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The algebraic numerical range as a spectral
set in Banach algebras
Hanna Blazhko , Daniil Homza , Felix L. Schwenninger ,
Jens de Vries and Michał Wojtylak

Abstract. We investigate when the algebraic numerical range is a𝐶-spectral set in a Banach algebra.
While providing several counterexamples based on classical ideas as well as combinatorial Banach
spaces, we discuss positive results for matrix algebras and provide an absolute constant in the case
of complex 2 × 2-matrices with the induced 1-norm. Furthermore, we discuss positive results for
infinite-dimensional Banach algebras, including the Calkin algebra.

1 Introduction

Since the discovery of the von Neumann inequality the theory of spectral sets has evolved
in many directions, see e.g. [2] for a broad overview. Our interest will lie in𝐶-spectral
sets. recall that a compact, simply connected set Ω is a 𝐶-spectral set (𝐶 > 0) for the
operator 𝑇 if it contains the spectrum of 𝑇 and satisfies the inequality

∥𝑝(𝑇)∥ ≤ 𝐶 sup
𝑧∈Ω

|𝑝(𝑧) |, 𝑝 ∈ C[𝑧], (1.1)

(see Section 3 for details). A particularly well-studied𝐶-spectral set for a Hilbert space
operator 𝑇 is the numerical range 𝑊 (𝑇) := {⟨𝑇𝑥, 𝑥⟩ : ⟨𝑥, 𝑥⟩ = 1}. The first result
underlining the role of the numerical range in this context is the seminal work byDelyon–
Delyon [24], in which the constant𝐶 depends on𝑊 (𝑇). In 2007 Crouzeix [21] showed
that there exists a universal constant 𝐶 between 2 and 11.08 such that the numerical
range of𝑇 is a𝐶-spectral set. Crouzeix’s conjecture [20], stating that the optimal constant
for𝐶 is 2, remains open to this day. The best estimate so far of the constant𝐶 ≤ 1 +

√
2

was provided by Crouzeix and Palencia [22] in 2017, see also [40, 42] for shorter proofs.
In due course the conjecture was shown to be true in certain special cases, see, e.g.,
[8, 6, 7, 16, 17, 23, 38]. We also mention recent results [36, Theorem 2, Proposition 26]
showing that the value 1 +

√
2 is not attained for any Hilbert space operator.

Meanwhile, the theory of spectral sets in Banach spaces appears to be much more
demanding. Recall that the von Neumann inequality can be restated as saying that the
closed unit disk is a 1-spectral set for any contraction on a Hilbert space. In contrast
to this, there are Banach-space contractions for which the closed unit disk fails to be
a𝐶-spectral set for every𝐶 > 0. This is usually argued in the literature by saying that
there exists an operator with unit norm which is not polynomially bounded, see e.g. [19,
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Section 4] or [33, 26, 27]. On the other hand, Katsnelson and Matsaev demonstrated in
[31] that for any contraction 𝑇 on any Banach space the disk 3D is a 1-spectral set, and
furthermore, that the constant 3 is sharp. In fact, this result is a trivial consequence of a
much older inequality attributed to Bohr, see [11], for disk algebra functions, see also
[39] for a recent short proof and [32] for multivariate analogues.

This paper deals with the question to what extent the fact that the numerical range is
𝐶-spectral for Hilbert spaces operators can be generalized to Banach algebras. The most
suitable generalization of the numerical range seems to be the algebraic numerical range
of an element 𝑇 of a Banach algebraA, i.e., the set

𝑉 (𝑇) := {𝜙(𝑇) : 𝜙 ∈ A′, ∥𝜙∥ = 1 = 𝜙(𝐼)},

where 𝐼 stands for the unit andA′ stands for its dual space. Like in the Hilbert space
setting, the algebraic numerical range contains the spectrum and is contained in the
disk of radius ∥𝑇 ∥. It is also clear from the definition that 𝑉 (𝛼𝑇) = 𝛼𝑇 for 𝛼 ∈ C.
Hence, one may assume without loss of generality that𝑇 is of norm one and consequently
𝑉 (𝑇) is then contained in the closed unit disk. Note that for operators with unit norm
𝐶-spectrality of𝑉 (𝑇) trivially implies polynomial boundedness. The above mentioned
examples on Banach spaces thus provide operators for which (1.1) withΩ = 𝑉 (𝑇) does
not hold for any 𝐶 > 0. We will strengthen this by showing that there even exists a
polynomially bounded operator 𝑇 with unit norm such that𝑉 (𝑇) is not𝐶-spectral for
any𝐶 , see Example 6.2.

The paper is organized as follows. In Section 2 we review preliminary properties
of the algebraic numerical range. In Section 3 we introduce the spectral constant of
the numerical range and discuss its general properties. In Section 4 we discuss matrix
algebras. In Section 5 we focus on some special classes of Banach algebras for which the
numerical-range spectral constant is finite: Continuous function algebras and Calkin
algebras. In particular, this shows that Crouzeix’s conjecture on Hilbert space operators
can be rephrased based on the essential numerical range instead of the numerical range. In
Section 6 we provide several examples in which the spectral constant of the numerical
range is infinite. Namely, we consider the shift operators in ℓ𝑝 and a cut-shift in a
combinatorial Banach space. In Section 7 we study in detail the case of 2 × 2-matrices
for ℓ1 induced norm and show that the spectral constant of any 2 × 2-matrix is bounded
above by 13.

The striking fact about Crouzeix’s result is that the numerical range is a𝐶-spectral set
with an absolute constant𝐶 . In particular, this shows that the constant can be bounded
independently of the dimension of the Hilbert space. While our results show that the
latter is not true for general Banach algebras, we prove that for the specific case ofB(C2)
with the induced 1-norm, there also exists a uniform bound on the spectral constant. It is
interesting to note that our proof strongly exploits a nice representation, of interest in
its own right, of the corresponding (algebraic) numerical range for the particular space.
This, in a way, relates to Crouzeix’s initial result on 2 × 2-matrices [20] (with the optimal
constant 2), strongly resting on the fact that the (Hilbert space) numerical range is an
ellipse in that case.
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The algebraic numerical range as a spectral set 3

2 Preliminaries

LetA be a complex Banach algebra with a unit 𝐼 , and letA′ denote the set of continuous
linear functionals onA (dual space). For 𝑇 ∈ A, the algebraic numerical range 𝑉 (𝑇) is
defined as

𝑉 (𝑇) := {𝜙(𝑇) : 𝜙 ∈ A′, ∥𝜙∥ = 1 = 𝜙(𝐼)}.
The set𝑉 (𝑇) is compact and convex. We denote by B(𝑋) the algebra of bounded linear
operators on a Banach space 𝑋 . Recall forA being the algebra B(𝐻) of bounded opera-
tors on a Hilbert space 𝐻, the algebraic numerical range coincides with the closure of
the usual numerical range, cf. [44, Th.6].

To specify the algebra with respect to which𝑉 (𝑇) is defined, we will sometimes write
𝑉 (𝑇,A). Usually, wewill do this in connectionwith the following important observation
[12, Th. 4]: If B ⊆ A is a subalgebra ofA sharing the same unit, then

𝑉 (𝑇,B) = 𝑉 (𝑇,A) (2.1)

for all 𝑇 ∈ B. Further, by 𝜈(𝑇) we define the algebraic numerical radius

𝜈(𝑇) := sup{|𝑧 | : 𝑧 ∈ 𝑉 (𝑇)}.

For the basic properties of the algebraic numerical range we refer the reader to [12].
Below we only highlight the ones that are most relevant for our purposes. For further
results on equivalent definitions and geometry see, e.g., [13, 35, 44].

The algebraic numerical range always contains the spectrum

𝜎(𝑇) := {𝜆 ∈ C : 𝜆𝐼 − 𝑇 is not invertible}.

In the commutative case the inclusion goes easily by characters, for the general case we
refer to [12, Th. 6] and [44, Th.1]. In particular, the spectral radius 𝜌(𝑇) := sup𝜆∈𝜎 (𝑇 ) |𝜆 |
satisfies 𝜌(𝑇) ≤ 𝜈(𝑇). Further, for any 𝑇 ∈ A it holds that

𝜈(𝑇) ≤ ∥𝑇 ∥ ≤ e 𝜈(𝑇), (2.2)

see [12, S.4 Th. 1, p.34], and ifA is a𝐶∗-algebra the constant e can be improved to 2, see
[45].

The following equality shown in [44, Th.4], see also [29], will be of particular
importance when searching for an explicit form of the algebraic numerical range:

𝑉 (𝑇) =
⋂
𝜆∈C

𝐷 (−𝜆, ∥𝑇 + 𝜆𝐼 ∥), (2.3)

where 𝐷 (𝑧, 𝑟) ⊂ C denotes a closed disk of radius 𝑟 centered at 𝑧. An immediate con-
sequence is that𝑉 (𝑇) is a compact convex subset of C. An even more useful result for
plotting approximations of𝑉 (𝑇) is [12, Th. 2.5], which states that the algebraic numerical
range𝑉 (𝑇) can be represented as an intersection of hyperplanes:

𝑉 (𝑇) =
⋂

𝜃∈[0,2𝜋 )
𝐻𝜃 (𝑇), (2.4)

where
𝐻𝜃 (𝑇) := {𝑒𝑖 𝜃𝛼 : 𝛼 ∈ C, Re(𝛼) ≤ 𝑟𝜃 (𝑇)} (2.5)
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with
𝑟𝜃 (𝑇) := inf

𝑡∈[0,∞)

{
∥𝑒−𝑖 𝜃𝑇 + 𝑡 𝐼 ∥ − 𝑡

}
. (2.6)

Recall that the algebraic numerical range is preserved under affine transformations:

𝑉 (𝛼𝑇 + 𝛽𝐼) = 𝛼𝑉 (𝑇) + 𝛽 (2.7)

for all 𝛼, 𝛽 ∈ C, 𝑇 ∈ A (however, in general not under polynomial transformations).
This, together with (2.2), implies that

𝑉 (𝑇) = {𝜆0} if and only if 𝑇 = 𝜆0𝐼 . (2.8)

Another simple yet useful observation we provide along with the proof. We write 𝑑H
for the Hausdorff metric on the set of non-empty compact subsets of the complex plane.

Lemma 2.1 LetA be a unital Banach algebra. For all 𝑆, 𝑇 ∈ A it holds that

𝑑H (𝑉 (𝑆), 𝑉 (𝑇)) ≤ ∥𝑆 − 𝑇 ∥.

In particular, the mapping 𝑇 ↦→ 𝑉 (𝑇) is uniformly continuous.

Proof For each 𝜙 ∈ A∗ with 𝜙(1) = 1 and ∥𝜙∥ = 1 we have

dist(𝜙(𝑆), 𝑉 (𝑇)) ≤ |𝜙(𝑆) − 𝜙(𝑇) | ≤ ∥𝑆 − 𝑇 ∥

and, likewise,

dist(𝑉 (𝑆), 𝜙(𝑇)) ≤ |𝜙(𝑆) − 𝜙(𝑇) | ≤ ∥𝑆 − 𝑇 ∥.

So by definition of the Hausdorff distance we have

𝑑𝐻 (𝑉 (𝑆), 𝑉 (𝑇)) = max
{

sup
𝑧∈𝑉 (𝑆)

dist(𝑧,𝑉 (𝑇)), sup
𝑧∈𝑉 (𝑇 )

dist(𝑉 (𝑆), 𝑧)
}
≤ ∥𝑆 − 𝑇 ∥

as desired. ■

We conclude this list of properties of𝑉 (𝑇) with the following estimate for the growth
of the resolvent, cf. [44, Lemma 1],(𝜆𝐼 − 𝑇)−1 ≤ dist(𝜆,𝑉 (𝑇))−1, 𝜆 ∉ 𝑉 (𝑇). (2.9)

3 Spectral constants

Let us turn to the main object of the study. Hereinafter letA denote a complex Banach
algebra with the unit 𝐼 . LetΩ be an open or closed, simply connected bounded set. We say
thatΩ is a𝐶-spectral set for𝑇 ∈ A ifΩ contains the spectrum of𝑇 and (1.1) holds. Note
that it is also possible to define 𝐶-spectrality for multiply connected and unbounded
sets, replacing polynomials by rational functions. However, this is not relevant for the
purposes of the current paper.

We say that an element 𝑇 ∈ A is polynomially bounded if there exists𝐶 > 0 such that

∥𝑝(𝑇)∥ ≤ 𝐶 sup
|𝑧 | ≤1

|𝑝(𝑧) |,
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The algebraic numerical range as a spectral set 5

for all 𝑝 ∈ C[𝑧]. We will typically investigate whether ∥𝑇 ∥ D is a 𝐶-spectral set for 𝑇 ,
which is equivalent to 𝑇/∥𝑇 ∥ being polynomially bounded.

For an element 𝑇 ∈ A we consider the linear mapping

Φ𝑇 : C[𝑧] ∋ 𝑓 ↦→ 𝑓 (𝑇) ∈ A.

and we define the numerical-range spectral constant of 𝑇 as

Ψ(𝑇) := Ψ(𝑇,A) := inf{𝐶 > 0 : ∥𝑝(𝑇)∥ ≤ 𝐶 sup
𝑉 (𝑇 )

|𝑝 |, 𝑝 ∈ C[𝜆]}, (3.1)

with inf ∅ = ∞. If finite, Ψ(𝑇) it it the smallest 𝐶 ≥ 0 for which (1.1) holds with
Ω = 𝑉 (𝑇). Note that for 𝑇 = 𝜆0𝐼 (𝜆0 ∈ C) we have Ψ(𝑇) = 1. For 𝑇 not being the
multiple of the unit 𝐼 we have that𝑉 (𝑇) is a convex set that is not a singleton, cf. (2.8).
In this case Ψ(𝑇) is the operator norm ofΦ𝑇 with respect to the supremum norm on
𝑉 (𝑇) and the usual norm onA, providedΦ𝑇 is bounded. As was already pointed out
in the introduction, if 𝑇 is a contraction that is not polynomially bounded, we have
Ψ(𝑇,B(𝑋)) = ∞, due to the first inequality in (2.2).

Finally, we define the (algebraic) numerical-range spectral constant of the algebraA by

ΨA := sup
𝑇∈A

Ψ(𝑇) ∈ [0,∞] . (3.2)

Later on we will skip the adjective ‘algebraic’ for brevity. Directly from (2.1) we get that
if B is a subalgebra ofA sharing the same unit. Then

Ψ(𝑇 ;B) = Ψ(𝑇 ;A), ΨB ≤ ΨA , (3.3)

note that we do not assume that any of these numbers are finite. Let us discuss the
elementary properties of the function 𝑇 ↦→ Ψ(𝑇).

Proposition 3.1 The functionA ∋ 𝑇 ↦→ Ψ(𝑇) ∈ [0, +∞] has the following properties:

(i) Ψ(·) is bounded from below by 1;
(ii) Ψ(·) is lower semi-continuous;
(iii) Ψ(·) attains its minimum on every compact set;
(iv) Ψ(𝛼𝑇 + 𝛽𝐼) = Ψ(𝑇) for every 𝛼 ∈ C \ {0}, 𝛽 ∈ C, 𝑇 ∈ A;
(v) for any 𝐶 ∈ [1,∞), the set {𝑇 ∈ A : Ψ(𝑇) > 𝐶} is open and if it is nonempty then

𝜆0𝐼 belongs to its boundary for any 𝜆0 ∈ C;
(vi) Ψ(·) is not continuous, unless it is constantly equal to one.

Proof Taking the polynomial 𝑝(𝑧) = 𝑧 shows (i).
(ii) Assume the contrary, i.e. that Ψ(·) is not lower semicontinuous at some point 𝑇

inA. Then there exists𝐶 ∈ (0,∞), an 𝜀 > 0 and a convergent sequence 𝑇𝑘 → 𝑇 such
that Ψ(𝑇) > 𝐶 + 𝜀 and Ψ(𝑇𝑘) ≤ 𝐶 for all 𝑘 ≥ 1. Note that 𝐶 is finite, regardless of
whether Ψ(𝑇) is finite or not. Further, there exists a polynomial 𝑝 ∈ C[𝑧] such that
sup𝑉 (𝑇 ) |𝑝 | = 1 and ∥𝑝(𝑇)∥ ≥ 𝐶 + 𝜀. Now fix a number

0 < 𝛿 <
√︂
𝐶 + 𝜀
𝐶

− 1.
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Since 𝑉 (𝑇𝑘) → 𝑉 (𝑇) with respect to the Hausdorff metric, there exists an integer
𝑁1 ≥ 1 such that sup𝑉 (𝑇𝑘 ) |𝑝 | ≤ 1 + 𝛿 for all 𝑘 ≥ 𝑁1. Since 𝑝(𝑇𝑘) → 𝑝(𝑇), there also
is an integer 𝑁2 ≥ 1 such that ∥𝑝(𝑇𝑘)∥ ≥ (1 + 𝛿)−1∥𝑝(𝑇)∥ for all 𝑘 ≥ 𝑁2. Thus, for
𝑘 ≥ 𝑁 := max{𝑁1, 𝑁2} we have

Ψ(𝑇𝑘) (1 + 𝛿) ≥ Ψ(𝑇𝑘) sup
𝑉 (𝑇𝑘 )

|𝑝 | ≥ ∥𝑝(𝑇𝑘)∥ ≥ ∥𝑝(𝑇)∥
1 + 𝛿 ≥ 𝐶 + 𝜀

1 + 𝛿 .

However, this implies that Ψ(𝑇𝑘) > 𝐶 for all 𝑘 ≥ 𝑁 , which is a contradiction.
(iii) follows directly from (ii). To see (iv) define the mapping Λ : C[𝑧] ∋ 𝑝(𝑧) ↦→

𝑝(𝛼𝑧 + 𝛽) ∈ C[𝑧] for fixed 𝛼 ≠ 0 and 𝛽 ∈ C and note that it is bijective. Hence, by (2.7),

Ψ(𝛼𝑇 + 𝛽𝐼) = inf{𝐶 > 0 : ∥Λ(𝑝) (𝑇)∥ ≤ 𝐶 sup
𝑉 (𝑇 )

|Λ(𝑝) |, 𝑝 ∈ C[𝜆] \ {0}} = Ψ(𝑇).

(v) Let us fix𝐶 > 1. Then the set S := {𝑇 ∈ A : Ψ(𝑇) > 𝐶} is open as the function
Ψ(·) is lower semi-continuous. Fix 𝜆0 ∈ C and take any 𝑇 with Ψ(𝑇) = 𝐶0 ∈ [𝐶,∞].
Then Ψ(𝛼𝑇 + 𝜆0𝐼) = 𝐶0 for any 𝛼 ≠ 0, hence 𝜆0𝐼 is in the closure of S. As Ψ(𝐼) = 1
we have that 𝜆0𝐼 is on the boundary of S. Statement (vi) is also a consequence of this
reasoning. ■

We provide onemore elementary property of the functionΨ(·). Given a Banach space
𝑋 and its dual 𝑋 ′ we naturally define the adjoint 𝑇 ′ ∈ B(𝑋 ′) of 𝑇 ∈ B(𝑋). Recall that
the map 𝑇 ↦→ 𝑇 ′ is a linear isometry. The following lemma shows that the algebraic
numerical range and numerical-range spectral constants (3.1) coincide for 𝑇 and 𝑇 ′.

Lemma 3.2 Let 𝑋 be any Banach space. For any 𝑇 ∈ B(𝑋) the following is true:

(i) 𝑉 (𝑇 ′,B(𝑋 ′)) = 𝑉 (𝑇,B(𝑋));
(ii) Ψ(𝑇 ′,B(𝑋 ′)) = Ψ(𝑇,B(𝑋));
(iii) ΨB(𝑋) ≤ ΨB(𝑋′ ) , with the inequality being an equality for reflexive 𝑋 .

Proof (i) Since for any 𝜃 ∈ R, 𝛼 > 0 we have

∥𝐼𝑋′ + 𝛼𝑒𝑖 𝜃𝑇 ′∥B(𝑋′ ) = ∥𝐼𝑋 + 𝛼𝑒𝑖 𝜃𝑇 ∥B(𝑋) ,

the result follows from (2.4).
(ii) For 𝜁 ∈ C we trivially have

Ψ(𝜁 𝐼𝑋′ ,B(𝑋 ′)) = Ψ(𝜁 𝐼𝑋,B(𝑋)) = 1.
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Assume that 𝑇 is not a scalar multiple of 𝐼𝑋 . By (i) we have

Ψ(𝑇 ′,B(𝑋 ′)) = sup
𝑓 ∈C[𝑧 ]
𝑓≠0

∥ 𝑓 (𝑇 ′)∥B(𝑋′ )
∥ 𝑓 ∥∞,𝑉 (𝑇 ′ ,B(𝑋′ ) )

= sup
𝑓 ∈C[𝑧 ]
𝑓≠0

∥ 𝑓 (𝑇)′∥B(𝑋′ )
∥ 𝑓 ∥∞,𝑉 (𝑇 ′ ,B(𝑋′ ) )

= sup
𝑓 ∈C[𝑧 ]
𝑓≠0

∥ 𝑓 (𝑇)∥B(𝑋)
∥ 𝑓 ∥∞,𝑉 (𝑇,B(𝑋) )

= Ψ(𝑇,B(𝑋))

as desired.
The inequality in statement (iii) is now obvious. Further, if 𝑋 is reflexive, then𝑇 ↦→ 𝑇 ′

is surjective and the equality follows. ■

The 𝜀-hull (𝜀 > 0) of a compact set 𝑆 ⊆ C is defined as 𝑆𝜀 = {𝑥 ∈ C | dist(𝑥, 𝑆) ≤ 𝜀}.
As it was already mentioned in the introduction, the constant ΨA might be infinite for
some algebras. However, both the 𝜀-hull of the algebraic numerical range𝑉 (𝑇)𝜀 and the
disk (1 + 𝜀) ∥𝑇 ∥ D are𝐶-spectral sets, as the following proposition shows.

Proposition 3.3 For every Banach space 𝑋 , any operator 𝑇 ∈ B(𝑋) and 𝜀 > 0 we have

∥𝑝(𝑇)∥ ≤
(
1 + 1

2𝜀

)
sup

𝑧∈𝑉 (𝑇 )𝜀𝑑
|𝑝(𝑧) |, 𝑝 ∈ C[𝑧],

where 𝑑 is the diameter of 𝑉 (𝑇). In particular, if ∥𝑇 ∥ ≤ 1, then 𝑉 (𝑇)1 is a 2-spectral set.
Furthermore, for arbitrary ∥𝑇 ∥,

∥𝑝(𝑇)∥ ≤ 1 + 𝜀√︁
𝜀(2 + 𝜀)

sup
|𝑧 | ≤ (1+𝜀) ∥𝑇 ∥

|𝑝(𝑧) |, 𝑝 ∈ C[𝑧] .

Proof Since𝑉 (𝑇)𝜀𝑑 is convex, its compact boundary 𝜕𝑉 (𝑇)𝜀𝑑 is locally the graph of
a Lipschitz function and hence it is rectifiable. The first statement follows now directly
from the Cauchy integral formula (or, more precisely, from the Riesz-Dunford calculus)
and from the estimate (2.9). The fact that𝑉 (𝑇)1 is a 2-spectral set follows from taking
𝜀 = 1/2, so that 𝜀𝑑 ≤ 𝜀 · 2 ∥𝑇 ∥ ≤ 1.

To see the second statement let 𝑇 ∈ B(𝑋), 𝜀 > 0 and 𝑝(𝑧) = ∑𝑛
𝑘=0 𝑎𝑘𝑧

𝑘 . Further, let
𝑐 = (1 + 𝜀)∥𝑇 ∥ and consider 𝑛∑︁
𝑘=0

𝑎𝑘𝑇
𝑘

 =
 𝑛∑︁
𝑘=0

𝑎𝑘𝑐
𝑘 ( 1
𝑐
𝑇)𝑘

 ≤
(
𝑛∑︁
𝑘=0

|𝑎𝑘𝑐𝑘 |2
) 1

2
( ∞∑︁
𝑘=0

(1 + 𝜀)−2𝑘
) 1

2

= ∥ 𝑓 ∥𝐻2 (D)𝐶𝜀 ,

where 𝑓 (𝑧) =
∑𝑛
𝑘=0 𝑎𝑘𝑐

𝑘𝑧𝑘 for 𝑧 ∈ D, the norm ∥·∥𝐻2 (D) refers to the norm of the
Hardy space 𝐻2 (D) and𝐶𝜀 to the constant above. Finally, we use that 𝐻∞ (D), the space
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of bounded analytic functions onD, embeds continuously into 𝐻2 (D). More precisely,

∥ 𝑓 ∥𝐻2 (D) ≤ sup
|𝑧 |<1

| 𝑓 (𝑧) | = sup
|𝑧 |<𝑐

|𝑝(𝑧) |,

which finishes the proof. ■

Remark 3.4 Clearly the first estimate in Proposition 3.3 is not sharp, as for𝑇 with𝑉 (𝑇)
being the disk of radius ∥𝑇 ∥ (e.g. when 𝑇 is the forward shift on ℓ1) the second bound
is better. Furthermore, for large 𝜀 the second bound is also not optimal. For example,
taking 𝜀 = 2 in Proposition 3.3 leads to the estimate ∥ 𝑓 (𝑇)∥ ≤ 𝐶 sup |𝑧 | ≤3∥𝑇 ∥ | 𝑓 (𝑧) |
with𝐶 = 3/

√
8 ≥ 1.06 for all polynomials 𝑓 , while it is known that this inequality holds

even with𝐶 = 1, see [31, 11, 39].

4 Finite dimensional algebras

Let us recall that an element 𝐴 of a Banach algebra is called algebraic if there exists a
polynomial 𝑝 such that 𝑝(𝐴) = 0. This is equivalent to the fact that 𝐴 generates a
finite-dimensional subalgebra. The central theorem of this section is the following.

Theorem 4.1 For any unital Banach algebra A the numerical-range spectral constant
Ψ(𝑇,A) is finite for all algebraic elements 𝑇 ofA.

For the proof we need the following lemma, based on the estimation of the resolvent
growth near the algebraic numerical range, see [44].

Lemma 4.2 Let ∥·∥ be any unital submultiplicative norm on C𝑛×𝑛. Let 𝑇 ∈ C𝑛×𝑛 and
𝜆 ∈ 𝜎(𝑇) be given. If 𝜆 belongs to the boundary 𝜕𝑉 (𝑇), then 𝜆 is a semisimple eigenvalue.

Proof Suppose that 𝜆 ∈ 𝜕𝑉 (𝑇) is not semisimple. Then the Jordan normal form of
𝑇 contains a Jordan block 𝐽 corresponding to 𝜆 of size 𝑠, where 1 < 𝑠 ≤ 𝑛. Since
𝜆 ∈ 𝜕𝑉 (𝑇), we can find a sequence (𝜆𝑖)𝑖∈N in C \ 𝑉 (𝑇) such that 𝜆𝑖 → 𝜆 and 𝑑𝑖 :=
𝑑 (𝜆𝑖 , 𝑉 (𝑇)) = |𝜆𝑖 −𝜆 |. Let 𝑒𝑠 be the 𝑠-th standard basis vector ofC𝑠 and let ∥·∥1 denote
the operator norm induced by the ℓ1-norm on C𝑠 . Note that

∥(𝜆𝑖 − 𝐽)−1𝑒𝑠 ∥1 =
𝑠∑︁
𝑘=1

1
𝑑𝑘
𝑖

.

On the other hand,

∥(𝜆𝑖 − 𝐽)−1𝑒𝑠 ∥1 ≤ ∥(𝜆𝑖 − 𝐽)−1∥1 ≤ 𝐶∥(𝜆𝑖 − 𝑇)−1∥ ≤ 𝐶

𝑑𝑖
,

where𝐶 > 0 depends only on the similarity transformation for the Jordan decomposition
of 𝑇 and the equivalence between the norms ∥·∥1 and ∥·∥. The last inequality follows
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The algebraic numerical range as a spectral set 9

directly from (2.9). We deduce that

1 + 1
𝑑𝑖

+ . . . + 1
𝑑𝑠−1
𝑖

≤ 𝐶,

which contradicts 𝑑𝑖 → 0. ■

Proof (of Theorem 4.1) Since𝑇 generates a finite-dimensional subalgebra, due to (3.3) it
is enough to consider only finite-dimensional unital Banach algebrasA. Furthermore, any
such algebraA can be isometrically embedded in B(A). Therefore, once again by (3.3),
it is enough to consider only unital Banach algebras of operators on finite-dimensional
spaces. In other words, it is enough to show that for fixed 𝑛 ∈ N, fixed 𝑇 ∈ C𝑛,𝑛 and
fixed unital Banach algebra norm ∥·∥ onC𝑛,𝑛 one hasΨ(𝑇,B(C𝑛, ∥·∥)) < ∞. Note that
for some constant𝐶 (depending on the norm and hence implicitly on the dimension 𝑛)
we have that ∥𝑝(𝑇)∥ ≤ 𝐶 ∥𝑝(𝑇)∥2 for any polynomial 𝑝(𝑧). Hence, we subsequently
reduce the proof to showing that

∥𝑝(𝑇)∥2 ≤ 𝐶2 sup
𝑉 (𝑇,B(C𝑛 ,∥ · ∥ ) )

|𝑝 |, 𝑝 ∈ C[𝑧],

with some constant𝐶2 possibly dependent on 𝑇 . Let 𝑇𝐽 denote the Jordan form of 𝑇 and
let 𝑆 denote the corresponding similarity transformation. We write

𝑇𝐽 = diag(𝜆1, . . . , 𝜆𝑟 ) ⊕ 𝑅, 𝜎(𝑇) = {𝜆1, . . . , 𝜆𝑟 } ∪ 𝜎(𝑅),

where 𝜆1, . . . , 𝜆𝑟 are the semisimple eigenvalues written with their multiplicities and
𝑅 consists of all nontrivial Jordan blocks (possibly one of these two parts constituting
𝑇𝐽 might be void). Recall that the algebraic numerical range𝑉 (𝑇,B(C𝑛, ∥·∥)) has the
property that all eigenvalues of 𝑇 on its boundary are semisimple by Lemma 4.2. Hence,
the eigenvalues of 𝑅 (if there are any) lie inside the interior of 𝑉 (𝑇,B(C𝑛, ∥·∥)), by
Lemma (4.2). The boundary 𝜕𝑉 (𝑇,B(C𝑛, ∥·∥)) is rectifiable. Estimating in a routine
way the Cauchy integral formula we receive ∥𝑝(𝑅)∥ ≤ 𝐶1 sup𝑉 (𝑇,B(C𝑛 , ∥ · ∥ ) ) |𝑝 | for any
polynomial 𝑝 and some constant 𝐶1, depending on the maximum of the norm of the
resolvent of 𝑅 on 𝜕𝑉 (𝑇,B(C𝑛, ∥·∥)). Therefore,

∥𝑝(𝑇)∥2 ≤ ∥𝑆∥2
𝑆−12 ∥𝑝(𝑇𝐽 )∥2

and

∥𝑝(𝑇𝐽 )∥2 = max( |𝑝(𝜆1) |, . . . , |𝑝(𝜆𝑟 ) |, ∥𝑝(𝑅)∥)
≤ max(1, 𝐶1) sup

𝑉 (𝑇,B(C𝑛 ,∥ · ∥ ) )
|𝑝 |,

for all 𝑝 ∈ C[𝑧] , from which we obtain the constant𝐶2.
■

Immediately we provide an example that the numerical-range spectral constant
ΨB(C𝑛 ,∥ · ∥ 𝑝 ) of the matrix algebra with the ℓ𝑝-induced norm depends on the dimension
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𝑛. It should not come as surprise that the ‘bad’ matrix will be the Jordan block

𝐽𝑛 :=



0 1

0
. . .

. . .
. . .

0 1
0


∈ C𝑛×𝑛.

The following facts we use to derive suitable operator norm estimates are well known
and can be traced back to the works of Shapiro [43] and Rudin [41]. There exists Δ > 0
such that for every 𝑛 ∈ N there exists a polynomial 𝑓𝑛 =

∑𝑛−1
𝑘=0 𝛼𝑘𝑧

𝑘 of degree 𝑛 − 1,
with coefficients 𝛼𝑘 all equal to either 1 or −1, and satisfying

| 𝑓𝑛 (𝑧) | ≤ Δ
√
𝑛, |𝑧 | = 1, 𝑛 = 1, 2, . . . . (4.1)

The best known constant is Δ =
√
6, see [3]. We also refer to [4] for a recent solution

of the related Littlewood conjecture [34], stating that there even exist such polynomials
satisfying the lower bound 𝛿

√
𝑛 ≤ | 𝑓𝑛 (𝑧) | ≤ Δ

√
𝑛 with some constants 0 < 𝛿 ≤ Δ

independent of 𝑛.

Theorem 4.3 Let 𝑝 ∈ [1,∞] with Hölder conjugate 𝑞 ∈ [1,∞]. The numerical-range
spectral constant (3.1) of the Jordan block in the ℓ𝑝-induced norm satisfies

Ψ(𝐽𝑛,B(C𝑛, ∥·∥ 𝑝)) ≥ sup
𝑓 ∈C[𝑧 ]
𝑓≠0

∥ 𝑓 (𝐽𝑛)∥ 𝑝
∥ 𝑓 ∥∞,D

≥ 1
√
6
𝑛
max{ 1

𝑝
, 1
𝑞
}− 1

2

for all 𝑛 ∈ N.

Proof The first inequality follows from the fact that ∥𝐽𝑛∥ ≤ 1. To see the second one
observe that for any polynomial 𝑓 of degree 𝑛 − 1with coefficients 𝛼0, 𝛼1, 𝛼2, . . . , 𝛼𝑛−1
the polynomial functional calculus of 𝐽𝑛 is given by

𝑓 (𝐽𝑛) =



𝛼0 𝛼1 𝛼2 · · · · · · 𝛼𝑛−1
𝛼0 𝛼1

...

. . .
. . .

...

. . . 𝛼1 𝛼2
𝛼0 𝛼1

𝛼0


.

From this it quickly follows that

∥ 𝑓 (𝐽𝑛)∥ 𝑝 ≥ ∥ 𝑓 (𝐽𝑛)𝑒𝑛∥ 𝑝 =

{
(∑𝑛−1

𝑗=0 |𝛼 𝑗 |𝑝)
1
𝑝 𝑝 < ∞

max𝑛−1
𝑗=0 |𝛼 𝑗 | 𝑝 = ∞
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and, under the Banach space isomorphism (C𝑛, ∥·∥ 𝑝)′ = (C𝑛, ∥·∥𝑞),

∥ 𝑓 (𝐽𝑛)∥ 𝑝 = ∥ 𝑓 (𝐽𝑛)′∥𝑞 ≥ ∥ 𝑓 (𝐽𝑛)′𝑒1∥𝑞 =

{
(∑𝑛−1

𝑗=0 |𝛼 𝑗 |𝑞)
1
𝑞 𝑞 < ∞

max𝑛−1
𝑗=0 |𝛼 𝑗 | 𝑞 = ∞

.

Applying this to the polynomials from (4.1) we conclude that

sup
𝑓 ∈C[𝑧 ]
𝑓≠0

∥ 𝑓 (𝐽𝑛)∥ 𝑝
∥ 𝑓 ∥∞,D

≥
∥ 𝑓𝑛 (𝐽𝑛)∥ 𝑝
∥ 𝑓𝑛∥∞,D

≥ max{𝑛
1
𝑝 , 𝑛

1
𝑞 }

√
6
√
𝑛

=
1
√
6
𝑛
max{ 1

𝑝
, 1
𝑞
}− 1

2

as desired. ■

It remains unknown whether ΨA is finite for every matrix algebraA.

5 Infinite-dimensional algebras with finite constant ΨA

The numerical-range spectral constant of the algebra B(𝐻), where 𝐻 is a Hilbert space
of any infinite dimension, has a special role. Namely, it follows from [21] that

ΨB(𝐻 ) = ΨCro := sup
𝑛≥1

ΨB(C𝑛 ,∥ · ∥2 ) < ∞. (5.1)

The universal constant ΨCro appearing above is called the Crouzeix constant, see the
introduction for a brief review on related results. Here we recall that 2 ≤ ΨCro ≤ 1 +

√
2.

It follows from (3.3) that ifA is a𝐶∗-algebra, then, as a subalgebra of B(𝐻) for some
Hilbert space 𝐻, we obtain

ΨA ≤ ΨCro. (5.2)

Further, there exist several sufficient conditions for embeddability of a given algebra
(not necessarily a ∗-algebra) in B(𝐻)), see e.g. [9, 10], guaranteeing in turn (5.2). Let us
now present two instances where the numerical range-spectral constant (3.2) can be
computed explicitly.

Theorem 5.1 Let 𝑋 be a compact space and let B be a Banach algebra. Let 𝐶 (𝑋,B)
be the Banach algebra of B-valued continuous functions on 𝑋 with the norm ∥ 𝑓 ∥ :=
sup𝑥∈𝑋 ∥ 𝑓 (𝑥)∥B . Then the corresponding numerical-range spectral constants, defined in (3.2),
satisfy

Ψ𝐶 (𝑋,B) = ΨB ,

regardless of whether ΨB is finite or not.
In particular, for any unital commutative 𝐶∗-algebraA the constant ΨA equals 1.

Proof Assume first that ΨB is finite. Let 𝑓 ∈ 𝐶 (𝑋,B). Note that each pair (𝑥, 𝜙),
where 𝑥 ∈ 𝑋 and 𝜙 ∈ B′ with ∥𝜙∥ = 1 = 𝜙(𝐼), constitutes a functional 𝑓 ↦→ 𝜙( 𝑓 (𝑥))
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in the dual space𝐶 (𝑋,B)′. Therefore,

∥𝑝( 𝑓 )∥𝐶 (𝑋,B) = sup
𝑥∈𝑋

∥𝑝( 𝑓 ) (𝑥)∥

= sup
𝑥∈𝑋

∥𝑝( 𝑓 (𝑥))∥

≤ ΨB sup
𝑥∈𝑋

sup
𝜙∈B′

∥𝜙∥=1=𝜙 (𝐼 )

|𝑝(𝜙( 𝑓 (𝑥)) |

which shows the inequalityΨ𝐶 (𝑋,B) ≤ ΨB . The reverse inequality, and the caseΨB = ∞
follow by identifying B with constant functions in𝐶 (𝑋,B) and applying (3.3).

The second statement follows from identifying A with the algebra 𝐶 (𝑋,C) and
Proposition 3.1(i). ■

Given a Hilbert space 𝐻, the Calkin algebra is defined as the quotient

C(𝐻) := B(𝐻)/K(𝐻),

whereK(𝐻) denotes the ideal of compact operators in the bounded linear operators
B(𝐻) on 𝐻. For an operator 𝑇 ∈ B(𝐻) its equivalence class will be denoted by [𝑇]. In
the proof below a mapping between two 𝐶∗-algebras is called an embedding if it is a
linear isometry that is multiplicative and preserves the involution and identity.

Theorem 5.2 For a separable infinite-dimensional Hilbert space 𝐻 we have the following
equality between the numerical-range spectral constants (3.2)

ΨC(𝐻 ) = ΨCro (5.3)

Furthermore, for any 𝑇 ∈ B(𝐻) we have

Ψ( [𝑇], C(𝐻)) ≤ Ψ(𝑇 + 𝐾,B(𝐻)) (5.4)

for some 𝐾 ∈ K(𝐻).

Proof Let us recall that the quotient of a C*-algebra by a closed *-ideal is again a C*-
algebra. Thus the Calkin algebra is a C*-algebra. Then the inequality ΨC(𝐻 ) ≤ ΨCro
follows from (5.2) and (5.1) via the fact that C(𝐻) can be embedded in a C*-subalgebra
of B(�̃�) for some Hilbert space �̃�. The reverse inequality follows again from (5.2) and
(5.1) and the fact that the algebra B(C𝑑 , ∥·∥2) can be embedded in a𝐶∗-subalgebra of
the Calkin algebra ΨC(𝐻 ) . Below we present a simple proof of the latter fact, referring
also to [25] for a rich theory of embedings of𝐶∗-algebras into the Calkin algebra.

Note that it is enough to embed B(C𝑑 , ∥·∥2) in C(𝐻0) for some separable Hilbert
space 𝐻0. We define 𝐻0 := ℓ2 ⊗ C𝑑 and let 𝜋(𝑇) = [𝐼ℓ2 ⊗ 𝑇] ∈ C(𝐻0). Let 𝑃𝑘 be an
orthogonal projection on the first 𝑘 basis vectors of ℓ2 and let𝑄𝑘 = (𝐼ℓ2 − 𝑃𝑘) ⊗ 𝐼C𝑑 .
By Proposition 6 of [37] we have that

∥𝜋(𝑇)∥C(𝐻0 ) = lim
𝑘→∞

∥𝑄𝑘 (𝐼ℓ2 ⊗ 𝑇)𝑄𝑘 ∥B(𝐻0 ) = ∥𝑇 ∥B(𝐻0 ) .

Hence, the mapping 𝜋 is an isometry, it is also clearly linear, multiplicative, and preserves
the adjoint and identity.
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Let us show now (5.4). By [18] (see also [37]) there exists 𝐾 ∈ K(𝐻) such that𝑉 (𝑇 +
K(𝐻)) = 𝑉 (𝑇 + 𝐾). It follows that

∥𝑝( [𝑇])∥C(𝐻 ) = ∥ [𝑝(𝑇)] ∥C(𝐻 )

≤ ∥𝑝(𝑇 + 𝐾)∥B(𝐻 )

≤ Ψ(𝑇 + 𝐾) · sup𝑉 (𝑇+𝐾 ) |𝑝 |
= Ψ(𝑇 + 𝐾) · sup𝑉 ( [𝑇 ] ) |𝑝 |

for any polynomial 𝑝. ■

6 Algebras with infinite constant ΨA

Below we show that the numerical-range spectral constant Ψ(·) (see (3.1)) can attain the
value∞ as soon as we step away from𝐶∗-algebras or matrix Banach algebras. We use
the classical left- and right-shift operators and compute their algebraic numerical range
𝑉 (𝑇) for completeness.

Theorem 6.1 Let 𝑝 ∈ [1,∞]. The left-shift 𝐿 and right-shift 𝑅 satisfy:

(i) 𝑉 (𝐿,B(ℓ𝑝)) = 𝑉 (𝑅,B(ℓ𝑝)) = D;

(ii) Ψ(𝐿,B(ℓ𝑝)) = Ψ(𝑅,B(ℓ𝑝)) =
{
1 𝑝 = 2
∞ 𝑝 ≠ 2

.

Proof Suppose that 𝑝 ∈ [1,∞) with Hölder conjugate 𝑞 ∈ (1,∞], then (ℓ𝑝)′ = ℓ𝑞
(i.e. ℓ𝑞 is the dual space of ℓ𝑝) with 𝑅′ = 𝐿 and using Lemma 3.2 we deduce that

𝑉 (𝑅,B(ℓ𝑝)) = 𝑉 (𝑅′,B((ℓ𝑝)′)) = 𝑉 (𝐿,B(ℓ𝑞)),
Ψ(𝑅,B(ℓ𝑝)) = Ψ(𝑅′,B((ℓ𝑝)′)) = Ψ(𝐿,B(ℓ𝑞)).

For 𝑝 = ∞ we have ℓ∞ = (ℓ1)′ with 𝑅 = 𝐿′ and therefore

𝑉 (𝑅,B(ℓ∞)) = 𝑉 (𝐿′,B((ℓ1)′)) = 𝑉 (𝐿,B(ℓ1)),
Ψ(𝑅,B(ℓ∞)) = Ψ(𝐿′,B((ℓ1)′)) = Ψ(𝐿,B(ℓ1)).

Hence it suffices to prove both (i) and (ii) only for the left-shift 𝐿.
(i) Assume 𝑝 ∈ [1,∞). Since 𝜈(𝐿,B(ℓ𝑝)) ≤ ∥𝐿∥ 𝑝 = 1, we have𝑉 (𝐿,B(ℓ𝑝)) ⊆ D.

To see that the reverse inclusion holds, define for each 𝜃 ∈ R and 𝑛 ∈ N the vector

𝑥𝜃,𝑛 := 𝑛
− 1
𝑝 (1, 𝑒−𝑖 𝜃 , 𝑒−2𝑖 𝜃 , . . . , 𝑒−(𝑛−1)𝑖 𝜃 , 0, . . .) ∈ ℓ𝑝

and observe that

lim
𝛼↓0

∥𝐼ℓ𝑝 + 𝛼𝑒𝑖 𝜃𝐿∥ 𝑝 − 1
𝛼

≥ lim
𝛼↓0

∥(𝐼ℓ𝑝 + 𝛼𝑒𝑖 𝜃𝐿)𝑥𝜃,𝑛∥ 𝑝 − 1
𝛼

= lim
𝛼↓0

𝑛
− 1

𝑝 (1 + (𝑛 − 1) (1 + 𝛼) 𝑝)
1
𝑝 − 1

𝛼
=
𝑛 − 1
𝑛

,
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14 H. Blazhko, D. Homza, F.L. Schwenninger, J. de Vries and M. Wojtylak

which after letting 𝑛 → ∞ yields sup Re 𝑒𝑖 𝜃𝑉 (𝐿,B(ℓ𝑝)) ≥ 1 by the equality (2.6).
The case 𝑝 = ∞ follows from a similar but more direct argument using the vector
𝑥𝜃 := (1, 𝑒−𝑖 𝜃 , 0, . . .) for 𝜃 ∈ R.

(ii) The case 𝑝 = 2 follows directly from von Neumann’s inequality as𝑉 (𝐿,B(ℓ2)) =
D and ∥𝐿∥2 = 1. Assume 𝑝 ∈ [1,∞] \ {2} and let 𝑛 ∈ N be arbitrary. Let 𝑃𝑛 : ℓ𝑝 →
(C𝑛, ∥·∥ 𝑝) and𝑄𝑛 : (C𝑛, ∥·∥ 𝑝) → ℓ𝑝 be defined by

𝑃𝑛 (𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1, . . .) := (𝑥1, . . . , 𝑥𝑛), 𝑄𝑛 (𝑥1, . . . , 𝑥𝑛) := (𝑥1, . . . , 𝑥𝑛, 0, . . .).

Clearly, 𝑃𝑛𝑄𝑛 = 𝐼C𝑛 and 𝑃𝑛𝐿𝑄𝑛 = 𝐽𝑛 and ∥𝑃𝑛∥ = ∥𝑄𝑛∥ = 1. For every 𝑓 ∈ C[𝑧] we
infer

𝑃𝑛 𝑓 (𝐿)𝑄𝑛 = 𝑓 (𝑃𝑛𝐿𝑄𝑛) = 𝑓 (𝐽𝑛)

and therefore ∥ 𝑓 (𝐿)∥ 𝑝 ≥ ∥ 𝑓 (𝐽𝑛)∥ 𝑝 . It follows that

Ψ(𝐿,B(ℓ𝑝)) ≥ sup
𝑓 ∈C[𝑧 ]
𝑓≠0

∥ 𝑓 (𝐽𝑛)∥ 𝑝
∥ 𝑓 ∥∞,D

≥ 1
√
6
𝑛
max{ 1

𝑝
, 1
𝑞
}− 1

2 ,

by Theorem 4.3. Thus 𝑝 ≠ 2 implies Ψ(𝐿,B(ℓ𝑝)) = ∞ as desired. ■

Theorem 6.1 says that both shifts on ℓ𝑝 (𝑝 ≠ 2) are examples of operators with
operator norm 1 and numerical-range spectral constant∞, the latter being due to the
fact that they are both not polynomially bounded. In the next example we construct a
polynomially bounded operator 𝑇 on a Banach space 𝑋 with ∥𝑇 ∥ = 1 and Ψ(𝑇) = ∞.

Example 6.2 Consider the left-shift operator 𝐿 : ℓ𝑝 → ℓ𝑝 for 𝑝 ≠ 2. Endow C2 with
the standard Hilbert norm and consider the algebraic direct sum

𝑋 := C2 ⊕ ℓ𝑝 .

Equip 𝑋 with a Banach norm so that the induced operator norm on B(𝑋) satisfies
∥𝐴 ⊕ 𝐵∥ = max{∥𝐴∥2, ∥𝐵∥ 𝑝} for all 𝐴 ∈ B(C2) and 𝐵 ∈ B(ℓ𝑝). Consider the matrix

𝐸 :=
[
0 1
0 0

]
and define the operator from 𝑋 to 𝑋 as

𝑇 := 𝐸 ⊕ 1
2𝐿.

It is clear that ∥𝑇 ∥ = 1. Since𝑉 (𝐸,B(C2)) = 𝑉 ( 12𝐿,B(ℓ𝑝)) = 1
2D, it quickly follows

that

sup Re 𝑒𝑖 𝜃𝑉 (𝑇,B(𝑋)) = lim
𝛼↓0

∥𝐼𝑋 − 𝛼𝑒𝑖 𝜃𝑇 ∥ − 1
𝛼

= max
{
lim
𝛼↓0

∥𝐼C2 − 𝛼𝑒𝑖 𝜃𝐸 ∥ − 1
𝛼

, lim
𝛼↓0

∥𝐼ℓ𝑝 − 𝛼𝑒𝑖 𝜃 1
2𝐿∥ − 1

𝛼
} = 1

2

for all 𝜃 ∈ R and therefore𝑉 (𝑇,B(𝑋)) = 1
2D as well.
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The algebraic numerical range as a spectral set 15

Let us now prove that 𝑇 is polynomially bounded. By the von Neumann inequality
we have ∥ 𝑓 (𝐸)∥2 ≤ supD | 𝑓 | for all polynomials 𝑓 , while by Proposition 3.3 we have
∥ 𝑓 ( 12𝐿)∥ 𝑝 ≤ 2

√
3

3 supD | 𝑓 | for all polynomials 𝑓 . We deduce that

∥ 𝑓 (𝑇)∥ = max{∥ 𝑓 (𝐸)∥2, ∥ 𝑓 ( 12𝐿)∥ 𝑝} ≤
2
√
3

3
sup
D

| 𝑓 | (6.1)

for all polynomials 𝑓 .
Finally, we show that Ψ(𝑇,B(𝑋)) = ∞. Since 𝑉 ( 12𝐿,B(ℓ𝑝)) = 1

2D and
Ψ( 12𝐿,B(ℓ𝑝)) = ∞, there exists for each positive integer 𝑛 some polynomial 𝑓𝑛 such
that

∥ 𝑓𝑛 ( 12𝐿)∥ 𝑝 ≥ 𝑛 sup
1
2D

| 𝑓𝑛 |.

From this we deduce that

∥ 𝑓𝑛 (𝑇)∥ ≥ ∥ 𝑓𝑛 ( 12𝐿)∥ 𝑝 ≥ 𝑛 sup
1
2D

| 𝑓𝑛 | = 𝑛 sup
𝑉 (𝑇,B(𝑋) )

| 𝑓𝑛 |

for all 𝑛 ∈ N and the claim follows. It remains an open question whether the constant
2
√
3

3 in (6.1) is optimal. In particular, it is unknown whether there exists an operator 𝑇 of
norm 1 which is polynomially bounded with constant 1 but with Ψ(𝑇) = ∞.

We now turn our attention to combinatorial Banach spaces. We will show that for a
large class of these spaces the universal spectral constant is infinite. Our idea is based
on the spreading property, hence it will include important examples such as the Schreier
space and the Tsirelson space, see, e.g. [14] and the references therein. Let F be a family
of subsets of the positive integersN, satisfying the following properties;

(1) every 𝑖 ∈ N belongs to some 𝐹 ∈ F ;
(2) if {𝑙1, 𝑙2, . . . , 𝑙𝑛} ∈ F and 𝑙𝑖 ⩽ 𝑘𝑖 for 𝑘𝑖 ∈ N and all 𝑖 = 1, . . . , 𝑛, then

{𝑘1, 𝑘2, . . . , 𝑘𝑛} ∈ F , (spreading property);
(3) for each 𝑛 ≥ 1 there exists 𝐹 ∈ F such that |𝐹 | ≥ 𝑛.

See also [28]. Consider the following norm on the space 𝑐00 of finitely supported
sequences:

∥𝑥∥S := sup
𝐹∈F

∑︁
𝑖∈𝐹

|𝑥𝑖 |, 𝑥 = (𝑥𝑖)∞𝑖=1 ∈ 𝑐00. (6.2)

We define the combinatorial Banach space S as the completion of 𝑐00 with respect to
the above norm. Below we show that the numerical-range spectral constant (3.2) of the
algebra B(S) is infinite.

Theorem 6.3 Let S be a combinatorial Banach space, defined as above, satisfying (1)–(3).
Then ΨB(S) = ∞.

Proof Let us fix a number 𝑘 ∈ N. By property 3 of a combinatorial Banach space, there
exists 𝑛 ≥ 𝑘 such that there exists a subset (𝑘1, . . . , 𝑘𝑛) ∈ F . Thanks to the spreading
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property we have that

(𝑘𝑛, 𝑘𝑛 + 1, . . . , 𝑘𝑛 + 𝑛 − 1) ∈ F . (6.3)

Let 𝑃𝑛 denote the projection onto the coordinates 𝑘𝑛 + 1, . . . , 𝑘𝑛 + 𝑛 and 𝑅 be the right
shift, both defined on 𝑐00. Define the following linear operator

𝑆𝑛 = 𝑃𝑛 ◦ 𝑅, 𝑆𝑛 ((𝑥 𝑗 )∞𝑗=1) = (0, . . . , 0︸   ︷︷   ︸
𝑘𝑛

, 𝑥𝑘𝑛 , . . . , 𝑥𝑘𝑛+𝑛−1, 0, 0, . . . ).

Observe that ∥𝑆𝑛∥ ≤ 1, hence, it extends to a bounded operator of norm not greater
than 1 on the whole space S. Indeed, we have

∥𝑆𝑛𝑥∥S ≤ ∥𝑆𝑛𝑥∥ℓ1 =
𝑛−1∑︁
𝑖=0

|𝑥𝑘𝑛+𝑖 | ≤ ∥𝑥∥S ,

where the last inequality follows due to (6.3).
Further, observe that ∥𝑆𝑛 + 𝜆𝐼 ∥S ≤ |𝜆 | + 1 for 𝜆 ∈ C. In fact, we have equality. To

see this, take 𝑥 = 𝑒𝑘𝑛 = (0, . . . , 0, 1, 0, . . . ) (unit on the 𝑘𝑛-th position) and note that it
is a unit vector, due to (6.3). Hence,

∥𝑆𝑛 + 𝜆𝐼 ∥S = |𝜆 | + 1, 𝜆 ∈ C,

again thanks to (6.3). From this, together with (2.3), we obtain that𝑉 (𝑆𝑛) is the closed
unit disk.

Let 𝑓𝑛 be the polynomials as in (4.1). From the form of 𝑆𝑛 we see that

𝑓𝑛+1 (𝑆𝑛)𝑒𝑘𝑛 = (0, . . . , 0︸   ︷︷   ︸
𝑘𝑛−1

, 𝛼0, 𝛼1, . . . , 𝛼𝑛−1, 0, 0, . . . ),

where 𝑓𝑛+1 (𝑧) = 𝛼0 + 𝛼1𝑧 + · · · + 𝛼𝑛𝑧𝑛 and 𝛼 𝑗 ∈ {−1, 1} ( 𝑗 = 0, . . . , 𝑛). Hence, using
(6.3) for the final time,

∥ 𝑓𝑛+1 (𝑆𝑛)∥S ≥ 𝑛,
while sup

𝑧∈D | 𝑓𝑛+1 (𝑧) | ≤
√
6
√
𝑛 + 1, which shows that ΨB(S) = ∞.

■

Remark 6.4 There are several possibilities to extend the results of the current section
using similar methods. First, Theorem 6.3 can be easily extended to higher order spaces,
cf. [1, 5]. Second, one can show that for the algebra B(𝐶 (𝐾)) the spectral constant of
the numerical range is infinite, under mild assumptions on 𝐾 , in particular covering
Theorem 6.1 for 𝑝 = ∞. We refrain from doing this, and in the subsequent section we
concentrate on the analysis of the case where the numerical range is not necessarily a disk.

7 ℓ1-induced norm

In this section we give explicit bounds of the numerical-range spectral constant ΨA ,
see (3.2), for the algebra of 2 × 2matrices with the operator norm ∥ · ∥1 induced by the
ℓ1-norm on C2.
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The algebraic numerical range as a spectral set 17

Theorem 7.1 The following inequalities hold: 1.1 < ΨB(C2 , ∥ · ∥1 ) ≤ 13.

We divide the proof of this estimate into several steps. First we show that the algebraic
numerical range in the ℓ1-induced norm algebra is the Gershgorin column set. This
natural result is crucial and, to the best of our knowledge, cannot be found in the literature.
The statement of Theorem 7.1 follows directly from Lemma 7.4, Lemma 7.5 (the upper
bound) and Example 7.7 (the lower bound).

Theorem 7.2 In the algebra B(ℓ1, ∥·∥1) the algebraic numerical range of a bounded operator
𝑇 equals

𝑉 (𝑇,B(ℓ1, ∥·∥1)) = conv
∞⋃
𝑗=1

{
𝐷

(
𝑡 𝑗 , 𝑗 ,

∞∑︁
𝑘=1,𝑘≠ 𝑗

|𝑡𝑘, 𝑗 |
)}
,

where (𝑡𝑘, 𝑗 )𝑘∈N := 𝑇𝑒 𝑗 and 𝑒1, 𝑒2, . . . is the canonical basis of ℓ1.
Therefore, the algebraic numerical range of a matrix 𝑇 = [𝑡𝑖, 𝑗 ]𝑛𝑖 𝑗=1 in the algebra

B(C𝑛×𝑛, ∥·∥1) is given by the convex hull of the Gershgorin disks corresponding to its columns.

Proof Before we proceed with the proof let us note that the operator norm of 𝑇 ∈
B(ℓ1, ∥·∥1) can be calculated similarly to ℓ1-matrix norm. Namely, let 𝑒1, 𝑒2, . . . be the
canonical basis of ℓ1 and let 𝑒∗1, 𝑒

∗
2, . . . denote their dual operators (i.e. the coefficient

functionals corresponding to the Schauder basis (𝑒 𝑗 )∞𝑗=1). Define 𝑡𝑘, 𝑗 = 𝑒∗𝑘𝑇𝑒 𝑗 . Then
the norm is given by

∥𝑇 ∥1 = sup
𝑗∈N

∑︁
𝑘∈N

|𝑡𝑘, 𝑗 |.

Now let us fix an angle 𝜃 ∈ [0, 2𝜋). Our goal is to find the supporting hyperplane
𝐻𝜃 for the set𝑉 (𝑇) using formulas (2.4)–(2.6). To simplify calculations let us rotate the
coordinate complex plane by 𝜃, so that

𝑇 ′ := [𝑡′𝑖, 𝑗 ]𝑖, 𝑗∈N := 𝑒−𝑖 𝜃𝑇, 𝐻′ := 𝐻0 (𝑇 ′) = 𝐻𝜃 (𝑇), 𝑟 ′ := 𝑟0 (𝑇 ′) = 𝑟𝜃 (𝑇).

Then the distance 𝑟 ′ can be expressed as

𝑟 ′ = lim
𝛼→0+

∥𝐼 + 𝛼𝑇 ′∥1 − 1
𝛼

= lim
𝛼→0+

sup
𝑗∈N

{
|1 + 𝛼𝑡′

𝑗 , 𝑗
| − 1 + ∑∞

𝑘=1,𝑘≠ 𝑗 |𝛼𝑡′𝑘, 𝑗 |
𝛼

}
.

For each 𝛼 let us choose a sequence of indices ( 𝑗𝑚)𝑚∈N approaching the supremum
above and define a function

𝑓 (𝛼, 𝑚) :=
|1 + 𝛼𝑡′

𝑗𝑚 , 𝑗𝑚
| − 1

𝛼
+

∞∑︁
𝑘=1,𝑘≠ 𝑗𝑚

|𝑡′𝑘, 𝑗𝑚 |, 𝑎 ∈ (0, 1), 𝑚 ∈ N.
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Note that the function 𝑔(𝛼) := 1
𝛼
(∥𝐼 + 𝛼𝑇 ∥ − 1) is decreasing, as for any 𝛼 < 𝛽 we have

𝑔(𝛼) =

 𝛽𝛼 𝐼 + 𝛽𝑇
1
− 𝛽

𝛼

𝛽
≤

∥𝐼 + 𝛽𝑇 ∥1 +
( 𝛽𝛼 − 1

)
𝐼

 − 𝛽

𝛼

𝛽
= 𝑔(𝛽).

Hence, we infer that
𝑟 ′ = lim

𝑛→∞
lim
𝑚→∞

𝑓 (1/𝑛, 𝑚).

Next we show that 𝑓 (1/𝑛, 𝑚) satisfies the conditions of the Moore-Osgood theorem to
switch the order of the limits. Note that lim

𝑚→∞
𝑓 (1/𝑛, 𝑚) = ∥ 𝐼+1/𝑛𝑇 ′ ∥1−1

1/𝑛 < ∞ for each
𝑛 ∈ N by the definition. To find the other limit observe that for an arbitrary complex
number 𝑧 = 𝑎 + 𝑏𝑖 we have

lim
𝑛→∞

( |𝑧 + 𝑛| − 𝑛) = lim
𝑛→∞

𝑎2 + 2𝑎𝑛 + 𝑏2√︁
(𝑎 + 𝑛)2 + 𝑏2 + 𝑛

= 𝑎 = Re(𝑧).

And consequently,

lim
𝑛→∞

𝑓 (1/𝑛, 𝑚) =
∞∑︁

𝑘=1,𝑘≠ 𝑗𝑚

|𝑡′𝑘, 𝑗𝑚 | + Re(𝑡′𝑗𝑚 , 𝑗𝑚 ). (7.1)

Let us show that lim
𝑛→∞

𝑓 (1/𝑛, 𝑚) is also uniform in𝑚. Observe that |𝑡′
𝑘, 𝑗

| ≤ | |𝑇 | |1 for all
𝑘, 𝑗 . For 𝜀 > 0 let us choose 𝑛 > 2

𝜀
𝑀2, where 𝑀 := max{1, ∥𝑇 ∥1}. For simplicity let

𝑡′
𝑗𝑚 , 𝑗𝑚

= 𝑎𝑚 + 𝑖𝑏𝑚 be the decomposition into real and imaginary parts. Then

0 ≤ 𝑓 (1/𝑛, 𝑚) − lim
𝑛→∞

𝑓 (1/𝑛, 𝑚) =

√︃
(𝑎𝑚 + 𝑛)2 + 𝑏2𝑚 − 𝑛 − 𝑎𝑚

=
𝑏2𝑚√︁

(𝑎𝑚 + 𝑛)2 + 𝑏2𝑚 + 𝑛 + 𝑎𝑚
≤ 𝑀2

𝑛 − 𝑀 ≤ 𝜀

for all 𝑚 ∈ N. Hence, we can change the order of the limits in the definition of 𝑟 ′, which
together with the equality (7.1) provides

𝑟 ′ = lim
𝑚→∞

©«
∞∑︁

𝑘=1,𝑘≠ 𝑗𝑚

|𝑡′𝑘, 𝑗𝑚 | + Re(𝑡′𝑗𝑚 , 𝑗𝑚 )
ª®¬ = sup

𝑗∈N


∞∑︁

𝑘=1,𝑘≠ 𝑗
|𝑡′𝑘, 𝑗 | + Re(𝑡′𝑗 , 𝑗 )

 .
Let us now fix 𝑗 and consider theGershgorin disk corresponding to the 𝑗-th column of

𝑇 ′, i.e., 𝐷 (𝑡′
𝑗 , 𝑗
,
∑∞
𝑘=1,𝑘≠ 𝑗 |𝑡′𝑘, 𝑗 |). Let us look at its vertical tangent lines. If the Gershgorin

disk is just a point there is only one such line passing through 𝑡 𝑗 , 𝑗 , let us call it 𝑙 𝑗 , 𝜃 .
Otherwise there are two such lines. Let us denote their touch points as 𝑝1 and 𝑝2 and
without loss of generality assume that Re(𝑝1) < Re(𝑝2). Then we denote the line
corresponding to 𝑝2 by 𝑙 𝑗 , 𝜃 (see Figure 1).

Now it can be easily seen that the expression
∑𝑛
𝑘=1,𝑘≠ 𝑗 |𝑡′𝑘, 𝑗 | + Re(𝑡′

𝑗 , 𝑗
) is equal to the

distance from 0 to the tangent line 𝑙 𝑗 , 𝜃 , which, in turn, is equal to Re(𝑝2). So, 𝑟 ′ is equal
to the supremum of such distances from 0 to 𝑙 𝑗 , 𝜃 over all 𝑗 ∈ N. Hence, half-plane 𝐻′

contains all Gershgorin disks and, moreover, it is tangent to the closure of their convex
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Figure 1: Illustration of the Gershgorin disk 𝐷 (𝑡′
𝑗 , 𝑗
,
∑∞
𝑘=1,𝑘≠ 𝑗 |𝑡

′
𝑘, 𝑗

|) together the tangent line
𝑙 𝑗 , 𝜃 . Its radius and the distance from 0 to its center is highlighted. The left picture shows an
example when Re(𝑡′

𝑗 , 𝑗
) is positive and the right one corresponds to the negative case.

hull. That means that 𝐻′ = 𝐻𝜃 (𝑇) is simultaneously a supporting half-plane for the
algebraic numerical range 𝑉 (𝑇) and for the convex hull of the disks. Since both these
sets are convex, they must be equal. ■

Remark 7.3 Note that Theorem 7.2 along with the inclusion 𝜎(𝑇) ⊆ 𝑉 (𝑇) discussed
in Section 2, provides a broader explanation of why the Gershgorin set contains the
eigenvalues. Additionally, it is worth recalling the relationship between the Gershgorin
sets and the classical numerical range, as discussed in [30, 15]. Namely, the classical
numerical range is always contained in the convex hull of the union of the disks

𝐷

(
𝑡𝑖,𝑖 ,

1
2

𝑛∑︁
𝑘=1,𝑘≠𝑖

|𝑡𝑖,𝑘 | + |𝑡𝑘,𝑖 |
)
,

which makes the latter set automatically a (1 +
√
2)-spectral set in the algebra

B(C𝑛×𝑛, ∥·∥ℓ2 ) and a
√
𝑛(1 +

√
2)-spectral set in the algebra B(C𝑛×𝑛, ∥·∥ℓ1 ). It is,

however, easy to verify that in general neither𝑉 (𝑇,B(C𝑛, ∥·∥1) contains the classical
numerical range nor conversely.

Now let us consider separate cases depending on the Jordan form of the 2 × 2matrix.

Lemma 7.4 If 𝑇 ∈ C2,2 is similar to a Jordan block of size 2 then Ψ(𝑇 ;B(C2, ∥·∥1) ≤
2 +

√
2.

Proof Observe that 𝑇 can be written in the following from

𝑇 =

[
𝑎 𝑏

𝑐 𝑑

] [
𝑥 1
0 𝑥

] [
𝑑 −𝑏
−𝑐 𝑎

]
, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥 ∈ C, with 𝑎𝑑 − 𝑏𝑐 = 1.
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SinceΨ(𝛼𝑇 + 𝛽𝐼) = Ψ(𝑇) (see Proposition 3.1), we can assume 𝑥 = 0. Then𝑇 takes form

𝑇 =

[
−𝑎𝑐 𝑎2
−𝑐2 𝑎𝑐

]
and its algebraic numerical range 𝑉 (𝑇) is given by the convex hull of two disks
𝐷 (−𝑎𝑐, |𝑐 |2) and 𝐷 (𝑎𝑐, |𝑎 |2). Let us take a polynomial 𝑝 ∈ C[𝑧] such that
sup

𝑧∈𝑉 (𝑇 )
|𝑝(𝑧) | = 1. By a straightforward computation we have

𝑝(𝑇) =
[
𝑎 𝑏

𝑐 𝑑

] [
𝑝(0) 𝑝′ (0)
0 𝑝(0)

] [
𝑑 −𝑏
−𝑐 𝑎

]
=

[
𝑝(0) − 𝑎𝑐𝑝′ (0) 𝑎2𝑝′ (0)

−𝑐2𝑝′ (0) 𝑝(0) + 𝑎𝑐𝑝′ (0)

]
.

and so | |𝑝(𝑇) | |1 = max{|𝑝(0) − 𝑎𝑐𝑝′ (0) | + |𝑐2𝑝′ (0) |, |𝑝(0) + 𝑎𝑐𝑝′ (0) | + |𝑎2𝑝′ (0) |}.
Notice that the disk 𝐷

(
0, |𝑎 |

2+|𝑐 |2
2

)
is contained in the algebraic numerical range

𝑉 (𝑇). This can be seen by calculating the midline of the trapezoid formed by a common
tangent to two disks 𝐷 (−𝑎𝑐, |𝑐 |2) and 𝐷 (𝑎𝑐, |𝑎 |2) and radii drawn to this tangent (see
Figure 2). So, 𝑝 is analytic in 𝐷

(
0, |𝑎 |

2+|𝑐 |2
2

)
and bounded by 1. Hence, by Cauchy’s

inequality for the Taylor series coefficients of a complex analytic function, we get
|𝑝′ (0) | ≤ 2

|𝑎 |2+|𝑐 |2 .

Figure 2: Illustration of the two disks 𝐷 (−𝑎𝑐, |𝑐 |2) and 𝐷 (𝑎𝑐, |𝑎 |2) with highlighted trapezoid
formed by their common tangent and radii drawn to this tangent. The circle with dotted line illus-
trates the disk𝐷

(
0, |𝑎 |

2+|𝑐 |2
2

)
which is contained in the closure of the convex hull of𝐷 (−𝑎𝑐, |𝑐 |2)

and 𝐷 (𝑎𝑐, |𝑎 |2).

Therefore,

∥𝑝(𝑇)∥1 ≤ |𝑝(0) | + (|𝑎𝑐 | +max( |𝑎 |2, |𝑐 |2)) |𝑝′ (0) | ≤ 1 + 2
|𝑎𝑐 | +max( |𝑎 |2, |𝑐 |2)

|𝑎 |2 + |𝑐 |2 .

Using the fact that the function 𝑓 (𝛼, 𝛽) = 𝛼𝛽+𝛽2
𝛼2+𝛽2 is bounded by (1+

√
2)/2 for 0 < 𝛼 ≤ 𝛽

we obtain

∥𝑝(𝑇)∥1 ≤ 2 +
√
2

as desired. ■
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Lemma 7.5 If 𝑇 ∈ C2,2 is a diagonalizable matrix then Ψ(𝑇 ;B(C2, ∥·∥1) ≤ 13.

Proof The matrix 𝑇 can be written in the form

𝑇 =

[
𝑎 𝑏

𝑐 𝑑

] [
𝑥 0
0 𝑦

] [
𝑑 −𝑏
−𝑐 𝑎

]
, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦 ∈ C, 𝑎𝑑 − 𝑏𝑐 = 1.

As Ψ(𝜆𝐼) = 1, let us assume 𝑥 ≠ 0, 𝑥 ≠ 𝑦. Also, since Ψ(𝑇) = Ψ( 1
𝑥
(𝑇 − 𝑦𝐼)), we can

assume 𝑥 = 1 and 𝑦 = 0. Then

𝑇 = [𝑎, 𝑐] [𝑑,−𝑏]𝑇 =

[
𝑎𝑑 −𝑎𝑏
𝑐𝑑 −𝑏𝑐

]
.

Let us fix a polynomial 𝑝 ∈ C[𝑧] such that sup
𝑧∈𝑉 (𝑇 )

|𝑝(𝑧) | = 1. Notice that

𝑝(𝑇) =
[
𝑎 𝑏

𝑐 𝑑

] [
𝑝(1) 0
0 𝑝(0)

] [
𝑑 −𝑏
−𝑐 𝑎

]
= (𝑝(1) − 𝑝(0))𝑇 + 𝑝(0)𝐼,

and hence by the triangle inequality

∥𝑝(𝑇)∥1 ≤ |𝑝(1) − 𝑝(0) | ∥𝑇 ∥1 + |𝑝(0) |. (7.2)

Since sup𝑉 (𝑇 ) |𝑝 | ≤ 1, we clearly have |𝑝(0) − 𝑝(1) | ≤ 2 and |𝑝(0) | ≤ 1. Thus, if
∥𝑇 ∥1 ≤ 6, then

∥𝑝(𝑇)∥1 ≤ 2 · 6 + 1 = 13.
Now assume that ∥𝑇 ∥1 > 6. Observe that the algebraic numerical range𝑉 (𝑇) is given
by the convex hull of Gershgorin disks 𝐷1 := 𝐷 (𝑎𝑑, |𝑐𝑑 |) and 𝐷2 := 𝐷 (−𝑏𝑐, |𝑎𝑏 |) =
𝐷 (1 − 𝑎𝑑, |𝑎𝑏 |). Each of the eigenvalues 0 and 1 of 𝑇 belongs to at least one of the disks
𝐷1 and 𝐷2 by the Gershgorin circle theorem.

Define a polynomial 𝑞 ∈ C[𝑧] as 𝑞(𝑧) := 𝑝(𝑧) − 𝑝(0). Notice that 𝑞(0) = 0 and also
|𝑞(𝑧) | ≤ |𝑝(𝑧) | + |𝑝(0) | ≤ 2 for 𝑧 ∈ 𝑉 (𝑇). Let 𝑟0 denote the maximal radius such that
𝐷 (0, 𝑟0) ⊆ 𝑉 (𝑇). If 𝑟0 ≥ 1, then, by Schwarz’s lemma,

|𝑝(1) − 𝑝(0) | = |𝑞(1) | ≤ 2
𝑟0
.

Otherwise, if 𝑟0 < 1, then the same inequality holds trivially, as then |𝑞(1) | ≤ 2 ≤ 2
𝑟0
.

Next we estimate 𝑟0. Draw the line 𝑙 tangent to disks 𝐷1 and 𝐷2 which is closer to
0 (see Figure 3). Let 𝑡0 and 𝑡1/2 denote the orthogonal projections of 0 and 1/2 onto
𝑙. Consider the trapezoid formed by the centers of 𝐷1 and 𝐷2, and the points where
𝑙 meets the disks. Let us recall that 𝑎𝑑 − 𝑏𝑐 = 1, so the midpoint of 𝑎𝑑 and −𝑏𝑐 is
(𝑎𝑑 − 𝑏𝑐)/2 = 1/2. Then it is easy to see that the line segment with endpoints 1/2 and
𝑡1/2 is a midline of this trapezoid and hence |𝑡1/2 − 1/2| = 1

2 ( |𝑎𝑏 | + |𝑐𝑑 |).
Let𝑚0 denote the projection of 0 onto the midline. Then we have |𝑡0 | = |𝑡1/2 −𝑚0 | =

|𝑡1/2 − 1/2| − |𝑚0 − 1/2|. It is easy to see that |𝑚0 − 1/2| ≤ 1/2 as it is a leg in a right
triangle with hypotenuse of length 1/2. Altogether we get

𝑟0 = |𝑡0 | ≥
|𝑎𝑏 | + |𝑐𝑑 | − 1

2
(7.3)
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Figure 3: Illustration of the disks 𝐷1 := 𝐷 (𝑎𝑑, |𝑐𝑑 |) and 𝐷2 := 𝐷 (−𝑏𝑐, |𝑎𝑏 |) with highlighted
trapezoid formed by their common tangent 𝑙 closest to 0 and radii drawn to it.

Depending on the values of |𝑎 |, |𝑏 |, |𝑐 | and |𝑑 | we now distinguish between several
cases.
Case 1: |𝑎 | ≤ |𝑐 | and |𝑏 | ≤ |𝑑 |, or equivalently 0, 1 ∈ 𝐷1.
In this case we have ∥𝑇 ∥1 = |𝑎𝑑 | + |𝑐𝑑 | ≤ 2|𝑐𝑑 |. Inequality (7.2) together with (7.3) gives

∥𝑝(𝑇)∥1 ≤ 4
|𝑎𝑑 | + |𝑐𝑑 |

|𝑎𝑏 | + |𝑐𝑑 | − 1
+ 1 ≤ 4

2|𝑐𝑑 |
|𝑐𝑑 | − 1

+ 1.

Since we also assumed ∥𝑇 ∥1 > 6, we have |𝑐𝑑 | > 3 and hence 2 |𝑐𝑑 |
|𝑐𝑑 |−1 < 3. Altogether we

get

∥𝑝(𝑇)∥1 ≤ 4 · 3 + 1 = 13.

Case 2: |𝑎 | > |𝑐 | and |𝑏 | > |𝑑 |, or equivalently 0, 1 ∈ 𝐷2.
This case is symmetrical to the previousCase 1. Indeed, we have 6 < ∥𝑇 ∥ = |𝑎𝑏 | + |𝑐𝑏 | ≤
2|𝑎𝑏 | and

∥𝑝(𝑇)∥1 ≤ 4
|𝑎𝑏 | + |𝑏𝑐 |

|𝑎𝑏 | + |𝑐𝑑 | − 1
+ 1 ≤ 4

2|𝑎𝑏 |
|𝑎𝑏 | − 1

+ 1 ≤ 13.

Case 3: |𝑎 | ≤ |𝑐 | and |𝑏 | > |𝑑 |, or equivalently 0 ∈ 𝐷1 and 1 ∈ 𝐷2.
In this case inequality (7.2) together with (7.3) gives

∥𝑝(𝑇)∥1 ≤ 4
|𝑎𝑏 | + |𝑏𝑐 |

|𝑎𝑏 | + |𝑐𝑑 | − 1
+ 1 = 4

|𝑎𝑏 | + |𝑏𝑐 |
( |𝑎𝑏 | + |𝑏𝑐 |) + (|𝑐𝑑 | − |𝑏𝑐 |) − 1

+ 1.

Let us estimate difference |𝑏𝑐 | − |𝑐𝑑 |. Firstly 0 < |𝑏𝑐 | − |𝑐𝑑 | due to our assumption
|𝑏 | > |𝑑 |. On the other hand, since |𝑎 | ≤ |𝑐 | and 𝑎𝑑 − 𝑏𝑐 = 1, by the triangle inequality
we have |𝑏𝑐 | − |𝑐𝑑 | ≤ |𝑏𝑐 | − |𝑎𝑑 | ≤ |𝑏𝑐 − 𝑎𝑑 | = 1. So,

∥𝑝(𝑇)∥1 ≤ 4
|𝑎𝑏 | + |𝑏𝑐 |

|𝑎𝑏 | + |𝑏𝑐 | − 2
+ 1 ≤ 7,

2025/02/11 09:15

https://doi.org/10.4153/S0008414X25000124 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000124


The algebraic numerical range as a spectral set 23

where in the last line we use the assumption ∥𝑇 ∥ = |𝑎𝑏 | + |𝑏𝑐 | > 6 which implies
∥𝑇 ∥

∥𝑇 ∥−2 ≤ 3
2 .

Case 4: |𝑎 | > |𝑐 | and |𝑏 | ≤ |𝑑 |, or equivalently 0 ∈ 𝐷2 and 1 ∈ 𝐷1.
This case is symmetrical toCase 3. Similar reasoning gives 0 < |𝑎𝑑 |−|𝑎𝑏 | ≤ |𝑎𝑑 |−|𝑏𝑐 | ≤
|𝑎𝑑 − 𝑏𝑐 | = 1 and

∥𝑝(𝑇)∥1 ≤ 4
|𝑎𝑑 | + |𝑐𝑑 |

( |𝑎𝑑 | + |𝑐𝑑 |) + (|𝑎𝑏 | − |𝑎𝑑 |) − 1
+ 1 ≤ 4

|𝑎𝑑 | + |𝑐𝑑 |
|𝑎𝑑 | + |𝑐𝑑 | − 2

+ 1 ≤ 7.

■

Directly from Theorems 5.1 and 7.1 we receive the following explicit example of
an infinite-dimensional algebra, which is not a𝐶∗-algebra, but nonetheless has a finite
spectral constant.

Corollary 7.6 Let 𝑋 be a compact space, consider the Banach algebra A = 𝐶 (𝑋,C2,2)
of matrix-valued functions on 𝑋 with the norm ∥ 𝑓 ∥ := sup𝑥∈𝑋 ∥ 𝑓 (𝑥)∥1. Then ΨA ∈
[1.1, 13] .

The following example illustrates that the constant ΨB(C2 , ∥ · ∥1 ) is greater than 1.

Example 7.7 Consider the matrix 𝑇 =

[
2 1
0 0

]
and the function 𝑓 (𝑧) = cos(𝑧). Since

𝑇 =

[
−1 1
2 0

] [
0 0
0 2

] [
0 1/2
1 1/2

]
,

a straightforward calculation shows that

∥ 𝑓 (𝑇)∥1 = max
(
| cos(2) |, | cos(2) − cos(0) |

2
+ | cos(0) |

)
> 1.708

and that the algebraic numerical range is given by𝑉 (𝑇) = conv(D ∪ {2}). On the other
hand, notice that

cos(𝑥 + 𝑖𝑦) = cos(𝑥) cosh(𝑦) − 𝑖 sin(𝑥) sinh(𝑦)

and so

| cos(𝑥 + 𝑖𝑦) |2 = cos(𝑥)2 (1 + sinh(𝑦)2) + sin(𝑥)2 sinh(𝑦)2 = cos(𝑥)2 + sinh(𝑦)2.

Hence we have
max
𝑧∈𝑉 (𝑇 )

| 𝑓 (𝑧) | ≤
√︁
1 + sinh(1)2 < 1.55

and
Ψ(𝑇,B(C2, ∥·∥1) > 1.708/1.55 > 1.1.

8 Conclusions

We have discussed the spectral constant of the numerical range for various Banach
algebras. Summarizing, we see three appearing questions for future research.
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1. Is it true thatΨA < ∞ for anymatrix algebraA?More generally, isΨ(𝑇) uniformly
bounded for all Banach-algebra elements that are algebraic of a fixed degree 𝑛?

2. Does there exist an operator 𝑇 which is polynomially bounded with constant 1, but
with Ψ(𝑇) = ∞?

3. Is it true that Ψ(𝑇) < ∞ for all bounded operators on a combinatorial Banach
space with the spreading property, in particular on the Schreier space?
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