
also to lower the overall expenses due to a reduced downstream attrition rate. In the last decade, a large number of
ADME/T prediction models have been reported, and several reviews regarding the development of these models have
been published (Cheng et al. 2013; Clark & Pickett, 2000; Moroy et al. 2012). Between 2008 and 2012, the Office of
Clinical Pharmacology at the FDA received 33 submissions containing physiologically based pharmacokinetic (PBPK) mod-
elling applications for investigational new drugs (INDs) and new drug applications (NDAs) (Huang et al. 2013). However,
compared with the number of newly developed models, reports of the practical applications of these models in medicinal
chemistry study or the drug discovery process are rarer. To solve these problems, some solutions have been reported regarding
how to develop more effective models and where these models can be used (Gleeson & Montanari, 2012). More importantly,
the outcome of ADME/T models can be maximized by intelligently integrating existing in silico, in vitro, and in vivo ADME/T
data to guide drug discovery (Wang & Collis, 2011).

In this review, we focused on the development of ADME/T prediction models and their future opportunities and challenges.
The first section concerns the influences of physicochemical (PC) parameters on compound druggability and the development
of some PC prediction models. The second section introduces the prediction models for some important properties, such as
human intestinal absorption, metabolism, membrane transporters, and PBPK models. The third section relates to the predic-
tion models for toxicities, including acute toxicity, genotoxicity, and human ether-a-go-go-related gene (hERG) toxicity.
In the last section, we will discuss the future direction of in silico ADME/T modelling.

2. PC parameters
The PC properties of a compound include lipophilicity, solubility, ionization, topology, and molecular mass (Leeson & Oprea,
2011). Consequently, these properties may affect the ADME/T profile of compounds, their potency, selectivity against targets,
and the ‘screenability’ in high-throughput screening (HTS) (Leeson & Springthorpe, 2007). There is substantially increasing
interest from both industry and academia in investigating the relationship between bulk PC properties, potency and the
ADME/T profile of compounds (Gleeson et al. 2011). Compared with many other ADME/T endpoints, PC parameters are
easily available and involve less complex mechanisms, which form the basis for developing reliable and robust in silico meth-
ods. Here, we will briefly review the prediction models for three PC properties, namely, lipophilicity, solubility, and ionization
constant, and some rule-based models that are closely related to PC properties.

2.1 Lipophilicity

Lipophilicity is an important parameter in drug discovery because it contributes to the solubility, permeability, potency, sel-
ectivity, and promiscuity of a compound (Arnott & Planey, 2012; Waring, 2010). The lipophilicity of organic molecules is
typically quantified as log Po/w, where P is the ratio of the concentrations of a compound in a mixture of octanol and
water phases at equilibrium. The prediction of log P is a prerequisite for the pharmaceutical industry to optimize the phar-
macodynamics and pharmacokinetic properties of hits and leads. The current methods for calculating log P fall into three
broad classes: ab initio methods based on molecular simulation, substructure-based methods and property-based methods.
Ab initio methods for log P prediction were developed based on the absolute solvation Gibbs free energies in different phases
at constant temperature (T) and pressure (P), which are estimated with molecular dynamics simulation using the thermodyn-
amic integration approach. According to Eq. (1),

log po/w = ΔGoct
solv − ΔGw

solv

2.303RT
(1)

where ΔGoct
solv is the solvation Gibbs free energies of compounds in water-saturated octanol, ΔGw

solv is the solvation Gibbs free
energies of compounds in water, R is the molar gas constant and T is the temperature (298 K). Therefore, obtaining the solva-
tion free energies of compounds in each phase is the key step in the log P calculation.
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Solvation remains a challenging calculation problem in molecular simulation. Because treating each solvent molecule as a sep-
arate molecule would result in an excessively high computational cost, implicit solvent models have been proposed that represent
the solvent as a continuous medium, also called continuum solvent models. The implicit solvation models included accessible
surface area (ASA) models and continuum electrostatics models. The first proposed electrostatics models were Poisson–
Boltzmann (PB) models that described the electrostatics environment of a solute in solution in the direction that is normal
to the charged surface (Fogolari et al. 2002). To reduce the computation cost of PB models, generalized Born (GB) models
that used an approximation of the exact PB equation were later proposed (Still et al. 1990). Subsequently, ASA models and con-
tinuum electrostatics models were often combined to develop hybrid models, such as the well-known PB/SA and GB/SA. Many
quantum mechanical continuum solvation models have been reported (Cramer & Truhlar, 1999; Tomasi et al. 2005).

For the application of solvation models in the log P calculation, in 1999, Best et al. compared the free energy perturbation
(FEP) and continuum of the GB/SA method to calculate log Po/w. Because FEP could not compute the absolute free energies
of solvation, the relative free energies of solvation in which solute A is slowly mutated into solute B have been computed,
calculating the Gibbs free energy change in solute A mutating into solute B in water-saturated octanol and water and the
difference value of log P, Δlog Po/w. The Gibbs free energy changes were also calculated by the continuum GB/SA models.
A comparison of the results that were calculated with the FEP and GB/SA models indicated that for the set of 12 solutes
in this study, GB/SA actually yielded more accurate estimates of Δlog Po/w at a significantly lower computational cost
(Best et al. 1999). Garrido et al. computed the Gibbs free energies of solvation for several n-alkanes in 1-octanol and
water using three different force fields, namely, Gromos, TraPPE, and OPLS-AA. After a systematic comparison, these authors
found that the Gromos force field accurately predicted the solvation Gibbs free energy of n-alkanes up to C8 in the water
phase, whereas the OPLS-AA/TraPPE force field was better in the organic phase. The combination of these two models
for the log P calculation yielded an absolute average deviation of 0·1 units to the experimental data (Garrido et al. 2009).

Log P can also be predicted by substructures and molecular properties. Substructure-based methods were also considered
fragment-based methods that were generated by decomposing the log P into atomic and fragmental contributions that
were determined by a large library of experimentally measured log P values. The correction factors can also be introduced
to compensate for intramolecular interactions. Property-based methods were developed based on the quantitative structure-
property relationship (QSPR), which can be divided into two types: (1) empirical approaches, which predict log P by a pre-
determined function and a restricted set of experimental parameters that are related to lipophilicity; and (2) statistical-based
models, which are trained with experimental log P values and various descriptors using statistical learning methods. Table 1
summarizes the different types of methods and associated examples.

All of these methods have been widely used in drug discovery and development processes. Furthermore, there are several
reviews comparing the accuracy and application of in silico log P prediction models (Kujawski et al. 2012; Mannhold
et al. 2009; Tetko et al. 2009). Mannhold et al. (2009) compared the predictive power of representative methods for one public
(N = 266) and two in-house datasets from Nycomed (N = 882) and Pfizer (N = 95 809), respectively. The prediction perfor-
mances of all tested methods were not satisfactory; among these methods, ALOGPS, S + logP, XLOGP3, OsirisP, ALOGP,
and ALOGP98 showed a higher accuracy. For the practical use of these models, it is necessary for medicinal chemists to
understand their strengths and limitations and their applicability domains, and the use of local models helps to achieve
accurate and meaningful in silico predictions (Tetko et al. 2009).

Table 1. Models for lipophilicity prediction and the methods thereof and examples of their application

Model types Methods Examples

Ab initio models log po/w = ΔGoct
solv − ΔGw

solv

2 · 303RT , where ΔGoct
solv is the solvation Gibbs energy in

water-saturated octanol, and ΔGw
solv is the solvation Gibbs energy in water

QLOGP, GBLOGP, HINT, and CLIP

Substructure-based
models

logP = ∑n
i=1 aifi +

∑m
i=1 bjFj, where ai is the incidence of the fragment or

atom fi, and bj is the incidence of the correction factor Fj

KLOGP, KOWWIN, CLOGP, ACD/Log
P, AB/Log P, ALOGP, ALOGP98,
MOLCAD, TSAR, OsirisP, and XLOGP

Property-based
methods

Empirical models Linear solvation energy relationship; molecular size
and H-bond strength; estimation of perturbed
molecular orbitals

ABSOLV, SLIPPER, and SPARC

Statistical-based
models

Developed-based on various descriptors, such as
topological indices, graph molecular connectivity,
estate descriptors, and machine-learning methods

MLOGP, TLOGP, VLOGP, S + logP, and
ALOGPS
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2.2 Solubility

Aqueous solubility is one of the most important factors affecting drug bioavailability. To be absorbed, a drug must be soluble
in water first and then have the opportunity to permeate across biological membranes (Stegemann et al. 2007).

For the methods for solubility prediction from the first principle, a thermodynamic cycle that decomposes the dissolution
process into a sublimation of molecules from crystal to vapour and from vapour to solution was proposed, as shown in
Scheme 1 (Grant & Higuchi, 1990). Then, the relationship between intrinsic solubility (S0) and the overall change in
Gibbs free energy can be expressed as

ΔG
∗
sol = ΔG

∗
sub + ΔG

∗
solv = −RT ln S0Vm, (2)

where ΔG∗
sol is the Gibbs free energy for solution, ΔG∗

sub is the Gibbs free energy for sublimation, ΔG∗
solv is the Gibbs free

energy for solvation, R is the molar gas constant, T is the temperature (298 K), Vm is the molar volume of the crystal, and
S0 is the intrinsic solubility in moles per litre.

Thompson et al. implemented the continuum solvation model SM5·42R into ab initio Hartree–Fock (HF) theory, hybrid density
functional theory Becke-3-Lee-Yang-Parr (B3LYP), and the semi-empirical molecular orbital theory Austin Model 1 (AM1) levels
to calculate the logarithm of the solubility (log S). Without any data regarding solubility or experimental solute vapour pressures,
these models yielded a mean-unsigned error of log S in the range of 0·3–0·45 for a small test set (Thompson et al. 2003).

Based on the thermodynamic cycle, Schnieders et al. combined the polarizable Atomic Multipole Optimised Energetics for
Biomolecular Applications (AMOEBA) force field with the orthogonal space random walk (OSRW) sampling strategy to predict
the structure, thermodynamic stability, and solubility of organic crystal from molecular dynamics simulations. As a polarizable
atomic multipole force field, AMOEBA could capture the aspherical atomic electron density and then provide the transferability
between different phases and environments with vastly different dielectric constants (Ponder et al. 2010). The OSRW sampling
strategy was used to overcome large barriers in the crystalline free energy landscape (Zheng et al. 2008). For n-alkylamide com-
pounds, the combinatorial method showed a reasonable prediction with a mean signed error of solubility free energies between
the calculated absolute standard state and experimental value of 1·1 kcal mol−1 (Schnieders et al. 2012).

Moreover, Palmer et al. tested three different levels of theory for the calculation of sublimation free energy and four different meth-
ods for solvation free energy, and the results indicate that the combination of sublimation free energies that were calculated with the
B3LYP/6–31G(d,p) level of theory and the solvation free energies with 3D-RISM/UC (reference interaction sites model/universal
correction) could yield a root mean square error of 1·45 log S units for 25 drug-likemolecules (Palmer et al. 2012). The 3D-RISM
is a classical statistical mechanics approach of the molecular integral equation theory for solvation free energy calculation that
yields a full molecular picture of the solvation structure and thermodynamics from the first principle, and the 3D-RISM/UCwas
the extension of 3D-RISM with partial molar volume correction (Kovalenko & Hirata, 2000; Palmer et al. 2010).

Recently, the ab initio methods for solubility prediction have made significant progress with the development of computa-
tional power. However, the calculation of the direct computation of solubility via ab initio methods is still not affordable
or scalable to the prediction of a large amount of compounds.

The in silico solubilitymodels that have been used for drug design purposes are stillmainly based onQSPR based on either simple
multiple linear regressionmethods or complexmachine-learningmethods, such as neural networks. An example of the first type
of model is the general solubility equation (GSE), which was proposed by Jain & Yalkowsky (2001). This equation incorporates
the log P and experimentally determined melting point (mp) temperature in establishing QSPR equations Eq. (3). In this model,
the solubility of a molecule in solid form is governed by the strength of the interaction that is formed between molecules within

Scheme 1. Thermodynamic cycle for the transfer from crystal to vapour and then to solution.
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the solid crystal lattice that was given by the mp and the overall molecular lipophilicity that was determined by log P.

log S = 0 · 5− 0 · 01(mp− 25) − logP (3)
Because the mp is not always available, Wang et al. (2009) replaced the mp with an easily calculable molecular polarizability
(Pol) (Wang et al. 2007) and obtained the model Eq. (4) with a standard error of 0·887 (in log units) and an R2 of 0·905.

log S = 1 · 095− 0 · 008× Pol − 1 · 078× C logP (4)

Subsequently, Ali et al. critically assessed the GSE for aqueous solubility prediction by incorporating the effect of the topo-
logical polar surface area (TPSA) and developed an alternative simple model Eq. (5). The solubility of 81% of the compounds
in the dataset was accurately predicted (Ali et al. 2012b).

log S = −1 · 0144 logP − 0 · 0056(mp− 25) − 0 · 0134TPSA+ 0 · 5134 (5)
Because the TPSA model yields poor prediction performance for molecules with phenolic and/or phenol-like moieties, Ali
et al. modified the TPSA model by incorporating a descriptor pertaining to a simple count of phenol and phenol-like moieties
and further improved the predictive ability Eq. (6) (Ali et al. 2012a). This model highlighted the positive effect of phenolic
substituents (aroOHdel) on the solubility of aromatic molecules.

log S = −1 · 0239 logP − 0 · 0148TPSA− 0 · 0058(mp− 25) + 0 · 3295aroOHdel + 0 · 5337

GSE is typically a ‘local’ model that is constructed using a series of chemical analogues and should be used with caution for a
chemical outside of its application domain. For example, Moritomo et al. (2013) exploited the SAR of 5-HT2B and 5-HT7

receptor antagonists and found that their aqueous solubility could be improved by reducing their lipophilicity or increasing
their TPSA. However, the TPSA has a negative coefficient for Eqs. (5) and (6), and the contribution of TPSA is unfavourable
for increasing solubility. Despite being counterintuitive, TPSA is only one of the molecular properties used that may be inter-
correlated (collinear) to each other (TPSA and lipophilicity in this case), and its contribution to different GSEs may vary
significantly.

Compared with the GSE, the second type of model was built based on additional descriptors and more sophisticated mod-
elling approaches (Jorgensen & Duffy, 2002) and was referred to as the ‘black box’ model because the results are often difficult
to interpret. In addition, many ‘black box’ solubility prediction models were reported in early years. Recently, Lusci et al.
(2013) reported an aqueous solubility prediction model based on undirected graph recursive neural networks (UG-RNNs)
with deep architectures and deep learning. The main advantage of the UG-RNN approach is that it can automatically extract
the internal representations from the molecular graphs, as suited for solubility prediction. Both types of models have been
used in drug-likeness analysis and as efficient filters for compound screening. To assess the quality of these models,
Hewitt et al. (2009) compared four approaches, including simple linear regression, artificial neural networks (ANNs), category
formation, and available in silico models. No one approach could accurately predict the solubility, but the simple regression
approach was superior to the more complex modelling methods due to its lower probability of over-fitting. Overall, an insuf-
ficient appreciation for the complexity of the solubility phenomenon and the inferior quality of solubility data are the two
major reasons for the limited prediction ability of current models (Llinas et al. 2008).

2.3 Ionization constant

The ionization constant, as measured by pKa, is a useful thermodynamic parameter to modulate several key molecular proper-
ties (Charifson & Walters, 2014; Manallack et al. 2013). Specifically, drug distribution and diffusion rely heavily on the ionized
state of the drugs at a physiological pH because the neutral species of compounds are more lipophilic, whereas ionized ones
are polar and water soluble. Additionally, log D, which is an extension of log P by considering all forms of the compound (i.e.
ionized and un-ionized), was introduced to consider the influences of ionization on the octanol-water partition coefficient.
A previous analysis of known oral drugs showed that 78·6% of compounds contain an invisible group, 4·3% are always
ionized, and 5·2% exist in other forms, such as salt (Manallack, 2009). Many methods for high-throughput pKa screening
and prediction have been reported to acquire pKa data for a vast amount of compounds in the early stages of R&D (Wan
& Ulander, 2006). Computational methods generally fall into three main categories: (1) ab initio QM calculations; (2) semi-
empirical approaches; and (3) statistical and machine-learning approaches.

In ab initio QM calculation, the process of compound ionization is often interpreted as a thermodynamic cycle, as in
Scheme 2, and the pKa value of a compound is calculated through Eq. (7). In Scheme 2, the deprotonation free energy
(i.e. the Gibbs energy change in the process of a compound dissociating a proton into water) was decomposed into three
parts and calculated using Eq. (8). As discussed in Section 2.1, various solvation models are available for pKa ab initio cal-
culation, andΔG∗

g is the standard Gibbs energy change for the process in a vacuum and would be computed by the Gibbs
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Helmholtz equation. In practice, depending on whether a water molecule appears on the reactant or product side of thermo-
dynamic cycle, the correction factor of log[H2O] was subtracted from or added to the pKa value, which can reduce a system-
atic error of 1·74 pKa units (Ho & Coote, 2010). In addition to these direct calculation models, there are many more complex
models, such as the proton exchange method, hybrid cluster-continuum approaches and implicit explicit approach. A more
detailed discussion about the progress of pKa calculations from the first principle is provided elsewhere (Ho & Coote, 2010).

pKa = ΔG
∗

RT ln(10) (7)

ΔG
∗ = −ΔG

∗
solv(HA) + ΔG

∗
g + (ΔG∗

solv(A−) + ΔG
∗
solv(H+)) (8)

Ab initio QM methods have received extensive attention in pKa modelling studies. However, the computation costs are often
excessively high for a large set of compounds. In addition, the prediction accuracy depends on the structural optimization, and
thus, the conformational flexibility of the compound is a challenge because the optimized structures are not always in their
global energy minimum.

With regard to semi-empirical models, a well-known approach is the linear free energy relationship (LFER) (Clark & Perrin,
1964) based on the Hammett equation, similar to Eq. (9) (Hammett, 1937).

log10
Ka

K0
a
= ρ

∑m

i=1
σi ⇔ pKa = pK0

a − ρ
∑m

i=1
σi, (9)

where pKa is the ionization constant for the parent (unsubstituted) molecule; ρ is a reaction constant that depends on the class
of molecules, the medium and the temperature; m is the number of substituents; and σi represents constants expressing the
substituent effect on the ionization constant of the parent molecule.

Because the pKa values are directly related to the deprotonation energy (as shown in Eq. (7)), adding a substituent to the
molecule would change the deprotonation energy of a molecule and its pKa values. Thus, the pKa values of a molecule
could be calculated by adding the contributions of the additive substituents to the pK0

a of the reference molecule. The dis-
advantages of the LFER approach are that the σi constants for all of the involved substituents must be known (Ertl, 1997)
and that some non-linear effects cannot be captured. Although the LFER approach was introduced in 1935 (Hammett,
1935), it is still widely used in commercial packages, such as ACD/pKa, Epik and Pallas/pKalc.

An increasing number of pKa prediction models have been established by statistic methods involving multi-linear regression
(MLR), ANNs, and kernel-based machine learning. Kernel-based machine learning was recently applied to pKa prediction
models. For example, Rupp et al. (2010) used graph kernels and kernel ridge regression to treat molecules based on their
graph representation and developed a model showing an accuracy that was comparable with that of the semi-empirical models
of Tehan et al. (2002a, b). As partial atomic charge is an important descriptor for molecular pKa, Vařeková et al. (2013)
used an electronegativity equalization method (EEM) to develop QSPR models for pKa prediction (Jirouskova et al. 2009).
The resulted models showed a similar accuracy as that of QM QSPR models but significantly reduced the required
computation cost.

Although many prediction approaches have been reported, several benchmarking studies for commercial pKa prediction
packages have shown that the prediction of pKa has not been fully solved in the drug discovery setting, and further studies
of pKa prediction models are required (Balogh et al. 2012; Liao & Nicklaus, 2009; Manchester et al. 2010). For further method
development, high-quality data and meaningful descriptors based on QM are necessary, and the application of new statistical
methods, such as kernel-based learning, deep learning, and Gaussian process regression, may be beneficial for the improve-
ment of pKa models (Rupp et al. 2011).

Scheme 2. pKa prediction via the thermodynamic cycle. Gas phase (g), aqueous solution (aq), liquid phase (l), solvation (solv).
ΔG∗

solv(HA) is the solvation free energy of HA, ΔG∗
g is the gas-phase proton affinity of H+, and A−, ΔG∗

solv(A−) and ΔG∗
solv(H+) are the

solvation free energies of A− and H+, respectively.
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2.4 Rules based on PC properties

One of the earliest applications of PC properties in drug discovery and development is drug-likeness evaluation. For example,
the well-known ‘rule of 5’ (Ro5), which was promulgated by Lipinski et al. (1997), is based on the observation of PC proper-
ties of most orally administered drugs. The Ro5 has been used to select compounds that are likely to be orally bioavailable
based on five simple rules that are related to molecular properties. Similar to drug-likeness, there are rules for ‘lead-likeness’.
For example, a lead-likeness rule that was developed by AstraZeneca can be used to assess the potential of a compound that
merits further structural optimization in drug discovery (Teague et al. 1999). These rules are widely used as filters to prioritize
the compounds that are more likely to be drug candidates. However, no discrimination is made beyond a qualitative pass or
fail for these filters because all of the compounds that comply with (or violate) the rules are considered equal. Recently,
Bickerton et al. reported a quantitative measure of drug-likeness based on a concept of desirability called the quantitative
estimate of drug-likeness (QED) (Bickerton et al. 2012). The QED ranks compounds according to their similarity to marketed
drugs by a continuous measure of drug-likeness. Based on this study, Yusof & Segall (2013) reported a relative drug likelihood
metric (RDL) that employed Bayesian methods to incorporate the distinction between drugs and non-drugs into the desir-
ability function of QED. In addition to the drug-likeness assessment, many studies have highlighted the key role of bulk physi-
cal properties in drug promiscuity and drug toxicity (Price et al. 2009; Tarcsay & Keseru, 2013). Some of the key rule-based
PC properties are summarized in Table 2.

3. ADME prediction models
The interaction between drugs and the human body is a bidirectional process: drugs affect the human body, resulting in re-
ceptor inhibition, activation, and signal pathway blocking, and the human body disposes of drug by absorption, distribution,
metabolism, and excretion. These two processes are interactional and simultaneous and lead to desired pharmacological func-
tion or undesirable side effects. Consequently, ADME properties are governing factors for the druggability of chemical com-
pounds. As the in vivo process of a drug is associated with multiple factors and involves complex mechanisms, the prediction
of ADME properties is often simplified to the major components or divided into multiple single processes. For example,
metabolism prediction may only consider the biotransformation that is mediated by one enzyme in the liver, and the distri-
bution prediction can be further split into the simulations for plasma protein binding (PPB) and the blood-brain barrier.
Significant efforts have been devoted to modelling and predicting various ADME-related issues over the past decade. In
this section, the models for several important properties are illustrated to explain the development of ADME prediction
models.

3.1 Human intestinal absorption (HIA)

The oral administration of drugs is a cost-effective and desired route that is associated with high patient compliance. HIA, as a
key procedure of oral absorption, is one of the most influential ADME properties in the early stages of lead discovery and
optimization (Artursson & Karlsson, 1991). A large amount of data regarding HIA has been produced rapidly by in vivo
and in vitro experimental assays. Many computational classification and correlation models have been developed to predict

Table 2. Summary of the highlighted rules based on the physicochemical properties

Category Rule name Properties and guidelines

Drug-likeness Ro5 (Lipinski et al. 1997) MW (200∼ 500), ClogP⩽ 5, HBAs (0∼ 10), HBDs (0∼ 5), ROTBs (0∼ 10)
QED (Bickerton et al. 2012) QED = exp 1/n

∑n
i=1 ln di

( )
, where di is the desirability function for molecular

descriptor i
RDL (Yusof & Segall, 2013) RDL = exp 1/n

∑n
i=1 ln(di(xi)

( )
, where di(xi) is the ratio of probabilities of

descriptor x in drugs and non-drugs.
Lead-likeness Teague et al. (1999) MW< 350 Da, ClogP < 3, and Affinity >0·1 µM

Rule of 3 for fragment-based leads
(Congreve et al. 2003)

MW⩽ 300, ClogP⩽ 3, HBDs⩽ 3, HBAs⩽ 3, ROTB⩽ 3, and PSA⩽ 60

Promiscuity-likeness Leeson & Springthorpe (2007) Log Promiscuity = 0 · 075Clog P− 0 · 71A− 0 · 54N− 0 · 47Z + 1 · 00 (A, N, and Z
are indicator variables, set equal to 1 for acids, neutrals, and zwitterions,
respectively)

Toxicity-likeness Hughes et al. (2008) Compounds with log P > 3 and PSA < 75 Å2 have a significantly increased safety
risk

495

https://doi.org/10.1017/S0033583515000190 Published online by Cambridge University Press

https://doi.org/10.1017/S0033583515000190


the HIA based on these data. Several reviews have summarized the previously reported HIA prediction models (Hou et al.
2006; Stenberg et al. 2002).

For classification models, there are straightforward rule-based models, such as Ro5, and more complex machine learning
models. Recently, Shen et al. proposed a substructure pattern recognition approach to build a support vector machine
(SVM)-based classification model for HIA prediction, in which each molecule is represented by a set of substructure finger-
prints based on a predefined substructure dictionary (Shen et al. 2010). The most influential substructure patterns are recog-
nized by an information gain analysis, which may contribute to an indirect interpretation of the models from a medicinal
chemistry perspective. However, because most HIA prediction models were built based on datasets with a highly skewed dis-
tribution (i.e. the datasets typically consist of more positive samples (marketed drugs with high HIA absorption) than negative
samples), they typically cannot identify poorly absorbed compounds. This problem has restricted the application of these
models in the pharmaceutical industry. Recently, based on a dataset of 645 drug and drug-like compounds, Newby et al.
under-sampled the class of highly absorbed compounds to establish training sets with a balanced distribution (50:50) and
then developed a model using classification and regression tree (Newby et al. 2013). These authors also varied the ratio of
the costs of false positives to false negatives, aiming to develop a model with lower misclassification rate. These strategies
offer some threads regarding how to cope with unbalanced datasets and build classification models with a larger application
domain.

QSAR models are also widely used in HIA prediction. Compared with qualitative models, which only classify compounds into
high, low or medium absorption classes, quantitative models can rank compounds according to their relative values of HIA.
Thomas et al. (2008) modelled the HIA using Caco-2 permeability in combination with kinetic solubility data. The model was
trained and cross-validated with the data for 120 combinations of compounds and Caco-2 permeability and kinetic solubility
parameters from different compound doses. The resulting model showed superior results compared with several previously
reported models based only on permeability or solubility.

Many studies have aimed to predict the intestinal absorption of chemical compounds, but few attempts have been made to
predict the intestinal absorption for peptide information. Because protein therapeutics have gained an increasing amount of
attention and the number of peptides entering clinical trials continues to grow, designing oral peptide-based drugs is a future
direction for drug discovery (Craik et al. 2013). Recently, Jung et al. used ANNs to develop the first models to predict
the intestinal permeability of peptides based on sequence information (Jung et al. 2007). More effort is required to screen
the intestinal barrier-permeable peptides from large peptide libraries.

3.2 PPB

Drugs can bind to plasma proteins at constant rates, and this PPB may cause less bioavailability and undesirable drug–drug
interactions (DDIs) (Trainor, 2007). Thus, it is critical to predict the binding rate and modify the problematic candidates. A
common practice in drug discovery is to use high-performance liquid chromatography (HPLC) screening human serum albu-
min (HSA) binding affinity. For a given concentration of drug-binding sites and assuming only one binding site per HSA
molecule, the binding constant is given by logKHSA = log((t− t0)/t0), where t and t0 are the retention times of the drug
and the dead time of the column, respectively (Colmenarejo et al. 2001). However, this method has several deficiencies.
First, as revealed by crystallographic studies, there is in fact more than one potential ligand binding site (Fig. 1). Second,
an HSA-immobilized column cannot precisely represent the highly dynamic nature of HSA. These issues can be better
addressed by a combination of computational docking, molecular dynamic (MD) analysis and HPLC data mining models.
For example, to which PPB site a compound will bind can be predicted by docking studies or can be classified based on
its structural characteristics; the binding affinity between the compound and docking site can be predicted by docking or
MD simulation methods combined with HPLC data.

Many in silico models have been proposed regarding two fundamental aspects: (1) binding rate and affinity, which can be
directly used to evaluate how tightly a drug binds to HSA; and (2) binding sites and poses, which may provide useful infor-
mation for structure modification. These models can also be classified as ligand- and receptor-based models, as shown in
Fig. 2. The characteristics of small molecules can be directly used for binding site and affinity prediction, forming some
ligand-based HSA binding models. Hall et al. (2013) proposed a Bayesian classifier utilizing a publically available dataset
with known binding sites (sites 1 and 2). Li et al. (2011a) developed a multiple linear regression model, in which both intra-
molecular descriptors (ligand properties) and inter-molecular interaction descriptors (from docking results) were considered.
The obtained plasma protein interaction QSAR (PPI-QSAR) model highlighted five important structural parameters affecting
PPB. This PPI-QSAR work also used receptor-based approaches via docking and MD simulation to provide conformation and

496

https://doi.org/10.1017/S0033583515000190 Published online by Cambridge University Press

https://doi.org/10.1017/S0033583515000190


interaction prediction for HSA and its ligands. To investigate the importance of the protein flexibility of HSA during the
ligand-binding process, induced-fit docking was used by Sherman et al. (2005).

There are some integrated protocols to predict PPB. A representative example is the web application of Zsila et al. (2011) using
SVM-aided docking. This platform enables the users to (1) predict whether albumin binds the query ligand, (2) determine the
probable ligand binding site, (3) select the albumin X-ray structure in the complex with the ligand that is most similar to the
query, and (4) calculate the putative complex using molecular docking calculations. Hall et al. (2013) implemented a KNIME
workflow that is readily accessible to the structure-based drug design community, combined with some established
Schrödinger nodes (function components) and QikProp descriptors.

3.3 Blood-brain barrier (BBB)

The BBB is the microvascular endothelial cell layer of the brain and plays a pivotal role in separating the brain from the blood.
High penetration is needed for most of the drugs targeting the central nervous system (CNS), whereas BBB penetration should
be minimized for non-CNS drugs to avoid undesired side-effects. The BBB penetration of compounds involves complex
mechanisms. Compounds may cross the BBB by passive diffusion or via a variety of catalyzed transport systems that carry

Fig. 1. Superimposition of all of the publically available crystal structures of HSA with bound ligands (only one typical protein structure
is presented, PDB ID: 1N5U). Six drug-binding sites are shown.

Fig. 2. Schematic of the workflow for the ligand- and receptor-based in silico predicting binding affinity, site, and pose of any user-
provided small molecule with HSA.
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compounds into the brain (carrier-mediated transport, receptor-mediated transcytosis) or out of the brain (active efflux)
(Clark, 2003). The highly complex nature of the BBB penetration poses a challenge for its assessment.

Different methodologies have been developed to measure the potential for novel compounds to permeate the BBB. Among
these methods, in vivo brain uptake experiments, including non-invasive and invasive techniques, provide the most reliable
evaluation of BBB penetration. The key concepts that are used to estimate BBB permeability among in vivo experiments
include the rate and extent of brain permeation, which are expressed as log PS (logarithm of the permeable-surface area prod-
uct) and log BB (logarithm of the brain/blood partitioning ratio at a steady-state), respectively (Bicker et al. 2014). Log BB is
by far the most frequently used parameter for evaluating BBB penetration (Lanevskij et al. 2013). However, this parameter
merely reflects the total drug concentration in the brain rather than providing any insight into the free drug concentration.
Log PS is a more appropriate index because it eliminates the effect of PPB or non-specific brain binding and provides a direct
measure of BBB apparent permeability (Carpenter et al. 2014). However, in vivo models are often low-throughput, expensive,
and labour-intensive, and there are no in vitro models that can mimic all of the properties of the in vivo BBB. The develop-
ment of more reliable HTS models remains a challenge (Bicker et al. 2014).

Most in silico models that are devoted to this aim are based on the assumption that compounds are transported across the
BBB by passive diffusion. To account for the contribution of transporters, Garg & Verma (2006) developed an ANN model
from the molecular structural parameters, and the P-glycoprotein (P-gp) substrate probability of compounds was used to pre-
dict the log BB. The result showed improved prediction performance and indicated that P-gp substrate probability plays an
important role in BBB permeability. Lanevskij et al. (2011) developed a simple QSAR model based on log P, pKa, and fraction
unbound on the plasma for log BB prediction, also considering the influence of brain tissue binding by estimating the negative
logarithm of the fraction that is unbound in the brain (−log fu,br) with a non-linear ionization-specific model that is based on
log P and pKa. As a result, the model demonstrated good predictive power for both internal and external validations. Recently,
Carpenter et al. (2014) predicted the log BB and log PS of 12 small molecules through a simple BBB mimic using MD and
binding free energy calculations. After the MD simulations of each compound through a bilayer and free-energy calculation,
the effective permeability combining the diffusion coefficient and free energy landscape was calculated, and the values corre-
lated well with both log BB and log PS. Although the model has some limitations, such as the oversimplification of the lipid
membrane and the computational cost, it still provides new threads for BBB permeability prediction.

Classification models were also widely explored for predicting whether a compound is BBB permeable (BBB+) or not (BBB−)
if its log BB value exceeds a certain threshold (the threshold is typically between 0 and −1) (Lanevskij et al. 2011). The pre-
diction performances of these models rely on the available BBB data that are presented in the literature. However, most of the
BBB datasets that have been reported so far have a distribution of positive/negative samples that is significantly different from
that expected in a real-world scenario (e.g. an HTS against an organic chemistry database), where a lower ratio of small mole-
cules may be able to cross the BBB. To address the data biasing issue, Martins et al. (2012) developed a Bayesian approach
based on differentially sampling the available data for building training and testing datasets. The obtained model produced an
overall capacity of recognizing 83% of BBB positives and 96% of BBB negatives. Another notable issue of the current classi-
fication models is that the presented data indicate that a parameter alone (log BB or log PS) is not sufficient for building a
reliable classifier, which should account for the cumulative effect of different properties on brain delivery efficiency. Recently,
Lanevskij et al. (2012) developed a novel BBB permeation score through the linear combination of two quantitative charac-
teristics, namely, the brain/plasma equilibration rate (log [PS · fu,br]) and log BB. The resulting prediction model allowed for
the classification of drugs by CNS access with 94% accuracy. Furthermore, the devised classification score correlated well with
the unbound brain/plasma partitioning coefficient (log Kp,uu), which is an unambiguous determinant of brain exposure.

3.4 Metabolism

Metabolism prediction is a research priority in many areas, including pharmaceutical, food safety, and environmental studies.
As a major safety concern to pharmaceutical research, metabolic liability can lead to a number of issues, such as poor bioa-
vailability due to enhanced clearance; toxic effects caused by drug accumulation; and DDIs, including enzyme inhibition, in-
duction, and mechanism-based inactivation (Kell & Goodacre, 2014; Kirchmair et al. 2012). In addition, metabolic
information can offer prospective advice for drug development, for example, to guide the design of a pro-drug for some meta-
bolically unstable drug to enhance bioavailability (Stella et al. 2007). Drug metabolism can be divided into phases I and II;
phase I involves oxidation, reduction, and hydrolysis, whereas phase II only involves conjugation, including methylation, sul-
phation, glutathione conjugation, and glycine conjugation. Because most enzymes of phases I and II are located in the liver,
an in vitro experiment for drug metabolism is often performed on hepatic microsomes or hepatic cells with liquid
chromatography-mass spectrometry (LC/MS), which is unable to perform HTS for vast numbers of compounds.
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Currently, metabolism-related prediction models have mainly focused on the following studies: (1) the interaction models of
enzymes with xenobiotics, which were often used to distinguish whether a xenobiotic is a substrate or inhibitor of Cytochrome
P450 monooxygenase system (CYP450s), and then to evaluate DDIs; (2) the clearance models of the liver that could quan-
titatively predict the metabolic stability of xenobiotics; (3) the site of metabolism (SOM) that can be used to predict the ‘soft
spots’ on xenobiotics; and (4) the metabolite prediction models that could predict all of the potential metabolites for xeno-
biotics. In the following section, we use SOM and metabolite prediction as examples to introduce in silico metabolism
modelling.

3.4.1 SOM prediction

The SOMs of compounds, also called soft sites, are the most probable metabolized sites of molecules. The modification of
these sites would improve compound metabolic stability. As the major enzymes involved in drug metabolism, the
CYP450s accounts for ∼75% of drug metabolism; therefore, considerable effort has been dedicated to predicting CYP
SOMs. Based on the methods that have been used, reported prediction models can be divided into three classes: reactivity-
based, structure-based, and statistical learning models.

According to previous studies, the rate-limiting step of most CYP-related phase I metabolism is the hydrogen atom abstrac-
tion, which affects the reactivity of one site most. Thus, hydrogen abstraction energy is a meaningful criterion to distinguish
whether one site would be metabolized. Singh et al. performed semi-empirical QM calculations and found that the site with a
hydrogen abstraction energy lower than 27 kcal mol−1 and solvent accessible surface area (SASA) greater than 8 Å would be
more likely to be metabolized (Singh et al. 2003). Rydberg et al. developed SMARTCyp, which can predict SOM directly from
the 2D structure of a molecule without 3D structure generation, and the prediction speed of this model has increased con-
siderably (Rydberg et al. 2010). In addition, SMARTCyp is based on atom reactivity and accessibility, where the reactivity can
be rapidly retrieved from a pool of pre-calculated energies of fragments by SMARTS matching, and the accessibility was eval-
uated using the relative location of an atom in a molecule. The interpretable descriptors and fast speed make SMARTCyp
useful for medicinal researchers.

Structural-based methods can consider the effects of the binding mode more thoroughly than reactivity-based methods. For
example, MLlite was developed based on docking methods and quantum chemistry calculations (Oh et al. 2008). In this
model, the catalytic binding mode of xenobiotics was predicted by docking, and the distance between potential atoms to a
ferric oxygen atom was measured to evaluate the magnitude of atom exposure to catalysis. If the distance was less than
3·5 Å, the site was considered to be exposed to the haem centre, and a quantum mechanics calculation was performed to
obtain the hydrogen abstraction energy. To further consider the effect of protein flexibility during the ligand-binding process,
Li et al. reported a CYP-mediated SOM prediction model based on induced-fit docking, where the conformations were refined
with the Protein Local Optimization Program (Li et al. 2011b). The testing of the IDSite on CYP2D6 showed that the IDSite
could recover 83% of the experimentally observed SOMs for 56 compounds with a low false positive rate.

Statistical learning models are the most frequently reported methods for SOM prediction. Sheridan et al. used the random
forest (RF) method, and their descriptors included structural descriptors, SASA and topological descriptors to develop
SOM prediction models for CYP3A4, 2D6, and 2C9. The predictive power of this model is comparable with that of
MetaSite (Sheridan et al. 2007). Zheng et al. calculated quantum chemical descriptors to characterize atom reactivity and
used the SVM method to develop six CYP SOM prediction models for major metabolic reaction types. These models
could successfully identify 80% of the metabolized sites of Sheridan’s dataset (Zheng et al. 2009). To avoid using quantum
chemical descriptors, Rudik et al. (2014) reported a statistical-based model for CYP SOM prediction that is based only on the
2D structure of substrates. This model used a modified multilevel neighbourhood of the atom method to describe the SOMs
and a Bayesian-like algorithm to train the model. The prediction accuracy of this model was comparable or superior to the
reported models based on quantum chemical descriptors. Similarly, Tyzack et al. (2014) used 2D topological fingerprints to
develop a series of Naive Bayesian (NB) models with various conditional probability estimate methods and then combined
these models into a voting system. The top two predictions of the Tyzack et al. model could identify 85, 91, and 88% of
the experimentally observed sites for CYP 3A4, 2D6, and 2D9, respectively.

In addition to the CYP SOM prediction models, some statistical learning models have been developed for other enzymes.
Sorich et al. (2006) and Peng et al. (2014) reported SOM prediction models for UDP-glucuronosyl transferases (UGTs),
and the Substrate Product Occurrence Ratio Calculator (Boyer et al. 2007), MetaPrint2D (Adams, 2010) and Fast
Metabolizer (Kirchmair et al. 2013) were developed for the SOM prediction of global metabolism. The predictive power of
the UGTs model appears reasonable, as reported by Peng et al. whereas the predictive power of the SOM prediction
model for global metabolism must be improved.
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3.4.2 Metabolite prediction

The purpose of metabolite prediction is to identify the primary metabolites for xenobiotics. This type of study can also pro-
vide insight into the mechanisms that are involved in metabolite-related toxicity or other pharmacology research. The meth-
ods that are available for metabolite prediction can be divided into expert systems and statistical-based methods. Being
different from SOM prediction, where a one-step reaction is sufficient, metabolite prediction models are often applied itera-
tively to yield all of the major metabolites, some of which are products of the metabolites that were generated from previous
steps. Consequently, such models can easily suffer from the risk of combinatorial explosion, resulting in a high false-positive
rate.

Expert systems were established and maintained by codifying the metabolic reaction rules from the literature, books, and
patents, in which expert knowledge plays an important role. Potential metabolites can be identified using the metabolic re-
action rules on the query, searching for the candidate substructure present in the query and converting this substructure into
the product. All of the expert systems use pre-defined reaction rules as well as their priority or probability. The main differ-
ence is the way such priorities are assigned. For example, the priority in META (Klopman et al. 1994, 1997; Talafous et al.
1994) is an integer between 1 and 9 that was optimized using a genetic algorithm; METEOR (Button et al. 2003) has absolute
and relative reasoning implemented; SyGMa (Ridder & Wagener, 2008) calculates a prior probability from a commercial
metabolism database as the priority of each type of reaction. As expert systems typically assign the same priority to reactions
of the same type without considering the influence of different substrates, additional calculations are often needed to reduce
false positives. Taking META as an example, in the case of the oxidation of aromatic molecules, the nucleophilic character of
each candidate atom and bond was evaluated by a simple index to determine which will be the most likely target. Moreover,
log P was computed for each metabolite to determine whether further biotransformation will be carried out.

Different from a fixed priority for all reactions of the same type in expert systems, statistical learning models can provide a
specific probability for different candidate sites by fully considering the influence of other functional groups of the same mol-
ecule. For example, MetaPrint2D-React (Adams, 2010) is an extension of the SOM-predicting model MetaPrint2D, where
sites are represented as circular fingerprints. For a given query molecule, a fingerprint was generated for each candidate
atom, followed by searching for similar atoms in the database. Then, a conditional probability was computed as an estimate
of the possibility of being metabolized. In this manner, candidate atoms can be analysed in the context of a specific substrate,
increasing the probability of identifying metabolites with low probability and thereby reducing the false-positive rate.

The modelling approaches of some representative models for SOM and metabolite prediction are summarized in Fig. 3. These
methods have been widely used for drug design. Ahlström et al. (2007) used MetaSite, a metabolism site prediction program,
to optimize the metabolic stability of celecoxib, which is a COX-2 inhibitor that is rapidly metabolized by CYP2C9. MetaSite
predicted three ‘soft spots’ of celecoxib that will be metabolized by CYP2C9. To protect or modify these three ‘soft spots’, 13
analogues of celecoxib were designed, synthesized, and evaluated with regard to their metabolic properties and pharmacologic
effects. Most analogues may retain their inhibitory activities, and their metabolic stabilities toward CYP2C9 were also
improved. Voronkov et al. (2013) used a consensus score for metabolism prediction to optimize the tankyrase inhibitor
JW74, and the consensus score was developed based on five metabolism prediction methods, including MetaPrint2D,
SmartCYP, MetaDrug, MetaSite, and SOME. According to the predictions of the consensus score, hundreds of derivatives
were designed by modifying five specific regions of JW74. Finally, the compound G007-LK was found, which showed high
potency toward tankyrase and a good pharmacokinetic profile in mice. Metabolite prediction methods can also help identify
drug metabolites. For example, Jacobs et al. combined the metabolite prediction method SyGMa with the experimental
method LC-HRMS/MS to develop a systematic workflow for identifying human metabolites in plasma or serum (Jacobs
et al. 2013). The workflow was successfully used to identify tamoxifen metabolites, and the identified metabolites included
the known metabolites and several minor metabolites that were not reported before. Taken together, the incorporation of
metabolism prediction methods in the R&D process not only could provide information for scientists for drug design but
could also help scientists to analyse data from metabolism experiments.

3.5 Membrane transporters

Membrane transporters are vital proteins for transmembrane processes that selectively transport endogenous substances and
xenobiotics in the intracellular or extracellular directions. Transporters in the human genome belong to two major super fam-
ilies: ATP-binding cassette (ABC) transporters and solute carrier (SLC) transporters. Among all of the membrane transpor-
ters, P-gp (MDR1), Multidrug Resistance-Associated Proteins (MRPs), and Breast Cancer Resistance Protein (BCRP) from
ABC family and Organic Cation/Anion Transporters (OCTs/OATs), Organic Anion Transporting Polypeptides (OATPs),
and Multidrug and Toxin Extrusion Transporters (MATE) from the SLC family are the primary focus of research in drug
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development. The altered activity of transporters, which are mainly distributed in the polarized cells of the liver, kidney, intes-
tine, and blood–brain barrier, may not only affect the ADME/T characteristics of a drug that will reduce the efficacy but also
lead to transporter-mediated DDIs and even severe or lethal adverse effects. To address these issues, many computational
efforts have been made to recognize the structural determinants of substances that can interact with transporters.

Because P-gp was the first identified human transporter of clinical importance, extensive experimental studies have been car-
ried out that provide required data for in silico research. In 2002, Ekins et al. developed a series of pharmacophore models of
P-gp inhibitors that inhibit digoxin, vinblastine, and verapamil, respectively (Ekins et al. 2002a, b). The alignment of these
pharmacophore models indicated that important features of P-gp inhibitors include multiple hydrophobic and hydrogen
bond acceptor features and that these three-probe substrates are likely to bind to the same or overlapping sites within
P-gp. These pharmacophore models yielded a good relationship between the predicted versus observed values in the training
set, but the performance in the predicting test set was not stable, partially due to the small amount of training set data.

Fig. 3. Modelling approaches of some representative models for SOM and metabolite prediction. Models for SOM prediction are labelled
as ‘•’, and models for metabolite prediction are labelled with ‘*’.
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Palmeira et al. used 26 P-gp known inhibitors of the flavonoid family to generate a pharmacophore model that consisted of
two aromatic rings and one H-bond acceptor (Palmeira et al. 2011). The pharmacophore model was then used to screen the
DrugBank database and successfully discover new P-gp inhibitors in old drugs. A relatively large dataset consisting of infor-
mation of approximately 200 compounds was used to develop pharmacophore models for P-gp substrates (Li et al. 2007;
Penzotti et al. 2002). The pharmacophore model of Li et al. correctly classified 87·6% of the test set compounds as substrates
or non-substrates (Li et al. 2007). Many QSAR models using linear discriminant analysis or partial least squares discriminant
analysis were developed to predict the substrates (Cabrera et al. 2006; Gombar et al. 2004) or inhibitors (Bakken & Jurs, 2000;
Crivori et al. 2006) of P-gp. All of these models were based on relatively large datasets containing more than 200 compounds,
yielding an averaged predicting accuracy of approximately 80%. In addition to these classical approaches, many statistical
learning models have been derived, including SVM, Bayesian classifiers, k-Nearest Neighbour (kNN), and decision trees.
Among these models, the SVM model of P-gp substrates that was established by Huang et al. exhibited an average predicting
accuracy of >90% (Huang et al. 2007). However, the ‘black box’ character of SVMs may limit their application in the process
of drug development because they cannot provide direct structural information to understand the interaction between sub-
stances and transporters.

Compared with P-gp, only a few studies have been reported for other human transporters, for instance, 3D-QSAR CoMFA
and CoMSIA for BCRP inhibitors (Pick et al. 2011), the SVM model of BCRP substrates (Zhong et al. 2011), and pharma-
cophore modelling of stereoselective binding to OCT1 (Moaddel et al. 2007). These targets are also of high interest to drug
transport but have been studied less extensively due to the lack of sufficient experimental data. Recently, OCT2 has drawn
considerable attention because of its significant role in the renal elimination of drugs. Pharmacophore models of OCT2
have recognized the required structural features for the inhibition of different substrate probes (Suhre et al. 2005; Zolk
et al. 2009). Nevertheless, these models were built based on a small training dataset that could only cover limited chemical
space and are therefore of limited use for extrapolating compounds outside of the training data domain. Recently, Giacomini’s
group screened a drug library of 910 compounds against their inhibitory effects on OCT2 and found 244 OCT2 inhibitors
(Kido et al. 2011). With this relatively larger dataset, Xu et al. developed a combinatorial pharmacophore (CP) model for
OCT2 aiming at its multiple inhibitory mechanisms (Xu et al. 2013). This model performed reasonably well in discriminating
inhibitors and non-inhibitors, yielding an overall accuracy of approximately 0·70 for a large test set containing 299 com-
pounds. Additionally, it has been suggested that different pharmacophore hypotheses in the CP model may correspond to
different inhibitory mechanisms, which can explain the structural diversity of OCT2 inhibitors. Subsequently, Giacomini’s
team published their research on another important emerging renal transporter, MATE1, and found 84 inhibitors among
900 prescription drugs (Wittwer et al. 2013). These authors developed an RF model with an average AUC value of 0·78.
This RF model was then used to screen the DrugBank, and five compounds were successfully identified as MATE1 inhibitors.
The data resource with high quality and clear annotation is still a major obstacle in the computational modelling of trans-
porters. In addition, reasonable integrated strategies should be developed for the modelling of this sophisticated system to
improve the predicting accuracy, enabling the application and extraction of valuable information for understanding the trans-
porting process.

3.6 PBPK models

The above sections addressed different properties or parameters that were associated with drug absorption, distribution,
metabolism, and excretion processes. However, when a drug enters the body, the four processes always proceed in parallel,
each regulated by a wide range of parameters. It is impractical to simulate the complex in vivo pharmacokinetics of the drug
based on simplified parameter-based models or their combinations. To gain more general information about the drug intra-
corporeal process, another type of study tries to model drug kinetics using a realistic physiological description of the animal.
PBPK models are built using mathematical techniques, are parameterized with known physiology, and consist of a larger
number of compartments, which are typically defined by different organs or tissues in the body and are linked by blood
flows into a system. Although a large degree of simplification is still present in those models compared with that of parameter-
based models, appropriate physiologically based models could better simulate the in vivo activity of chemicals. There are two
well-known physiologically based models, namely, the compartmental absorption and transit (CAT) model and the well-
stirred model. The CAT model is a physiologically based mathematical model for drug absorption prediction that assumes
the gastrointestinal tract as a series of compartments, each of which has a specific absorption equation (Yu & Amidon,
1999). Advance compartmental absorption and transit (ACAT) is an extension of CAT that also considers the influences
of first-pass metabolism and colon absorption (Agoram et al. 2001). The ACAT approach is widely used and implemented
in some commercially available software. More physiologically based models to predict oral drug absorption have been sum-
marized by Huang et al. (2009). The well-stirred model is a steady-state model for hepatic drug clearance that assumes that
the liver is a well-stirred compartment and that the drug is distributed instantly and homogenously throughout the liver and
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plasma in blood (Wilkinson & Shand, 1975). In addition to thewell-stirredmodel, the parallel tubemodel and dispersionmodel
are also widely used to model hepatic clearance. Compared with the well-stirred model, the parallel tube model assumes that the
liver is a series of parallel tubes and that there is a declining hepatic drug concentration along the length of the tube (Pang &
Rowland, 1977). The dispersion model was developed based on the assumption of both the well-stirred model and tube
model. There is a review of other in silico liver microsome models (Gao et al. 2010). Additionally, whole-body physiologically
based pharmacokinetic (WB-PBPK) models were generated that treated an organism as a closed circulatory system consisting
of compartments that are important for absorption, distribution,metabolism, and elimination. The development and application
of WE-PBPK models in drug development are reviewed elsewhere (Edginton et al. 2008; Nestorov, 2007).

Because PBPK models require not only a large number of system- and drug-specific parameters but also a sound mechanistic
basis (Aarons, 2005), the lack of these data and a mechanistic basis in past decades has limited the development and appli-
cation of these models. Currently, the accumulation of more data, a mechanistic understanding of pharmacokinetic processes
and systems biology, and increasingly predictive human in vitro systems have significantly contributed to the development of
PBPK models. As mentioned above, from 2008 to 2012, the Office of Clinical Pharmacology of the FDA received 33 submis-
sions using PBPK models (Huang et al. 2013). The uses of PBPK models in drug development include pharmacokinetic inter-
species and inter-individual scaling, extrapolation of indications, dose optimization, and prediction of DDIs. Meanwhile,
because drug disposition in vivo can be influenced by various intrinsic and extrinsic factors, such as a patient’s organ function,
genotype or concomitant medications, PBPK models are also suitable for pharmacodynamic prediction involving both intrin-
sic and extrinsic factors (Huang & Rowland, 2012). For instance, Zhao et al. (2012b) used PBPK modelling to evaluate the
exposure change of non-renal drug elimination in patients with chronic kidney disease.

To understand how to generate practical PBPK models, Zhao et al. reviewed several submissions for INDs and NDAs between
2008 and 2010 and found that knowledge regarding both the system component (metabolism pathway) and drug-dependent
component (PC parameters) is essential to construct an appropriate PBPK model (Zhao et al. 2011). These authors also sum-
marized the scheme of PBPK modelling and proposal, which involved five steps: (1) identify and quantify the elimination
pathways of a drug; (2) incorporate the drug-dependent parameters into the models; (3) compare the simulated profiles
with the in vivo data; (4) refine the model with the results from step 3; and (5) predict the unknown clinical settings.
Moreover, from the regulatory agencies’ perspective, Zhao et al. (2012a) suggested that the model should answer the funda-
mental questions about model adequacy and proposed the essential contents of a valid PBPK model, including an introduc-
tion of drug disposition characteristics and the purposes of the model, a detailed description of the modelling procedure, and
discussion about the model’s biological plausibility, sensitivity, applications, and limitations. Finally, sufficient training and a
good understanding of the ADME processes are required to use PBPK modelling effectively in drug development.

4. Toxicity prediction models
Toxicity is the degree to which a substance can damage an organism or substructure of the organism, such as cells and organs,
and remains one of the most significant reasons for late-stage drug development failure. A critical priority in drug
development is the early identification of severe toxicity before time and resources are expended during late stages.
Recently, early-stage high-throughput toxicity prediction methods have emerged and enhanced the yield ratio of subsequent
drug development steps. There are some integrated tools providing all-sided prediction for early-stage prediction and decision
making. As the first toxicity prediction software, DEREK is a classic knowledge (rule)-based expert system that is based on
toxicologists’ experience and information from the literature (Sanderson & Earnshaw, 1991). Another structural alert system
is ToxAlerts, a web server (http://ochem.eu/alerts) of structural alerts for toxic chemicals with potential adverse effects, whose
database is open and expandable (Sushko et al. 2012). TOPKAT employs cross-validated QSTR models to assess various mea-
sures of toxicity; each module consists of a specific database. MCASE uses a machine-learning approach to identify molecular
fragments with a high probability of being associated with observed activity (Klopman, 1992). Although in silico toxicity mod-
els are valuable for drug development, more effort is still needed to improve their prediction accuracy and mechanism inter-
pretability. In the following sections, we mainly focus on computational models for three endpoints that are important for
preclinical drug toxicity studies: acute toxicity, genotoxicity, and hERG toxicity. As the emerging research field in toxicology,
systems toxicology is discussed in the last section.

4.1 Acute toxicity

Acute toxicity describes the adverse effects of a substance that occur within a short period after dose or exposure and is an
important indicator of the drug safety assessment. Acute toxicity is typically the first step in toxicological investigations of
unknown substances. A common criterion that measures the acute toxicity of a compound is the median lethal dose
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(LD50), a dose causing 50% death of the treated animals in a given period when administered in an acute toxicity test (Turner,
1965). Currently, most acute toxicity tests are performed using in vivo experiments in rodents, consuming a large amount of
tested animals. Due to both economical and ethical reasons, animal experiments on acute toxicity are highly controversial.
Thus, it is critical to develop non-animal-based prediction of LD50 using in silico models (Prieto et al. 2013).

Many in silico prediction models have been developed with this aim. A pioneer work was the development of a global QSAR
model based on a MLR method and non-congeneric datasets (Enslein et al. 1989). However, the predictive power of this glo-
bal model was poor. There are some local models based on congeneric datasets showing some increase in the prediction ac-
curacy, but the application domain of these models is limited (Eldred & Jurs, 1999; Guo et al. 2006). Given the complex
mechanisms that are involved in acute toxicity, it is challenging to build a single global QSAR model with high prediction
accuracy. A consensus model with applicability domain analysis was developed to address this problem. Consisting of five
sub-QSAR models using different modelling methods, this model showed improved prediction performance compared
with that of individual models (Zhu et al. 2009). Recently, Li et al. (2014) reported a multi-classification model in which
the chemical compounds of the dataset were classified into four categories. Five different types of machine-learning methods
(SVMOAO, C4·5, RF, kNN, and NB) and MACCS and FP4 fingerprints were used to construct the classification models. The
prediction results of external validation showed that MACCS-SVMOAO is the optimum combination, and the corresponding
model yielded the highest predictive accuracy. Using molecular fingerprints, this model highlighted the privileged substruc-
tures that were responsible for the acute toxicity of tested compounds. To provide convenience for medicinal chemist users,
Drwal et al. (2014) reported the web server ProTox (http://tox.charite.de/tox) for rodent oral toxicity prediction. The predic-
tion method was based on chemical similarity and the identification of fragments that were over-represented in toxic com-
pounds. In addition, by collecting protein-ligand-based pharmacophores (‘toxicophores’), this web server can also be used to
predict possible toxicity target and shed light on the mechanisms that are involved in toxicity development. Subsequently, Lu
et al. (2014) reported another similarity-based prediction model based on a large reference toxicity dataset and local lazy
learning (LLL) scheme. Different from conventional QSAR models, these LLL models were constructed ‘on-the-fly’ by inves-
tigating the toxicity profiles of the structural neighbours of a query compound, meaning that there is not pre-established
QSAR model until a query compound has been provided. This feature allows for the timely update and expansion of the ref-
erence dataset, as the predictive accuracy of these models can be significantly improved by increasing the size and chemical
diversity of the reference set. These models would be endowed with more predictive power when the acute toxicity data vol-
ume is further expanded.

4.2 Genotoxicity

Genotoxicity is an important factor in the pre-clinical toxicity tests of drug design. Lessons were learned from severe geno-
toxicity cases, such as the thalidomide crisis and the misuse of oestrogen. Mutagenicity should be tested in the early stages of
pharmaceutical research. The Ames test, which was invented by Ames et al. (1975) at the University of California, Berkeley, in
the early 1970s, is the standard for assessing mutagenicity in early alerting systems. If a compound induces auxotrophic
Salmonella to synthesize histidine again, this compound may be able to cause genetic mutations.

With the development of IT technology and increasing amounts of experimental data, in silico screening and toxicity predic-
tion are attracting an increasing amount of attention. For the Ames test, the estimated inter-laboratory reproducibility is only
85% due to the limitation of the in vitro test itself (Greene, 2002). Setting up good computational models to replace the re-
peating in vitro Ames test is valuable (Xu et al. 2012). The mechanism of genotoxicity is complex, including inhibiting DNA
synthesis by nucleotide analogues or base pair mismatch caused by macrocyclic organics embedding into the DNA helix
(Kazius et al. 2005). Current studies focus on ligand-based machine learning QSAR/QSPR, structural genotoxic alerts, and
some commercial comprehensive toxicity prediction tools.

The classical QSAR modelling of genotoxicity has been extensively studied. To address the complex situation and gain insight
into the hidden mechanism of genotoxicity, additional descriptors, such as physical, quantum chemical, and molecular con-
nectivity descriptors, must be explored, together with advanced statistical analysis tools (e.g. SVMs, k-means clustering, clas-
sifiers, and ANNs) (Cheng et al. 2013). Reenu (2014) studied the mutagenicity of nitrified polycyclic aromatic hydrocarbon in
the literature, in which a QSAR model was built based on quantum chemistry descriptors, including total energy, the energy
of HOMO and LUMO, and commonly employed electron-density based descriptors, such as the electrophilicity index.
Another modelling method is to summarize toxicophore/detoxifying groups or other structural alert knowledge. Expert
knowledge-based structural alert systems have been developed to highlight the toxicophores by searching substructures in
the system. Kazius et al. (2005) analysed an Ames test dataset containing 4337 compounds and identified 8 general toxico-
phores, 19 specific toxicophores, and some additional toxicophores with detoxicophores. A system based on these toxico-
phores for mutagenicity prediction was developed, showing an accuracy rate of 85%, which is close to the experimentation

504

https://doi.org/10.1017/S0033583515000190 Published online by Cambridge University Press

http://tox.charite.de/tox
https://doi.org/10.1017/S0033583515000190


error limits of the Ames test. There are also some comprehensive structural alert systems (for example, DEREK) and databases
for predicting toxicity. Publicly available genetic toxicity and carcinogenicity datasets include the Chemical Carcinogenesis
Research Information System (CCRIS), EPA Gene-tox, the National Toxicology Program (NTP), IARC, Tokyo-Eiken,
Mutants, the Carcinogenic Potency project (CPDB), ISSCAN and data from primary publications. Commercial prediction
tools together with databases are available, such as Leadscope FDA Model Applier, Derek from Lhasa, toxicity prediction by
computer-assisted technology (TOPKAT), MultiCASE, and SciQSAR. In addition, there are freely available tools, such as
OncoLogic and lazy structure-activity relationships (LAZAR). One of these tools, the Leadscope system, has been used by
FDA and US Environmental Protection Agency researchers for chemical and biological analyses to generate predictive models
in the early stages of pharmaceutical development by read-across based on databases, as it provides data-mining and prediction
methods considering both biological and chemical data (Benfenati et al. 2009). Progress has been made regarding the in silico
Ames test prediction, and many models work well. However, data mining must be more comprehensive and carcinogenicity
mechanisms must be further studied to obtain increased predictive ability.

4.3 hERG toxicity

Sudden death induced by a blockade of hERG K+ channels (encoded by the hERG) is widely regarded as the predominant
cause of drug-induced QT interval prolongation. Because a diverse range of drug structures can cause hERG toxicity
(Table 3), the early regulatory detection of compounds with this undesirable side effect has become another important ob-
jective in the pharmaceutical industry (Aronov, 2005). In vitro electrophysiology tests on primary cardiac tissues, such as
Purkinje fibres, are performed using the voltage clamp technique (Nobel Prize 1991) and are considered as ‘gold standards’
in hERG toxicity prediction. There are some databases that have collected large amounts of hERG toxicity data, such as
WOMBAT-PK and PubChem BioAssay. In silico analysis of hERG toxicity can be performed based on these data to reduce
the experimental cost and provide structural optimization guidelines to avoid this effect.

The detailed X-ray crystallographic structure of the hERG channel is not yet available; therefore, the structural details of the
hERG channel are assumed by homology modelling, mutagenesis studies, and computational models. Österberg & Aqvist
(2005) constructed a hERG homology model based on the structures of bacterial KvAP (open) and KcsA (closed) channels.
The human hERG potassium channel has a 50% sequence identity to the Drosophila ether-ago-go gene and has six
membrane-spanning segments for each of its four subunits. Docking and molecular dynamics results show that known
hERG blockers have good affinities to this model. For newly designed compounds, the homology model of the hERG channel
can be used to perform docking or MD stimulation and assess their hERG toxicity according to their binding affinity.
Seierstad and Agrafiotis developed a QSAR model for hERG toxicity prediction (Seierstad & Agrafiotis, 2006). This model
can quantitatively assess the cardiotoxicity of newly designed compounds and provide alerts for compounds with a greater
potential to cause toxicity. SciQSAR is a comprehensive QSAR modelling system of good behaviour in hERG toxicity predic-
tion. This system enables researchers to establish reliable QSARs and QSPRs, create new calculators for in silico screening, and
generate new compound libraries based on results (Contrera et al. 2003; Muster et al. 2008). In practice, it is not typically
necessary to know the toxicity of a compound. A binary classification of whether the investigated compound is cardiotoxic
or not is sufficient. Although the crystal structure of the hERG potassium channel is still unavailable, a binary classification
model for hERG toxicity based on experimental tests may be helpful. In 2006, Sun (2006) developed a NB classifier using a
universal, generic molecular descriptor system, which exhibited an ROC accuracy of 0·87 for the identification of hERG block-
ers. In 2012, Wang et al. (2012) proposed a more thorough analysis on hERG toxicity descriptors and classification methods.
These authors built twomodels using NB classification and recursive partitioning techniques and found that the NBmodel yielded
better prediction results. Recently, Liu et al. (2014) reported a model that was built by laplacsian-corrected Bayesian classification.
Molecular fingerprints (extended-connectivity fingerprints) were used as descriptors, and the established models could identify the
substructures as favourable or unfavourable for hERG channel blockage. Thesemodelsmay offer valuable information for designing
drugs to avoid hERG toxicity. Many hERG blocker predictionmodels have been developed, but there is still a need for a ‘gold stan-
dard’ dataset to evaluate the performance of these models (Wang et al. 2013). To date, the major obstacles for the development of
hERG blocker models are (1) an unclear mechanism for the hERG blocker and (2) the lack of reliable and extensive experimental
data. In the near future, when the crystal structure of the hERG channel becomes available and more quality data are generated,
combining molecular modelling and simulating approaches, hERG toxicity prediction will be more accurate.

4.4 Systems toxicology

Systems toxicology is a new discipline that quantitatively studies the toxicological interaction of substances and biological or-
ganization at the system level (Waters & Fostel, 2004). Different from classical toxicology, which evaluates compound toxicity
based on one or two toxicity properties, systems toxicology studies the interaction of all of the elements of a given biological
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system under stress or toxicant perturbation to achieve a comprehensive understanding of the toxicological response. The
development of system toxicology is facing formidable challenges because a detailed mechanistic understanding of the toxicity
response triggered by substances is required. However, the development of ‘-omics’ technologies, namely, genomics, tran-
scriptomics, proteomics, metabolomics, lipidomics, and toxicogenomics, may help to construct a robust systems toxicology
knowledgebase (Sturla et al. 2014).

Table 3. Drugs withdrawn since 2000 because of significant hERG toxicity

Structure Drug Company Marketed year Withdrawn year

Cisapride Janssen Pharmaceutica 1989 2000

Sparfloxacin Daiichi Pharmaceutical
Co Ltd. (Japan)

1993 2001

Levacetylmethadol Sipaco International 1993 2003

Thioridazine Novartis 1998 2005

Valdecoxib G. D. Searle & Company 2001 2005

Clobutinol Boehringer-Ingelheim 1961 2007

Sibutramine Abbott Laboratories 1998 2010
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For toxicological assessment, the most relevant ’-omics’ technology is toxicogenomics, which is developed based on all of the
other ‘-omics’ technologies. Toxicogenomics analyses the transcript, protein, and metabolite profiling in an integrated man-
ner and combines conventional toxicology to investigate the interaction between genes and the toxicity of substances.
Compared with traditional toxicology, toxicogenomics may not only assess the safety profile of chemicals but also help to
elucidate the related mechanism and mode of action. In addition, toxicogenomics can also be used to identify toxicity bio-
markers and analyse mixture toxicity (Altenburger et al. 2012; DeCristofaro & Daniels, 2008). Toxicogenomics has provided
valuable mechanistic insight into various adverse drug reactions and has been reviewed with a focus on hepatotoxicity and
nephrotoxicity (Kienhuis et al. 2011). With the development of toxicogenomics, many toxicogenomics databases have
been created, such as Connectivity map (CMap) (Lamb et al. 2006), the Genomics-Assisted Toxicity Evaluation System
(TGGATEs) (Uehara et al. 2010), and the Comparative Toxicogenomics Database (CTD) (Davis et al. 2013; Mattingly
et al. 2006). These databases provide insight into complex chemical-gene and protein interaction networks and improve
our understanding of the toxicity mechanisms.

In addition to the toxicogenomics database, there are many other databases containing chemical biology, protein-protein
interactions, and disease and pathway enrichment information, which have also contributed to the construction of a systems
toxicology knowledge base, such as search tool for interacting chemicals (STITCH), ChEMBL, search tool for the retrieval of
interacting genes/proteins (STRING), and Kyoto Encyclopedia of Genes and Genomes (KEGG). These databases provide
some local and static pathways or biological networks, and systems biology could integrate these pathways or networks
into a global network and identify important pathways for toxicological responses. For instance, Kongsbak et al. (2014)
used a systems biology approach to predict the human toxic effect of the pesticide prochloraz.

Accurately evaluating the toxicity profile of compounds is always a major challenge in pharmaceutical R&D. Current
approaches for toxicology testing mainly rely on toxicity assays in animals, such as rats. The most significant problem
is species differences in that the toxic effects of compounds in animals are not necessarily consistent with those in humans,
which is also the reason why many drugs fail in clinical trials due to toxicological effects that did not appear in animals in pre-
clinical testing. Another relevant issue is animal cost. To solve the above issues, Hartung (2009) stated that an entirely new toxi-
cology system is needed that should better reflect the use of current tools, integrate various approaches for toxicity evaluation,
and employ modern technologies. Systems toxicology, as the integration of current toxicity testing tools, newly developing tech-
nologies (such as ’-omics’), and various advanced computational approaches, precisely fits these requirements.

5. Outlook
In silicoADME/Tmodelling hasmade significant advances in the past decade.Many novelmodels have been proposed to address
different aspects of pharmacokinetic and safety evaluations of drug-like molecules. However, this situation is still far from the
prediction paradise that was expected by van de Waterbeemd & Gifford (2003) 10 years ago, in which in silico methods could
support automated decisionmaking in drug discovery.Challenges such as the insufficient prediction reliability, the disconnection
between experiments andmodels, and the lack of systematic perspective on intracorporal processesmay be themain reasons why
in silico ADME/T modelling has not met this expectation. Making better use of the in silico ADME/T models by medicinal che-
mists to balance different activities and characteristics within chemical series are also a major challenge in the drug discovery
field. To resolve this problem, the communication between synthetic chemists and computational researchers must be
strengthened, and the quality of models must be improved. For example, the data source and modelling procedure of a model
should be expanded to help users understand the model and predicted property. Delisle et al. (2005) suggested some
common considerations when building models, including the intended use of the model, data quality, appropriate modelling
strategy, and model validation. Regarding model validation, the European Chemicals Agency has proposed the Organization
for Economic Co-operation and Development (OECD) principles, which state that a valid model should be associated with
the following information: (1) a defined endpoint; (2) an unambiguous algorithm; (3) a defined domain of applicability; (4)
appropriate measures of goodness-of-fit, robustness and productivity; and (5) a mechanistic interpretation, if possible
(ECHA, 2008). A high-quality model must invest considerable effort. Meanwhile, we will benefit from taking advantage of the
development and protocol from other scientific disciplines to establish more reliable and robust models to predict various
ADME/T properties.

Currently, how we manage and explore data will be the defining issue of the new era now unfolding. Big data, as one of the
largest trends, has brought significant changes to many fields. In drug discovery and design, massive data have accumulated,
and more data are being generated at increasing speeds due to the development of various techniques. For example, gene
sequencing and HTS technologies have made many conventionally time-consuming tests more efficient and have provided
a large amount of data. The emergence of combinatorial chemistry has drastically expanded compound chemical space.
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Bioinformatics and systems biology studies can illuminate molecular phenomena in biological and chemical systems and in-
tegrate conventionally disparate disciplines to form an inter-connected, multi-dimensional continuum (Flower, 2012). The
development of these disciplines has already facilitated drug discovery and development, and these changes will also bring
brand new vistas for ADME/T in silico modelling.

The data that were generated for drug ADME/T assessment conform to the 3Vs (volume, velocity, and variety) characteristics of
big data (defined by Doug Laney in 2001), for example, the rapid accumulation of metabolomics and toxicogenomics data by
different institutes or laboratories with high-throughput molecular profiling technologies. These data often have a wide variety
of types, such asmolecular properties, activity data, and gene expression profile, and typically exhibit high false-positive rates. The
big data challenge has undoubtedlymade theADME/Tassessment processmore complex as a result of an increase in the diversity
and scale of information embedded within the process. Many computational solutions have been introduced for big data man-
agement and analysis, including cloud computing and heterogeneous computing, providing a bright prospect for exploring ‘new
oil’ (Schadt et al. 2010). The techniques and technologies that are currently used to address big data problems, together with the
underlyingmethodologies, are reviewed elsewhere (Chen & Zhang, 2014; Qin, 2014). For example, the Hadoop platform enables
the large-scale collection and storage of detailed data at a low cost. New software frameworks, such as Kiji and the Cloud era
Developer Kit, have made Hadoop data more accessible to analysts for predictive modelling development and deployment. In
addition to the technical aspects of big data, there are some recommended strategies. For example, different from our conven-
tional method of addressing small data, in which we often rely on more sophisticated algorithms to achieve a better prediction
accuracy, big data problems are better suited to simple algorithms (i.e. to embrace the size of detailed data, rather than the com-
plexity of constructed models). The logic behind the concept is that using more data may help us to make fewer initial assump-
tions about the underlying model and let the data determine which model is the most appropriate. Regarding the velocity of big
data, methods must be real-time- and data-driven and timely updated. An example is the LLLmethod, which was introduced for
acute toxicity, does not require any pre-establishedmodel and is constructed ‘on-the-fly’when a query compound has been pro-
vided. These ‘on-the-fly’models would apply to the expansion of the reference dataset, and the performance of thesemodels can
also be significantly improved. Additionally, in the big data era, all researchers, including data providers and model users, must
become data scientists to harness big data (Lusher et al. 2014).

In addition to big data analysis, another problem is how to integrate a large amount of data into the modelling of endpoints
involving complex biochemical, biophysical, and physiological mechanisms. Similar to the mathematical systems theory that
states that a complex problem requires a complex solution (Bar-Yam, 2004), the complex problem of ADME/T prediction also
requires a complex solution. In this sense, systems biology and systems pharmacology, as the antithesis of the reductionist
approaches, may provide complex solutions for ADME/T prediction (Ma’ayan et al. 2014; Pujol et al. 2010). Systems biology
is applied in drug discovery to understand physiology and disease at the system level (Butcher et al. 2004). Based on systems
biology, systems pharmacology focuses on complex interactions within biological systems to quantitatively simulate the in-
teraction between a drug and various systems of the body (Vicini & van der Graaf, 2013). As noted above, the ADME/T
of drugs includes complex processes and has a significant impact on the effects of the drug, including transcriptome, pro-
teome, and enzyme activities, as also represented as the ‘sharp end’ of systems biology (Kell & Goodacre, 2014). Systems bi-
ology and systems pharmacology, which leverage knowledge based on the systematic understanding of the interaction between
drugs and the human body, may provide a critically needed blueprint for the ADME/T processes of drugs and help to develop
a robust systematic model for drug ADME/T prediction.

To summarize, in the era of big data, a necessary goal is the ability to use rapidly accumulating data to pinpoint potential ADME/T
issues before entering late-stage development. However, due to the complex mechanisms and processes that are involved,
most in silico ADME/T models are far from perfect, and discovering a more druggable molecule is akin to finding a needle in
a haystack. To address this challenge, advanced analytical methods that are developed in computer and informatics science
are required to enable ADME/Tmodelling based on data from a variety of different sources and covering different types of bioas-
says. Moreover, systems-level studies will be critical in the future, as more reliable ADME/T modelling depends on an under-
standing of complex mechanisms across different levels and scales, from chemical and molecular interactions to pathways
and networks and from cells and tissues to organs and the entire organism. There is much progress to be made to achieve the
goal of an ‘automated decision-making engine’ (van de Waterbeemd & Gifford, 2003), but with a clear goal and direction, we
are confident of a bright future.
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