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ABSTRACT. T he performance of a thermal ice-drill h aving a smooth , solid, impervious frontal surface, 
termed a "solid-nose hotpoint" , is d e termined by the velocities, pressures, and temperatures in the thin 
layer of warm m elt water betwecn the hotpoint and the ice. The effic iency, the speed of pen etra tion, the 
tempera ture of the fronta l surface, and the distribution of pressure on it can be calcula ted from the equations 
of non-turbulent fluid flow. For hotpoints whose fronta l surfaces a re iso therma l and axia lly symmetric, these 
quant ities are fu nctions of the to ta l input of power Q , of the weight W on the hotpoint , of the ra dius a and 
"shape fac tor " S of the frontal su rface, a nd of the p ertinent physical proper ties of wa ter and ice. The cal­
cula tion shows that with increasing " performance number" N = A Q S/a WI the efficiency E d ecrea ses a nd the 
surface temperature 00 increases. Thus, for example, E = I ' 00 and 00 = OC C. when N = o· 0; E = o' 76 and 
00 = 48° C. when N = I ' 4; a nd E = 0 · 60 and 00 = 103° C . when N .= 3' o. T he coeffic ient .iI is a cons tant 
equa l to 3'4 kg wt.l cm. kW. - ' . The shape facto r S is a d imensionl ess nu mber between 0 a nd I that varies 
according to the shape of the fronta l surface, greater values of S being associa ted with blun ter p rofiles (thus 
S = I ' 0 fo r a p lane fronta l surface perpendicula r to the ax is). For cori ng hotpoints the sam e numer ica l 
results a re obta ined, bu t the performance number is g iven by 

N = .iI QSI ( I - 'tITj' ) + ( I + 'tIT i') In 'tIT j)l /a( W( I - 'tIT i') ) In 'l7T j]l , 
where 2'tITia is the ins ide diameter of the hotpoint. 

R EsUMI\. Le rendement d 'une sonde a glace therm ique ayan t une surface fronta le lisse, so lide e t e tanche, 
appelee "solid-nose hotpoin t" , est determine par les vitesses, les press ions e t les temperatures de la mince 
couche d 'eau de fonte se tro uvant entre la pointe cha ud e e t la glace. Le ren d ement, la vitesse d e penetra tion, 
la temperature e t la rt' partition de la press ion sur la su rface frontale peuvent e tre calcules a I'aide d es equations 
d 'ecou!emen t d 'un fl uide non turbulen t. Pour des poin tes chaudes a surface fron tale isotherme de symetrie 
axiale, ces q uantites sont fonctions de I'apport to ta l d e cha leur Q, d u poids W agissan t sur la pointe chaude, 
du rayon a et du " coefficien t d e profi l" S de la surface frontale, a insi que d es proprietes p hysiques de I'eau 
et de la glace. Le calcul montre q u 'avec I'augmen ta tion du " cocffic ient d e rendement" N = A QS/a WI le 
rendement E decroit et la tempera ture de surface 80 c roit. Ainsi par excmple E = 1,00 e t 00 = 0° C pour 
N = 0,0 ; E = 0,76 e t 00 = 48° C pour N = 1>4 ; e t E = 0,60 et 00 = 103 °C si N = 3,0. Le coeffi c ient ,1 
est une constan te egale a 3,4 kgpl /cm kW - ' . Le coeffic ient de profi l S est un nombre sans dimension compris 
entre 0 e t I , q u i varie en fonction d u profi l de la surface fronta le, les fortes valeurs de S etan t assoeiees a 
des profils plus ob tus (ainsi S = 1,0 pour une surface fronta le plane perpendiculaire a I'axe). Pour des 
carotteurs a poin te chaucle les memcs resulta ts numeriq ues sont obtenus, mais le coeffi c ient d e rendement 
est donne par 

N = AQS [( I - 'tITi' ) + ( I + 'tIT i') In 'tIT jJl /a r W( I - 'tIT j')) In 'tIT j]1 
ou 2'tIT ja est le di ametre intcr ieur d e la pointe chaudc . 

ZUSAMMEN f ASSUNG. Die Leistung e ines thermischen E isbohrers mi t g la tter , starrer unci undurchlass iger 
Spitze (" solid-nose hotpoint") ist bes timmt cl lIrch d ie G eschwind igkeiten , D rucke unci Tem peraturen in der 
dunnen Schicht wa rmcn Schmelzwasser ' zwischcn Eis und Bohrer. Mi t hi lfe der Gleichungen fur lamina rcs 
Fliessen ka nn man die wirksame Le istllng, d ie Vortriebsgeschwincligkcit, di e T emperatur der Spitze und clie 
Drllckverte ilung liber d ie Spi tzenoberAachc wa hrend d es Bohrhetr ieb es bercchnen . D iese Wer te sincl an 
ro tationssymmetrischen Bohrern mit iso thermaler Spitzenoberfl ache Funkt ionen der zugefu h r tcn Warme Q .. 
des an der Bohrerspitze wirksamen G ewichtsanteils W, des R adius a, des Form-Koeffiz ien ten S fur das Spitzen­
profi l und d el" in Betracht komm enden physikal ischen Eigenschaften von Wasser und E is. Bei zunehmender 
" Leistu ngszahl" N = A QS/a W I n imm t der Wirkungsgrad E a b. und die S pitzen temperatur 00 zu. So wircl 
zum Beispiel E = 1,00 und 00 = 0° C , wenn .N = 0,0 ; E = 0,76 und 80 = 48°, wenn JV = J >4: oder 
E = 0,60 und 80 = 103°, wenn N = 3,0. Die Za hl .1 ist eine Kons tante mit dcm Wert 3>4, wenn wir als 
Dimensionen kgl cm kw - ' se tzen (kg a ls Gewichtseinheit) . Der Form-Koeffizient S ist eine dimensionslosc 
Zahl zwischen 0 und I. die si eh mit d er Form cler Bohrerspitze a ndert : j e stumpfer das Profil ist, umso 
hoher der Wert von S (also S = 1,0 fur den rechtwinklig endenden zy linder ). Fur Kernbohl"{'r gilt 

N = AQS[( I - 'tIT;,) + ( I + 'tIT;'l In 'tITi ]l/a[ W( I - 'tIT;' )) In 'tIT j]1 
mit denselben \"'ert en wie zuvor und mil 2'tIT ja als Innendurchmesser d es K ernrohrs. 

INTRODUCTION 

The performance of any type of thermal boring device, or " hotpoint", that is drilling 
through clean, solid, temperate ice is entirely determined by the velocities, pressures, and 
temperatures in the warm melt water at the bottom of the hole. In the case of a hotpoint with 
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a smooth, solid, impervious frontal surface nowhere heated above the local boiling tempera­
ture, herein termed a "solid-nose" hotpoint, this melt water flows outward in an extremely 
thin, and therefore non-turbulent, layer between the hotpoint and the ice. Because the flow is 
non-turbulent, it is possible to calculate the velocities, pressures, and temperatures from the 
equations of fluid mechanics, and thus to deduce theoretically the performance of the hotpoint. 

In this paper the efficiency, the speed of penetration, and the temperature and distribution 
of pressure on the frontal surface are found as functions of the total input power, of the 
weight driving the hotpoint downward, of the shape and dimensions of the frontal surface, 
and of the pertinent physical properties of water and ice for the case of solid-nose hotpoints 
whose frontal surfaces are isothermal, axially symmetric, and either circular (non-coring) 
or annular (coring). The results are presented in graphical form in order to facilitate their 
practical use. 

Circular (non- ~()ringJ ho/poi n/ 

H.a/.d 'ron/al 
$urfac. raR(rJ • 

Annular (coring) ho/pDin/ 

Fig. I. Coordinate systems 

THEORY 

Coordinate systems. We define a set of circular cylindrical coordinates (r, <, .jJ), fixed in the 
hotpoint, with the <-axis directed upward along the axis of symmetry. The radial coordinate 
,. is then the perpendicular distance from the axis of the hotpoint. The angular coordinate .jJ 
does not enter the problem because of the axial symmetry. 

We also define a set of nearly orthogonal curvilinear coordinates (g, ex, .jJ), fixed in the hot­
point, in which ~ is the arc length measured radially outward along the frontal surface, and 
0: = ~/h, where, is the distance measured perpendicularly away from the frontal surface and 
h is the local thickness of the layer of melt water. In the case of the circular hotpoint g is 
measured from the axis of symmetry; and in the case of the annu lar hotpoint it is measured 
from the inner edge of the frontal surface. The angular coordinate .jJ is the same as in the 
cylindrical system. 

These coordinate systems are shown in Figure 1. 

Symbols. The hotpoint has outside diameter 2a. It is assumed to be boring parallel to its 
axis vertically downward at a constant speed v through clean, solid, temperate ice of density 
Pi (= o·gl g. cm.- 3) . The heat offusion of the ice is'\ (= 80 ca!. g.- I) . The melt water formed 
has density pw (= 1·0 g. cm. - 3) , heat capacity c (= 1·0 ca!. g. - 1°C. - 1) , and thermal conduc­
tivity K (= 1·4 X 10 - 3 ca!. sec. - 1 cm. - 1 0 C. - ' ) . Only the viscosity fL of the melt water varies 
significantly over the temperature range involved. It is given by the formula 

fL = fLoY) ( () ) , (I ) 
where fLo (= 1·8 X 10-' dyne sec. cm. - ') is the viscosity of water at 0 ° C., and Y), which is 
plotted in Figure 2, is the specific viscosity of water. The thickness h of the layer of melt water 
is a function of~. The dependent variables u, v, p, and () are, respectively, the ~-component 
of velocity, ex-component of velocity, the pressure, and the temperature in the water layer. 

Other symbols will be defined as they are needed. 
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Frontal surface. The profile of the frontal surface is described in the (r, z, l/J) coordinate 
system by the equation, 

r = R(z), 
in which R must be a continuous, reasonably smooth function. The function R is subject to 
the further not very stringent restrictions that there be only one value of z for each value of R 
and that the radius of curvature of the frontal surface everywhere be large compared to the 
thickness of the water layer. 

1.0 

0 .9 

0 .8 ... 
"- 0 .7 .. 
Q 
• .... 0 .6 .. 
~ 
'!:: 0 .5 .. .. .. .. 
'>; 0 .4 .. 
;.;:: 
'\; 0 .3 .. 
~ 

0 . 2 

0 . 1 

2 0 40 60 80 100 · C. 
0 .0 

0 .0 0 . 5 1.0 1. 5 

Fig. 2 . • ~jJe(ific viscosity 0/ waleI' a .1 a/ u1Ictioll 4 tem/>eraturt. The dimension/ess temperature T is dejilled ~ 1I T = /)c/X 

Fundamental equations. The variables u, v, p, and e must sa tisfy the continuity, momentum, 
and energy equations of fluid mechanics. W e lIote that the Reynolds number will be small, 
that is, that 

Pu.·v/t 
~ (3a ) I. 

11-0 
and that, in genera l, 

ou ov 
(3b) o(x ~ ocx ' 

As will be seen, restriction (3a) amounts to a restriction on the minimum permissible magni­
tude of dR jdz. We assume that the temperature f) is a function only of cx, that viscous dissipation 
is unimportant, and that boi ling does not occur. Because of these restrictions and assumptions 
many terms in the equations are comparatively negligible. Dropping these small terms, 
letting T = f)c/A, and neglecting higher-order terms due to the very slight non-orthogonality 
of the coordinate system, we obtain the fundamental equations governing the velocities, 
pressures, and temperatures in the layer of melt water, 
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ap 
a~ = 0, 

and 
d'T pwcvh dT 
dx' = K d';' (4d ) 

The derivation of equations (4) is straightforward but lengthy. A good procedure is to 
write the fundamental equations in vector notation, then set the dilatation equal to zero 
(because the water is practically incompressible) and drop the acceleration terms (because 
the Reynolds number is small), and next by standard methods expand the remaining ex­
pressions in the (f, a, ljJ) curvilinear coordinate system as if it were exactly orthogonal. The ele­
ment of arc ds in the (t , a, 1/; ) system is given exactly by (ds )' = g~~ dfdf +g~ (1. dfda +g~~ df# 
+g,,~ dadf+grxrx dada +g,,~ dad1/; +gy~ d1/;df +gyrx d!f;drx + g..,.., d1/;d1/;, in which the metric coefficients 
are given approximately by g~~ = I, gi;o: = 0 , g~.., = 0 , g,,~ = 0, g<xa = h' , ga <!,J = 0, g..,i; = 0 , 

g"'a = 0 , g<ll.., = R' . The closeness of approximation, which mostly affects g~i;' depends on 
how small the thickness of the water layer is in comparison to the radius of curvature of the 
frontal surface. Finally, by means of the remaining restrictions and assumptions many 
negligible terms may 'be discarded , leaving only the dominant expressions in each equation. 

Boundary conditions. The dependent variables must also satisfy certain boundary conditions, 
namely, 

u I ex = 0 = 0, u I ~ = I 
f (dRr\! 

V\ 1 - ;i{ J' (5a ) 

v I" = 0 = 0 , vIa: = 1 = 
_ V Pi dR 

pw df' (5b ) 

T/ ex = 1 == 0, ~: I PicVh dR 
(5c ) 

da-j " = , - ---y- dg ' 
I) I R = a = 0, (5d ) 

for both circular and annular hotpoints. In the case of the annular hotpoint, p is subject to an 
additional boundary condition, 

pIR =w;a = 0, (5e) 
where 2w,a is the inside diameter of the hotpoint. For m a thematical convenience both the 
atmospheric pressure and the hydrostatic pressure due to the water in the hole are dropped ; 
the actual pressure can be found by adding them to p. The melting temperature of ice is arbi­
trarily taken to be zero in order to take advantage of the resulting simplification of condition 
(sc) . The quantity dR/dt is calculated from the relation , 

(df )' = (dR)'+(dz)' . (6 ) 

Integration of the equations. Integrating (4b) twice with respect to rx , using (4c) and the boun­
dary conditions (5a) , noting that the right-hand side of the second equation (sa) is negligible 
compared to the average value ofu, and defining 

0: 

In (rx) = J "f} - '(3"d(3, 
o 

we find 
h2 dp 1 

U = -;:, ~ 10(1) (lo(rx)/,(I) -lo( l )l, (rx)]. (8) 

Substituting (8) into (4a) , integrating once with respect to rx, using the boundary conditions 
(5b), and defining 

1 
4> (rx) = 10( 1) { /,(I)[rx/o(rx ) -/,(rx)]-lo( l)[rx/, (rx) -/2(a)l} and A = 1/4>(1), (9) 
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we obtain 
P, dR 

v = - V - -- Ac/>. pw dt 
( 10) 

Substituting (10) into (4d) , we see that T is a function only of a, and hence the frontal surface 
of the hotpoint is isothermal, as previously assumed, provided 

dR 
h dt = ho, 

in which ho is an unknown constant length. Integrating (4d ) twice with respect to 0: , using (I I) 
and the boundary conditions (Sd ), and defining 

we find 

B = Pf Vho 
K' 

1 I 

T = B f exp [AB .r c/>dy] dj3, 
IX [3 

in which j3 and y are dummy variables of integration in place of 0:. The restriction (3a) on 
the Reynolds number is equivalent to B ~ 12. 

Equations (I ), (7), (9), and (13) form a simultaneous system, valid for both circular and 
annular hotpoints, which can be solved numerically for the functions T, y) , and C/>, and the 
constant A corresponding to various values of B. 

Performance of annular (coring) hotpoint. Continuity requires that 
I 

2rrRh u drJ. = 7T(R2_R!) V -'-, f p ' 

PU' 
o 

where Rm is the radius at which the pressure is greatest. Substituting (7) and (8) into (14), 
integrating by parts, using (7; and the boundary condition (Sd), rearranging, and letting 
71J' = Rla, we obtain 

I 

!-loAVPia'{ f(dR)2 'f(dR) ' _ I } p = -2h~pw dg w dw - w m d[ W dw, (I sa) 

in which, from the boundary condition (se), 

where 271J'ia is the inside diameter of the hotpoint. The total weight driving the hotpoint 
downward is 

I 

W = 27Ta' J pTII dw, 

TITj 

in which the small contribution due to the viscous shear stress on the inclined portions of the 
frontal surface has been neglected. Substituting (15) in (16), integrating by parts, and letting 

TIIj 
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in which 
In w" S4 - --------' ----

o - (I -Wi)2+(1 -wf) In 'UT;' 
we find 

w _ 7TPifLoa4AV(~)4 
- 8Pwh~ So' 

(17c) 

The "shape factor" S is a dimensionless number between 0 and 1 that depends only on the 
shape of the frontal surface, greater values of S being associated with blunter profiles; thus 
S = 1 for a plane frontal surface perpendicular to the axis. 

The total input of power Qis equal to the rate at which heat is conducted away from the 
hotpoint, that is, 

7Ta
2

( I -wi)KA. {J } Q = - cho B exp AB 4> dy . 
o 

Eliminating ho and V, which are unknown, among (12), ( '7), and (18), we obtain 

N _ AQ. ( ~ ) 
- (I -wi)aWt So ' 

( Iga) 

in which the dimensionless "performance number" N is given by 

1 

N = ( 8;~!)t exp{AB J 4> dy} ( 19b) 

o 

and the coefficient A is equal to 3'4 kg wt.t cm, kW. -' . The driving weight W must in 
practice be corrected for the effect of buoyancy due to the water in the hole. 

The efficiency E of the annular hotpoint is given by 

1 

E = exp{ -AB J 4> dY}; (20a) 
o 

it is defined as the ratio of the cross-sectional area of the hotpoint to the cross-sectional area 
of the hole it makes. The speed of penetration is, from (12) and (18), 

V =-QE - (7Tp;A )-'. (20b) 
a'( I -'UT~) 

The quantity (7Tp;A) - I is equal to 37 m. hr. - I kW. - I cm.' . The temperature of the frontal 
surface is, from (13), 

1 1 

Bo = ~ To = ~ B J exp{AB J 4> dy}d!l . (20C) 

o r> 

Finally, the distribution of pressure on the frontal surface is, from (15) and (17), 

(20d) 

By means of equations (Ig) and (20) together with the numerical solution of (I), (7), (g), 
and (13) the desired parameters E, V, Bo , and p describing the performance of the annular 
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(coring) hotpoint can be calculated from the given quantities Q., W, and a, the given shape 
of the frontal surface, and the pertinent physical properties of water and ice. 

Peiformance of cirwlar (non-coring) hotpoint. In the case of the circular hotpoint Rm = 0 , 

and the resulting equations are greatly simplified. The shape factor is given by 

o 

as in the case of the coring hotpoint, S is a number between 0 and I , greater values of S being 
associated with blunter profiles. Some representative profiles and their sha pe factors are shown 
in Figure 3. The performance number for the circular hotpoint is given by 

N = AQ.S 
aWl' 

'V:: '\ ... :' 

\\,/i V 
,. 

5 - 0 .669 5-0.566 

5-0.739 

.. 1 

5-1.000 

~ 
5 - 0 .443 S - 0 .669 5 - 0 .669 S·0.37Z 

Fig. 3. Shape factors for some representative profiles of the frontal surface 

in which the coefficient A as before is equal to 3 ' 4 kg wt.' cm. kW. - '. As in the case of the 
coring hotpoint, the driving weight W must in practice be corrected for the effect of buoya ncy 
due to the water in the hole. The efficiency is 

I 

E = exp{ -AB J 4> dy}. 
o 

The speed of penetration is 

in which the quantity (7TPi>,,) - I is equal to 37 m. hr. - I kW. - I cm! . The temperature of the 
frontal surface is 

I I 

80 = ~ T o = ~ B J exp{AB J 4> dy}dP. 
o ~ 

Finally, the distribution of pressure on the frontal surface is 

'lIT 

In complete analogy with the case of the annular hotpoint the performance of the circular 
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hotpoint can be calculated from equations (21) , (22) , and (23) together with the numerical 
solution Of(I ) , (7), (9), and (13) · 

Numerical solution. Equations ( I ) , (7) , (9), and (13) are numerically solved for given B by 
a method of successive approximations. First, a trial temperature profile, T as a function of 
(x, is selected; next, the corresponding viscosity profile is determined (from, for example, 
Figure 2); then , 4> is computed from (9) by numerical integration; and, finally, a new tem­
perature profile is found in like manner from (13). This new temperature profile is then used 
as the starting point for the second cycle of the process, which converges rapidly, only a few 
cycles being needed to attain practical accuracy. 

1.0 

0 .9 

0 .8 

0.7 

1<1 0 .6 
~ ~I~ .. 
.;05 :---.... 
~ 

~I I<I 
.... 
~04 

0 .3 

O.l 

0 .1 

.... 

" ... 
1.5 ~ 

... .. 
'" e: 
~ 

" " 80 1.0 ~ 

60 

... 
" '" 
'" '" ~ 
c: 

. ~ 
40 0 .5:;; 

<> 
. ~ 

20 <::> 

0 .0 +-~~r-r-~~~~-,~-r-r~,-~~r-r-~~~~-,-r-r-r~,-.-~r-r-r-~~~-+ O.O 

1.0 2 . 0 3 .0 4 .0 

Pe,formanc~ number N 

Fig. 4. EJJiciency, surface temj;erature and d: /~ as Junctions oJ performance number 

The approximation process is carried out for a number of values of B, and the correspond­
ing values of E and To are obtained, from which the remaining parameters JV and 60 are 
easily computed by means of (19) , and (20) or (23) . These quantities are tabu lated in Table I 

for 12 values of B covering the range of practical interest. The quantity d is the maximum 
depth in water at sea-level a t which boiling will occur a t the corresponding temperature 60 • 

Figure 4 shows the efficiency and the dimension less surface temperature To plotted against the 
dimensionless performance number N; it summarizes in convenient form the main results 
of this paper. 

DISCUSSION 

Drilling speed. The information presented in Table I and Figure 4 shows that the efficiency 
E of isothermal solid-nose hotpoints decreases with increasing performance number N . 
This raises the interesting possibility that the drilling speed V might actually decrease with 
increasing power input Q, inasmuch as the effect of the increased power input m ight be more 
than offset by the decreased effi ciency . To show that this possibility does not arise in the range 
of N of practical interest, we differentiate (23b) with respect to Q, using (22 ) and the chain 
rule, then divide both sides by Vand simplify, obtaining 

dV/~C!:- = 1 + dEjdN (24a) 
V Q E N · 
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TABLE 1. SUMMARY OF NUMERICAL RESULTS 

B N E 'To (Jo d 
°C , m , 

0 ' 00 0'000 1 '000 0 ' 000 0'0 0'0 
0 ' 10 0 ' 294 0'950 0 ' 104 8'3 0' 0 
0 ' 20 0 ' 538 0'901 0' 21 5 17 '2 0 '0 
0 ' 30 0 ' 793 0 ,853 0 ' 335 26 ,8 0 '0 
0 ' 40 1'070 0 ' 807 0'464 37 ' 1 0 ' 0 
0'50 1 ' 376 0 ' 762 0 ' 604 48 ' 3 0 ' 0 
0,60 l' 717 0'7 18 0 ' 755 60 ' 4 0 ' 0 
0 ' 70 2 '097 0 , 677 0 ' 918 73 ' 4 0' 0 
0 ,80 2'522 0 ' 637 1 '095 87 ' 6 0'0 
0'90 2' 999 0' 599 1 '286 102 ' 9 " 2 
1'00 3 ' 536 0 ' 563 "493 119 ' 5 9'4 
1" IQ 4 ' 148 0'528 l' 7'9 '37'5 23'6 

An identical result will be obtained for the coring hotpoint by differentiating (20b) and using 
(19), The function -(dE/E) /(dN/N) is plotted against the performance number N in Figure 4. 
Because this function never exceeds unity in the range of N of practical interest, we conclude 
that the dri.lJing speed always increases with increasing power input. The actual per cent 
increase in V per per cent increase in Q. varies from I ' 00 for N = o' 0 to o' 59 for N = 4' o. 

Similar calculations show that for both circular and annular hotpoints 

~/~~ = - (2 +~/~ )' (24b) 

~ /dl1' = _~ ~E jdN (24C) 
V WE N ' , 4 

t!! /~ = dE /dN 
V S E N' 

(24d ) 

and 

d~jdN = t!!./dN 
V }If E N · 

(24e) 

The per cent increase in V per per cent decrease in a varies from 2'00 for JV = 0 '0 to l' 59 
for .N = 4 ' o. Over the same range the per cent increase in V varies from o· 00 to o· '0 per 
per cent increase in 11 ', and from o ' 00 to 0 ' 4 ' per per cent decrease in S or 11 '. Thus, over the 
whole range in N for which the theory is valid, the drilling speed of isothermal hotpoints 
varies in a simple manner with respect to variations in design or operation. 

Effect of turbulence , Though the theory presented in this paper is quantitatively valid only 
for non-turbulent flow in the layer of melt water between the hotpoint and the ice, it can give 
a semi quantitative indication of the effect of turbulence in the layer of melt water on the 
performance of an isothermal hotpoint. For fully developed turbulence K, ""'" 2CI1-" where K, 
is the eddy conductivity and I1-t is the eddy viscosity, which will be of order, 0 2 times the mole­
cular viscosity 11-0' Substituting these values into the expression for A in ( '9a), we find that 
.1, """ A /30, hence J\'~ = N /30, and therefore that, other things being equal , turbulence in the 
layer of melt water should remarkably improve efficiency. Partially developed turbulence 
should have a similar but smaller effect. 

Isothermal restriction . The assumption that the frontal surface is isothermal corresponds to 

the assumption that it is composed of material with infinite thermal conductivity, or has a 
special shape. For real materials and nearly all shapes the boundary condition at the frontal 
surface will in general be a functional relationship between the temperature 'T and its normal 
derivative a'T /a~ on the surface ~ = 0 ; this relationship can in principle be found by solving 
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the heat-flow equation for the interior ofthe hotpoint (assuming that the magnitude and distri­
bution of all heat sources and sinks except the frontal surface are known) . Only in special 
cases will the relationship required by the theory presented in this paper be satisfied, namely, 

(IT ' dR 
and K in! ~ = 0 = qo dt ' 

where To is a constant temperature and qo is a constant heat flux independent of position. 
Note that implicit in the condition that the frontal surface be isothermal is the further condi­
tion that the flow of heat through any element of area of the frontal surface be proportional 
to the area of the projection of the element on a plane perpendicular to the axis ofthe hotpoint. 

One way to test the assumption for a given design is to calculate, by numerical methods, 
if necessary, the heat flow at the frontal surface that would occur if the surface were actually 
isothermal. The degree to which this calculated heat flow agrees with the required heat flow 
is a measure of the applicability of the theory. A misfit ofa few per cent probably is not crucia l. 
In any case, if the calculated value of qo increases with increasing t, then the hotpoint wi ll be 
less efficient than predicted by the theory, and conversely. This follows because, if qo .is less 
at the center, the "cool" center will be "slower" than the hotter outer zone of the frontal 
surface, hence the effluent melt water at the outer edge of the hotpoint, being hotter, will carry 
away a larger fraction of the total heat available. 

E;ffect of corrosion. If the frontal surface of an isothermal hotpoint becomes coated with a thin 
layer of poorly conducting material, for example by becoming corroded, the drop in tempera­
ture across the insulating layer will be greatest where the heat flow is greatest. Thus, by the 
same reasoning as for the non-isothermal hotpoint, if dR jdt decreases with increasing t 
(the usual case), then corrosion will cause a decrease in efficiency, and conversely. 

Design of hotpoints. Although the theory presented in this paper applies specifically to iso­
thermal hotpoints, it can also be used to estimate the approximate drilling speed and efficiency 
of non-isothermal designs in terms of power input, driving weight, inside and outside diameter 
of hot point, and shape of frontal surface, thus facilitating selection of the optimum design for a 
given application without the time and expense of building and testing a long series of proto­
types. Even more important, it enables the designer to estimate at least approximately two 
other highly important parameters in the design, the temperature of the frontal surface , and 
the magnitude and distribution of pressure on it, thus permitting much smaller factors of 
safety than would otherwise be possible. 
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