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UNBOUNDED PRINCIPAL EIGENFUNCTIONS AND THE
LOGISTIC EQUATION ON RN

W E I DONG AND YIHONG D U

We consider the logistic equation —Au = a(x)u — b(x)up on all of RN with possibly
unbounded coefficients near infinity. We show that under suitable growth conditions
of the coefficients, the behaviour of the positive solutions of the logistic equation
can be largely determined. We also show that certain linear eigenvalue problems on
all of RN have principal eigenfunctions that become unbounded near infinity at an
exponential rate. Using these results, we finally show that the logistic equation has a
unique positive solution under suitable growth restrictions for its coefficients.

1. INTRODUCTION

We consider the logistic elliptic equation

(1.1) - A u = a(x)u - b(x)u", x € RN,

where p is a constant greater than 1, a(x) and b(x) are continuous functions with b(x)
positive on RN. Equations of this kind have attracted extensive study because of its
interest to mathematical biology and Riemannian geometry. We refer to [2, 5, 8, 9, 12]
and the references therein for some of the previous research.

When the limits

Ooo = lim a(x) and ft,*, = lim b{x)
|z|-»oo |x|->oo

exist and are positive numbers, it is shown in [8] that problem (1.1) has a unique positive
solution u, and moreover

u(x) -> (aoo/fcoo)1^-1) as |z| -> oo.

In this paper, we consider cases where these limits may not exist. We suppose that
for some 7 ^ 0 , there exist positive numbers a i , a 2 and /?i,/?2 such that

(1.2) a i = lim ^ $ , a2 = lirH f^, A = lim b(x), ft = Urn" b(x).

It is easily shown that under these conditions, (1.1) has at least one (weak) posi-
tive solution (see Corollary 3.3 in Section 3). By standard regularity theory of elliptic
equations, any W^(RN) solution of (1.1) belongs to Cl{RN).
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414 W. Dong and Y. Du [2]

THEOREM 1 . 1 . Suppose u e C 1 ^ ) is a positive solution of (1.1). If (1.2) is
satisfied, then

If in addition, we suppose that

(1-3) P^T > 1.

then (1.1) has a unique positive solution, namely

THEOREM 1 .2 . Suppose that the conditions (1.2) and (1.3) are satisfied. Then
(1.1) has a unique positive solution.

These results considerably improve the corresponding ones in [8]. For the proofs,
apart from further development of the techniques used in [8], one main new ingredient is
the use of certain unbounded principal eigenfunctions for problems of the type

where £(z) is sign-changing but is positive and bounded away from zero for large |x|.
The existence of such eigenfunctions will be discussed in detail in Section 2 below. The
proofs for Theorems 1.1 and 1.2 will be carried out in Section 3. Some of the ideas in
this paper were motivated by [1, 5] and [12].

For discussions of (1.1) with lim a(x) ^ 0, we refer to [2, 9] and the references
\x\-KX>

therein.

2. UNBOUNDED PRINCIPAL EIGENFUNCTIONS

The main purpose of this section is to show that certain eigenfunctions (j> 6 W^(RN)
of A<f> = \£(x)4> with £(x) sign-changing but positive and bounded away from zero for
large |z|, must become unbounded at an exponential rate as |a;| —> oo. Apart from its
own interest, this is crucial for our analysis of the solutions to the logistic equation.

We consider the following eigenvalue problem on RN,

(2.1) A0 = A£(x)0, xeRN,

where £(x) satisfies

/ * € C(RN), f(xo) < 0 for some x0 € RN,
1(2 2) /
1 £(x) ^ 5 > 0 V|z| ^ R > 0 for some constant <5 > 0 and large R.

It is well known (see [6, Theorem 2.1]) that under condition (2.2), the eigenvalue
problem (2.1) has a positive principal eigenvalue A* corresponding to which there is a
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[3] Unbounded principal eigenfunctions 415

positive principal eigenfunction <f>(x) satisfying <j>{x) —¥ 0 as |x| —¥ oo, where A* is given

by

A' = inf( f \Vu\2dx/ [ (S)u2dx : u e H\RN), f £u2dx < ol .
URN ' JR» JRN )

Furthermore, a recent result in [1] implies that under these conditions, for any
A € (0, A*), (2.1) has a positive solution and none of which tend to zero as |x| -> oo,
at least when N ^ 3. It should be noted that the results in [1] are proved under much
weaker assumptions than (2.2).

In the following theorem, we show that in the radial case and under (2.2), much more
can be said. For the general case, a weaker result can be obtained as an easy consequence
of this theorem.

THEOREM 2 . 1 . Suppose that £(x) satisfies condition (2.2) and is radially sym-
metric. Then, for any A € (0, A*), there exists a radially symmetric positive function
4> € C2(RN) solving (2.1) and such that 4>(x) —> oo as |x| —» oo. Furthermore, for any
q € (0, VX5), there exist positive constants i?, = R,{q) and C — C(q) such that

4>{x) ^ CeqM for \x\ > Rt.

PROOF: By [1] and [6], we know that equation (2.1) has a positive solution for
A e [0, A*] with A* > 0. From the proof of [1, Theorem 2.3] (but we use the //-theory
instead of the Holder theory), we see that when A e (0, A*), (2.1) has a positive solution
(j> € ^(R1*) which is the limit of a sequence of radially symmetric functions cj>n satisfying
Acl>n = Af (|z|)0n, <t>n(x) > 0 for \x\ < n, and 0n(O) = 1. It follows that </> is radially
symmetric.

Denote <j>{r) = <t>(x), where r = \x\. We find that 4>(r) must be C2 and is a solution
of the ODE

(2.3) 0"(r) + ^ V ( r ) = Af (r)^(r)

satisfying 0(0) = 1 and (j>'(0) = 0.

We claim that, for r > R, <j) can not have a local maximum. Indeed, if (f>{r0) is a
local maximum with ro > R, then

= 0,4>"(r0) ^ 0 and 0 ̂  < ^ VV(0)ro

This is a contradiction. This fact implies that for some R\ > R, cj>{r) is monotone
increasing or decreasing in [.R^oo).

We claim that </> is increasing for r ^ Rx. Otherwise, <j> is decreasing for r ^ R\, and
we must have

lim 4>{r) = T)>0, <j>{r) > T/, Vr ^ Rv
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There are two possibilities.
(i) If 77 > 0, then for r ^ Rx, we have <j>{r) ^ 77, and

(2.4) [ r " -V( r ) ] ' = A r ^ t f r M r ) 2 Ar""1^ , Vr > Rv

Integrating (2.4) over [Ri,r], we obtain

r«-y (r) ^ *f " y (flx) + ̂ -r" - ^B?.

So

(2.5) <t>\r)

If r is large enough, the right-hand side of (2.5) is positive, a contradiction to 4>'(r) ^ 0.

(ii) If 77 = 0, due to (2.2), in the case N ^ 3, we can use [1, Theorem 1.2] to conclude
that no positive solution of (2.1) tends to zero as |x| —> 00. This is a contradiction to
77 = 0. Therefore the case 77 = 0 cannot occur. In the following, we give a unified proof
for this fact covering all cases TV ^ 1. Note, however, our condition (2.2) is much more
restrictive than that used in [1].

From (2.3), we obtain

(2.6) [r*-y(r)]' = XrN'^(r)^(r).

Integrating (2.6) over [Ri,r], we obtain

(2.7) r " - y (r) - R^1^1 (*,) = A F sN-^(s)4>(s) ds.

Since 4>'{r) ^ 0 for r ^ Ru it follows

(2.8) A I' sN-^(s)<i>{s) ds < - f l f -y ( r t i ) , Vr > Rx.
jRt

This implies that
/•oo

/ sN-^(s)<l){s) ds < 00.

Therefore, since <j> € L°°([0,00)) and f (r) > <J > 0 for r > Ru we can conclude that

(2.9) H rN~l<?{r)dr< 00,

We now multiply (2.6) by <f>(r) and integrate over [0, r] to deduce

(2.10) r w - y (r)*(r) - f «w~y (a)2 dr = A /" s " - 1 ^ )^*)
JO Jo

f rN-^(r)<f>2(r)dr < 00.
o
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By (2.7) and (2.8), we find that rN~ 1(j>'(r) has a finite limit as r -> oo. By assump-
tion, 4>(r) -tr} = 0asr-too. Therefore

rN~ V( r )^ ( r ) -» 0 as r - ^ oo.

Using this fact and letting r —»• oo in (2.10), noticing also (2.9), we find that

(2.11) j°° sN~l(j>'{s)2 ds < oo, H sN-l4>\sf dx = -A ^ sN-^(S)^2(s) ds.
Jo Jo Jo

Let us note that the first identities in (2.9) and (2.11) imply that <f> € H1^"), while
the second identity in (2.11) is equivalent to

X= f \V<f>\2dx/
JRN

But by the definition of A*, we have

[
RN

Thus we arrive at the contradiction A* ^ A.

Summarising, we arrive at a contradiction in each case when assuming <j>(r) is de-
creasing for r > Ri. This proves our claim that 4>{r) is increasing for r > Rx.

Next we shall show <j)(r) ^ Ceqr for all large r. By a simple calculation we find that
u{r) := rW-Wjir) satisfies

(2.12) u"-gi(r)u = 0,

where

By condition (2.2), for any Si € (0,6), we can find R2 ^ Ri such that

9i(r) > A*! =: S2, Vr ^ i?2.

Let v(r) = e*o(r-fl2) + e-
s°^-R2\ Clearly u satisfies

(2.13) v" - 52
0v = 0, v > 0, Vr € (-00,00), v'(R2) = 0.

Multiplying (2.12) by v and (2.13) by u, subtracting and integrating over [i?2ir]>
obtain

u\r)v{r) - u(r)v'(r) ^ u'{R2)v(R2) - u{R2)v'(R2) = 2u\R2) > 0.

It follows (u/v)' > 0, and hence
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Therefore,

(2.14) 4>(r) = rV-W'Mr) > aor^^e1^-^.

Since <$i € (0,6) is arbitrary, for any given q € (0, V\6), we may assume that 6\ is
chosen so that So — y/X6[ > q. We now see from (2.14) that for some positive constants
C = C{q) and R, = R,(q),

<j>(r) ^ Cev, Vr > Rt.

This finishes the proof of the theorem. D

COROLLARY 2 . 2 . Suppose that £(x) satisfies (2.2) and for r ^ 0 let £(r)
= minf(a:). Then

|i|=r

T := inf{ f \Vu\2dx/ f (~l)u2dx : u G Hl(RN), f ?u2dx < 0}
JRN

 JRN JR."

is positive, and for each A € (0,^*), there exists a positive function (j> e C 1 ^ ^ ) solving
(2.1). Moreover, for any such <j> and any q e (0, y/\5), there exist positive constants R,
and C such that

(2.15) max<£(z) > CeQT for r ^ R,.
\X\=T

P R O O F : Since £, ^ ^, from the definition of the principal eigenvalue A* for (2.1), we
find A* ^ A*. Therefore, for each A e (0, A*), by the method in [1], (2.1) has a positive
solution 4>e Cl{RN).

To show (2.15), we argue indirectly. Suppose that for some A € (0, A*) and some
q € (0, VXS), (2.1) has a positive solution <j> satisfying

(2.16) lim 4(i)/e O
r->oo \x\=r

By definition, £ satisfies (2.2) with the same 6. By Theorem 2.1, we can find a
radially symmetric positive function (j> such that

A^ = A ^ , 1 > 0 in RN,

and

(2.17) 0 (M) > Ceq^ for some C> 0 and all large |x|.

Denote

Clearly ar > 0 and due to (2.16), (2.17), there is a sequence {rn} satisfying rn -t co
such that aTn is achieved at some xn with \xn\ < rn. Then ipn(x) :— arn</>(|x|) - 4>(x) is
nonnegative in BTn, it vanishes at i n and is positive for | i | = rn.
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It is easily checked that, in the weak sense,

Aipn < A£Vn in BTn.

Let un = ipn/(j>- Since <f> satisfies

A<t> = \Z(f>, <j>>0in RN,

a simple calculation yields

Aun + 2<j>-xV4> • Vun ^ 0 in BTn.

Therefore due to un = ipn/<i> ^ 0 and un(xn) = tpn{xn)/(j>(xn) = 0, one can apply the
strong maximum principle (see [10, Theorem 9.6]) to conclude that un = 0 on BTn, a
contradiction. This finishes the proof. D

3. P R O O F OF T H E MAIN RESULTS

In this section, we first prove the asymptotic behaviour of the positive solutions of
(1.1) as given in Theorem 1.1, and then make use of this result and Theorem 2.1 in
Section 2 to prove the uniqueness result in Theorem 1.2.

To start, we recall a comparison principle (see, for example, [8, Lemma 2.1]) which
will be frequently used in the later proof.

LEMMA 3 . 1 . (Comparison principle) Suppose that Q is a bounded domain in
RN. Let u\, u2 € C^fi) be positive in Q, and satisfy (in the weak sense)

(3.1) Aui + a(x)ux - b(x)uip ^ 0 ^ Au2 + a(x)u2 - b{x)u2
p in Q,

and
lim (u2 — «i) ^ 0 .

d(i,an)-+o

where p > 1, a(x), b(x) are continuous with b(x) positive on f2 and ||a||i,oo(n) < oo. Then

U2 ^ U\ in fi.

It should be noted that in Lemma 3.1, the assumption that U\ and u2 are positive
and satisfy (3.1) in Q has hidden restrictions on a(x) and b(x). Moreover, from the proof
in [8] one easily sees that the restriction that ui,u2 € C2(Q) there can be replaced by
Uu^eCHCl).

Next we present an existence result which is folklore. As we cannot find it in the
literature, for completeness, a proof is provided.

PROPOSITION 3 . 2 . If At(Sr) < 0 for some r > 0, then (1.1) possess a minimal
positive solution u and a maximal positive solution u, where \\{Br) denotes the first
eigenvalue of the problem

(3.2) -Au - a(x)u = Xu, u\dBr = 0,

and BT is the ball centered at the origin with radius r.
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P R O O F : By the properties of the first eigenvalue (see, for example, [4]), for all R^ r,
XI(BR) < 0. Let ^ be a positive eigenfunction corresponding to XI(BR). Then for all
small positive constant e, it is easily checked that e<j> is a lower solution of the problem

(3.3) - A u = a(x)u - b(x)u", u\dBR = 0.

Clearly any positive constant greater than or equal to M — max(a(a;)/6(x)) is an

upper solution of (3.3). Thus (3.3) has at least one positive solution. By Lemma 3.1, it
has a unique positive solution.

Let us choose an increasing sequence of positive real numbers rn with r\ > r and
rn —y oo as n -»• oo. By the properties of the first eigenvalue in [4], and by the above
discussion, problem (3.3) with r = rn has a unique positive solution un. By Lemma 3.1,
we deduce un ^ un+i. If we can find an upper bound for un on any fixed BR, then by a
standard regularity argument, u(x) = limn->oo un(x) is well-defined in RN and it would
be a positive solution of (1.1). To find such an upper bound, we consider the problem

(3.4) -Av = a(x)v - b(x)vp, v\aBR = oo.

(Here and throughout this paper, by V\SBR = oo, we mean v —> oo as dist(a;, dBR) -¥ 0.)
By [3] (see also [11] and [7]), (3.4) has a positive solution v. Then clearly by Lemma 3.1,

Unix) ^ v{x), Vz € BR

for all large n so that rn > R. This is the bound we are looking for, and hence the

existence of a solution for (1.1) is proved.

Prom un ^ un +i we find

u(x) 2 un[x) > 0

for each n, and hence u is a positive solution of (1.1). For an arbitrary positive solution
u of (1.1), we can see that u satisfies

-Au = aix)u - b(x)up, u\dBrn > 0.

By Lemma 3.1, u ^ un on BTn for each n, and hence

u ^ u = lim un.
n-Hx

So u is the minimal positive solution of (1.1).

What remains now is to show the existence of a maximal positive solution of (1.1).
To this end, we choose an increasing sequence of real number rn such that rn —> oo as
n —» oo and denote Bn = BTn. Next we consider the boundary blow-up problem

(3.5) -Aw = a(x)u - 6(a;)wp, w\dBn = oo.
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By [3] (see also [11] and [7]), (3.5) has a unique positive solution which we denote as ujn.
Applying Lemma 3.1, we see wn ^ wn+i ^ u for all n, so

u = lim u)n
n-+oo

is well-defined on RN. Furthermore, by standard regularity considerations, we know u

satisfies (1.1) on RN and u ^ u, so u is a positive solution of (1.1).
Clearly any positive solution u of (1.1) satisfies, for each n,

—Au = a(x)u — b(x)up, u\dBn < oo.

By Lemma 3.1, we obtain u n ^ u on Bn for all n, and hence

u = lim wn JJ u.
n-4oo

The proof is now complete. D

When condition (1.2) is satisfied, it is easily seen that Ai(5r) < 0 for all large r.

Therefore, we have the following result.

COROLLARY 3 . 3 . Under condition (1.2), problem (1.1) has a minimal positive
solution and a maximal positive solution.

We are now ready to prove Theorem 1.1. We consider the cases 7 = 0 and 7 > 0
separately, as the proofs we use are considerably different.

LEMMA 3 . 4 . Assume that u € Cl{RN) is apositive solution of (1.1). If condition

(1.2) is satisfied with 7 = 0, t ien

(3.6) lim v?-\x) > ^
|x|-»oo P2

and

(3.7) Ihn" vP~\x) ^ %-.

P R O O F : For any small positive e such that 3e < min {ai, /?i}, there exists a large
R such that

|x| > R implies a(x) ^ a0 := cm — e, b(x) ^ bQ :— /?2 + £•

Set
a(x) = i>{x)a(x) + (1 - i>{x))ac, b(x) = rp(x)b{x) + (l - ^

where tjj(x) is a smooth cutoff function such that

f tf(1) = 1, V|x| ^ R, *{x) = 0, V|x| ^ 2H,
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Let us now choose an increasing sequence of real numbers rn with r t > R large enough
such that Xi(Bri) < 0. As in the proof of Proposition 3.2, the problem

(3.9) -Av = a(x)v - 6(x)v*\ v\dBrn = 0

has a unique positive solution vn. Then v(x) = lim vn(x) is well-defined on RN, and by
| l | - + O O

standard regularity considerations v(x) is a positive solution of the problem

(3.10) -Av = a{x)v - b(x)v", x G RN'.

Since lim a(x) — a0 > 0 and lim b(x) = b0 > 0, by Theorem 3.1 in [8], v(x) is the
| l | > O O |z | -»0Ounique positive solution of (3.10) and

lim v(x)= [—)

On the other hand, any positive solution u(x) of (1.1) satisfies

-Au = a(x)u - b(x)up ^ a{x)u - b(x)up, U\9BT > 0.

So by Lemma 3.1, u(x) ^ vn(x), Vx € Brn, and hence

u(x) ^ v(x), Vx G fi^, lim «(i) ^ lim u(i) = (ao/bo)171""15-

Therefore (3.6) holds due to the arbitrariness of e.

It remains to show (3.7). By (1.2), for any small positive s, there exists a large R
such that

a(x) ^ a2 + e =: doo, &(z) ^ ft - e =: boo, V|x| ^ .R.

Set

a(x) = a(ar)^(x) + (l - V(i))aoo, 5(«) = &W^^) + (l - ^(«))6oo,

where i/»(x) is a cutoff function as in (3.8). Let us now consider the problem

(3.11) - A w = a(x)u - b(x)wp, w\gBr = oo.

By [3] (see also [11] and [7]), this problem has a unique positive solution wr, w = lim wr
r-K»

is well-defined on RN and is a positive solution of the equation

(3.12) - A w = a(x)u - b(x)uj", x G RN.

Since lim a(x) = a^, > 0 and lim b(x) - b^ > 0, by Theorem 3.1 in [8], w(x) is the
|i|—»oo |x|—«x>

unique positive solution of (3.12) and lim u>(x) = (aoo/froo)1^1"1- On the other hand, if
|x|-too

u is a positive solution of (1.1), then
- A u = a(x)u - b(x)up ^ a(x)u - b(x)up, u\aBr < oo.
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By Lemma 3.1, we obtain u(x) ^ wr{x), Vi 6 B r , and thus

lim u ^ hm w = I -—
|x|-K» |z|->oo VOOQ/

Since e is arbitrary, (3.7) follows. D

LEMMA 3 . 5 . Suppose u € Cl{RN) is a positive solution of (1.1). If (1.2) is
satisfied with 7 > 0, then

(3-13) hm ^ M > £
|x|-»oo R 7 P2

and

(3-14) ^^W f̂"
| | » o \X\~ p

PROOF: Let {xn} be an arbitrary sequence of points xn in RN satisfying rn = |xn|
-> 00 and let e > 0 be such that 3e < min {a!, /?i}. By (1.2), there exists a large R > 0
such that

a(z) ^ ao|x|7, b(x) < 60, V|x| > R,

where ao = ai — e, bo — P2 + £•

For any fixed xo€RN, let

B0 = {x:Ri< \x\ < R2}, where Ri = (I - e)\xo\, R2 = (l + e)\xQ\.

We consider the following problem

(3.15) ' -Av = aoRSv - bov", v\8Bo = 0.

If vo(x) is a positive solution of (3.15), then by Lemma 3.1 it must be the unique positive

solution, and hence it must be radially symmetric: vo(x) = -L»O (1^1)- Let

VQ(r) = R{>'to-Vtj{r).

Then
-Aw = Riycj{ao - bow^-V), w\dBo = 0.

Through a simple rescaling w(r) = z(r/R\), we obtain

(3.16) - A z = fii7+2z(oo - boz"-1), z\dn = 0,

where SI = {x : 1 < \x\ < (1 + e)/( l - e)}. By [8, Lemma 2.2], for all large Ru (3.16)
has a unique positive solution z(x) and z(x) -4 (ao/&o)1^p~1* uniformly on any compact
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subset of fi as Ri —> oo. Therefore (3.15) does have a unique positive solution vo(x) as
described above, and there exists a large R, > R such that for Rt > R,,

It follows that

( , 1 7 ) » ( 1 i r

Since |xn| = rn —¥ oo, there exists a positive integer no such that for n > no, when xo is
replaced by xn, equation (3.15) has a unique positive solution vn. Then by (3.17),

If u is a positive solution of (1.1), then for all large n,

—Au ^ aoRi'u - bou
p, u\dBn > 0,

where
Bn={x:(l- e)\xn\ < \x\ < (l+e)\xn\}.

By Lemma 3.1, we obtain vn(x) < u(x) on Bn. Thus, for all large n, u(xn) ^ vn(xn), and

np-l{xn) vn"-l(xn) + 1 a 0

~MT^~M^^{1-£} V0-
Since {xn} is an arbitrary sequence with | i n | —¥ oo, this implies that

|z|-»oo F l 7 60

Inequality (3.13) then follows as e > 0 can be arbitrarily small.

Next we shall prove (3.14). In a similar fashion, for any sequence of points xn in RN

satisfying |xn | —¥ oo, and any given small positive e, there exists a large R > 0 such that

a(x) ^ ai |z | 7 , b(x) ^ bu V|i| > R,

where ai = a2 + e, 6i = A — e. We consider the problem

(3.18) -Av = aiR2'
1v - ^v", v\6Bo = oo,

where Bo, R2 are defined as before. By [3] (see also [11, 7]), problem (3.18) possesses a
unique radially symmetric positive solution vo(x) = vo(\x\). Let

Vo(r) =

https://doi.org/10.1017/S0004972700037229 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037229


[13] Unbounded principal eigenfunctions 425

Then w(r) satisfies
-ACJ = R?u){a\ - biup~l), u)\dBo = oo.

Through a rescaling w(r) = z(r/R2), we obtain

-Az = R2i
+2z(ai - blZ"-1), z\an = oo,

where Q, = {x : (1 - er)/(l + e) < |x| < l } . By [8, Lemma 2.3], z(x) -> (^/bx)"-1

uniformly on any compact subset of Cl as R2 —> oo. Thus, there is a large R* > R such
that for 7?! > i?,,

Since |xn| = rn —> co, for all large n, the unique positive solution vn of (3.18) with
replaced by xn satisfies

If u is a positive solution of (1.1), then for all large n,

—Au ^ aii?27« — bxu
p, u\gBn < oo,

where Bn = {x : (1 - e)|xn| < \x\ < (1 + £r)|xn|}. By Lemma 3.1, we obtain

u{x) ^ vn(x), Vx € Bn.

Thus

This implies that

|x|-+oo | l | T 6/

Inequality (3.14) now follows as e > 0 can be arbitrarily small. This completes the proof

of the lemma. D

Clearly Theorem 1.1 is a direct consequence of Lammas 3.4 and 3.5. To prove
Theorem 1.2, we shall need the following result whose proof uses Theorem 2.1.

LEMMA 3 . 6 . Under conditions (1.2) and (1.3), there exists a positive function

(f> e Cl(RN) satisfying <j>{x) -> oo as | i | -> oo, such that for any positive e,u + e(j> is an

upper solution of (1.1), that is (in the weak sense),

- A ( u + £<£) ^ a(x){u + e<j>) - b{x){u

where u is the minimal positive solution of (1.1).
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PROOF: Under condition (1.2), due to Corollary 3.3, (1.1) has a minimal positive
solution u. Let

a(x) = pb(x)up~l - a(x).

By Lemmas 3.4, 3.5, and by (1.2), (1.3), we have

o(x)
Mm Y-rz- Z paiPi/fa - a2 > 0.

Therefore, there exists a large R such that a{x) ~Z 6 for all \x\ ^ R and some positive S.
We can now easily find a radially symmetric function £(x) = £(|x|) such that it satisfies
(2.2) and f(z) ^ <?(x), Vx € RN. By Theorem 2.1, we obtain a radially symmetric
positive function ~4> e C2(RN) solving, for some A e (0, A*) D (0,1),

and

(3.19) 0(x) ^ CeqW for some C > 0, q > 0 and all large \x\.

Since A ̂  1, for |x| > R, from £(x) > 0 we deduce

A£(z) ^ £{x) < a(x), V|i| > R.

We now choose t > 0 large enough such that

[A£(x) - a(x))j>{x) - t(p - l)b(x)u"(x) < 0, V|x| ^ R.

Then define
<j>(x) =4(x)+tu(x).

We have

(3.20) A(f> - o{x)4> = \\E,{x) - o{x))4>{x) - t(p - l)b(x)up(x) ^ 0 in RN.

We shall see that <j>{r) meets the requirement in this lemma. By (3.19), <j){x) -> oo as
|x| —> cx>. For all positive e, setting v = u + e<f>, then, by (3.20),

- A v - a(x)v + b{x)vp > e[-A<p - a(x)<f> + pb(x)up-l<j>] = e\-A<j> + o{x)4>) > 0.

Hence v = u + £<f> is an upper solution of (1.1). The proof is complete. D

We are now ready to complete the proof of Theorem 1.2.

PROOF OF T H E O R E M 1.2: By Corollary 3.3, problem (1.1) has a minimal positive
solution u and a maximal positive solution u. Due to Lemma 3.6, for any positive e,
u + E(j) is an upper solution of (1.1). By (3.19) and Lemmas 3.4, 3.5, for fixed e and
all large |x|, u + e4> ^ u. This implies, by Lemma 3.1, u + e<t> ^ u on all large balls.
Therefore it is true on all of RN. Since e > 0 is arbitrary, it follows that u ^ u on RN.

On the other hand, u ^ u on RN. Thus we must have u = % which implies that (1.1)
has a unique positive solution. The proof of Theorem 1.2 is now complete. D
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