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Local gyrokinetic simulations, performed with the GENE code, are used to investigate
the interaction between (negative) triangularity § and magnetic shear s, in both ion
temperature gradient and trapped electron mode dominated plasmas. Magnetic shear turns
out to influence in a non-trivial way the effect of negative triangularity. Also, § < 0 is
found to lead to a reduction of fluxes when s > 1 but not anymore when shear is reduced.
In certain parameter regimes, this effect can be inverted, up to obtaining higher fluxes
when § < 0 with respect to its § > 0 counterpart.
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1. Introduction

Negative triangularity has recently become one of the most attractive and investigated
solutions for optimizing the plasma confinement in tokamaks, in particular for future
reactors including also DEMO. This is because of the experimentally observed energy
confinement improvement it induces, initially observed in TCV (Pochelon et al. 1999)
and more recently confirmed in DIII-D (Austin et al. 2019). For an overview of the
history of negative triangularity tokamaks we also refer to Marinoni, Sauter & Coda
(2021). The most relevant advantage of negative triangularity L-mode discharges is the
possibility of achieving the same global performance as a positive triangularity ELMy
H-mode. This is particularly appealing since such a reactor scenario would avoid the
well-known edge localized mode (ELM) problem associated with H-mode operation
(Kikuchi et al. 2019).

Although there is an increasing amount of experimental evidence from several machines
corroborating the beneficial effects of negative triangularity on confinement (Camenen
et al. 2007; Fontana et al. 2017; Huang & Coda 2018; Marinoni et al. 2019; Coda et al.
2021), as well a large number of numerical studies based on those plasmas, analysing
both the core (Marinoni et al. 2009; Merlo et al. 2015, 2019, 2021; Duff et al. 2022) and
the edge-Scrape Off Layer physics (Riva ef al. 2017; Laribi et al. 2021), an investigation
of the interplay of negative triangularity with other plasma parameters is missing, or at
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least not complete. The goal of this paper is thus to attempt to partly fill this gap via
gyrokinetic modelling. While at first glance this might appear as a mere academic exercise,
it is in fact relevant because it can help in identifying certain parameter regimes where the
beneficial effect of triangularity § is amplified. At the same time, as we will show, it also
reveals certain parameter interactions that make 6 < 0 show no difference or even a poorer
performance compared with § > 0.

Above all, compared with experimental investigations, a purely numerical approach has
the advantage that all plasma parameters can be freely and independently controlled, so
that single effects can be isolated and attributed. This can be particularly important for
triangularity, which does not enter directly into any term in the gyrokinetic description
but, affecting the magnetic geometry, modifies essentially all terms in the gyrokinetic
model. Obviously, there are also downsides to using a purely numerical approach. Care
must be put into deciding the region of parameter space that one wants to explore, in
particular for the choice of the flux-surface shape. While for this specific analysis it
might be tempting to maximize shaping and obtain very exotic geometries, one must be
very careful not to construct unrealistic or experimentally non-achievable configurations.
This is even more serious when carrying out local simulations, as we will do in this
work; higher-order shaping factors such as triangularity rapidly vanish moving from
the edge to the core, such that large shaping can easily translate to non-realistic last
closed flux surface shapes. At the same time, one also needs to make sure that any
conclusion drawn holds true in a steady state scenario. It is very common for negative
triangularity investigations to perform simulations starting from an experimental positive
8 plasma, flipping the triangularity and then measure the impact on fluxes. Although
in almost all cases this leads to a reduction of fluxes, thus it is interpreted as a better
confinement, one must also investigate what happens to the system when it reaches
a proper steady state, i.e. account for profile stiffness and non-local effects, making
sure that the effect of 6 < O indeed persists in a realistic situation. In this work, we
will avoid using too extreme plasma shapes by selecting our geometries based on
existing discharges, as discussed below. On the other hand, we will perform only local
simulations but look at profile stiffness, without aiming to construct a complete radially
flux-matched profile or consider corresponding global geometries. We leave this for
future work.

Using a simple Miller model (Miller ef al. 1998) to describe a flux surface, we linearly
investigate the interaction between triangularity é and the other plasma parameters related
to the magnetic geometry, such as the safety factor, magnetic shear, elongation, aspect
ratio and squareness. This reveals that negative triangularity is beneficial, i.e. reduces
the growth rates for all the aforementioned parameters, with the exception of magnetic
shear s, which has a non-trivial effect. This motivated a more in-depth investigation of
the linear and nonlinear interplay between triangularity and magnetic shear, in both ion
temperature gradient (ITG) and trapped electron mode (TEM) dominated scenarios. We
will show that negative § can have a beneficial effect also in ITG scenarios, provided that
s 1s sufficiently large. The same behaviour is observed in TEM dominated plasmas, where
a sufficiently low shear can cause a higher transport level when § < 0 compared with its
8 > 0 counterpart. This is understood as a consequence of how the linear instabilities are
affected by both § and s.

The remainder of the paper is organized as follows. We present the numerical model
in § 2 and investigate the behaviour in ITG and TEM dominated plasmas, respectively, in
§§ 3 and 4. Finally, conclusion are drawn in § 5. Additional results are provided for clarity
in Appendices A and B.
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TABLE 1. Base parameter set describing the flux surfaces of interest computed according to (2.1)
and (2.2). For § and dé/dr we list the two values that will then be used for nonlinear runs.

2. Numerical model

All simulations shown in this work have been carried out using the flux-tube version of
the gyrokinetic GENE code (Jenko et al. 2000). GENE solves the gyrokinetic equation
(Brizard & Hahm 2007) using a field aligned coordinate system (x,y, z) to discretize
the configuration space, while (v, i) are used as velocity variables. Here, x stands for
the radial, y for the binormal and z for the parallel direction. The variable 1 = mv? /2B
represents the magnetic moment, while v, and v, are the components of velocity,
respectively, parallel and perpendicular to the magnetic field; m is the mass of the particle
and B the local magnitude of the magnetic equilibrium field B. To ensure numerical
convergence of each simulation, different box sizes L, x L, have been used. Typical values
are L, ~ L, ~ 150p,, considering 256 k, x 64k, modes. A total of 48 n_ points have been
used in the parallel direction. The limits for the velocity space grids of each species were
set from —3 to 3 for v /vy ; and from O to 9 for uBy/T;, vw; = /27;/m; being the thermal
velocity and B, the magnetic field on axis, using unless differently stated 48 x 16 points.
Spectral pile-up due to unresolved scales is avoided using adaptive hyperdiffusions in both
perpendicular directions (Bafién Navarro et al. 2014).

Throughout this work we will use a Miller parametrization (Candy 2009) to express the
relevant geometric quantities of interest. One therefore assumes that the contour of a flux
surface in a poloidal plane ¢ = const. is given in cylindrical coordinates (R, Z, ¢) by

R(r, 0) = Rgeom(r) + rcos {0 4 arcsin [5(r) sin 0]}, 2.1
Z(r,0) = Zgeom(r) + «(r)rsin [0 + ¢ (r) sin(20)] , (2.2)

where the elongation «, triangularity 6 and squareness ¢{ have been introduced. Here, r
is the geometric minor radius 7 = (R,,.x — Ryin)/2. We remark that such parametrization
is not suited for very strong shaping, as can often be seen in the near edge region or
tokamaks. In these cases, a Fourier decomposition in the poloidal angle would be more
accurate and preferable, but it is not necessary for our analysis. Equations (2.1) and (2.2)
already provide a sufficiently complex geometric model that allows us to capture the
non-trivial interplay between plasma parameters. Using a richer geometric description
can allow us to more effectively optimize the actual shape, but at the cost of a significantly
more complex description and computationally expensive analysis, which we therefore
leave for the future.

Within such a model, the magnetic geometry is fully specified by choosing the values
of k, 8, ¢, their radial derivatives, the safety factor g, the magnetic shear s and the aspect
ratio €. These parameters, together with the value of temperature and density (as well as
their gradients) of each plasma species fully describe a confined plasma. For simplicity,
we will not consider collisions and limit ourselves to the electrostatic regime by setting a
very small value for the plasma . Base plasma parameters, that will be used in the runs of
§§ 3 and 4 are inspired by an actual TCV (Tokamak a Configuration Variable) discharge,
as listed in table 1.
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FIGURE 1. Growth rate for the mode kyp; = 0.3 as a function of triangularity 6 and other
shaping coefficient for ITG base case parameters.

We have neglected for simplicity squareness because it both has a negligible impact
on our results (we have verified that linear growth rates are not significantly affected
when we use a small TCV-like value of squareness) and we want to focus exclusively
on triangularity.

In spite of the relatively simple geometric model, we are able to recover a rich and not
necessarily trivial behaviour, as shown in figures 1 and 2. There, we plot the growth rate
of the most unstable mode obtained varying at the same time triangularity and another
plasma parameter, while keeping the other parameters fixed to the values indicated in
table 1. Details of temperature and density gradients will be provided in the following
sections. This analysis is carried out for k, o, = 0.3, where we expect nonlinear transport
to peak. We observe that the trends are similar for both ITG and TEM regimes, an
that negative triangularity is almost always associated with a reduction of the linear
growth rate. The only parameter related to magnetic geometry that causes § < 0 to be
more unstable than its § > 0 counterpart, or at least display a non-monotonic behaviour,
is magnetic shear s. While for large shear (e.g. s >0.7 in the TEM regime) negative
triangularity is stabilizing, for small values (—0.2 < s < 0.5) the effect is the opposite.
As we already mentioned, given that magnetic shear and § do not explicitly enter into
the gyrokinetic equation, but rather enter via the metric coefficients, this already hints
towards the details of the plasma geometry as being crucial. These results also suggest the
possibility of § < 0 not being always advantageous, so that understanding the interaction
between § and s can help identify regimes where the confinement improvement can be
optimized. We will therefore investigate the interaction between these two parameters in
the next sections.

3. The ITG dominated regime

We begin by considering an ITG dominated regime. To simplify as much as possible
our simulations and avoid the possible presence of (even subdominant) trapped electron
modes, we perform most of our simulations with adiabatic electrons. Although this is a
strong simplification, and high-fidelity gyrokinetic simulations including kinetic electrons
are expected to be necessary to model most of the actual experiments, we want to focus
here on a purely ITG dominated scenario. As such, adiabatic electrons are a reasonable

https://doi.org/10.1017/50022377822001076 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377822001076

Interplay between magnetic shear and triangularity 5

YRy /cs, kyps = 0.3 - TEM YRy /es, kyps = 0.3 - TEM YRy /c, - TEM
0.5
< 0 B
-0.5
S €
YRy /¢, - TEM
¥ |
= 0
-0.5 I
0 0.2 0.4
K ¢

FIGURE 2. Same as figure 1 but for TEM base case parameters.

approximation and can be effectively used to model turbulent transport. We also remark
that the same numerical model was used for the analyses presented in both Duff et al.
(2022) and Highcock et al. (2018). The latter in particular describe a plasma shape
optimization process which finds that strong negative triangularity reduces turbulent
transport, a conclusion in agreement with some of our results. Nonetheless, considering
adiabatic electrons represents a strong simplification of the true plasma dynamics,
regardless of plasma shaping. Therefore, we have performed additional simulations with
kinetic electrons (assuming, unless differently stated, no electron temperature gradient) to
corroborate adiabatic electron results. As we will discuss, transport reduction is seen in
both cases, whereas a modification of the nonlinear onset of turbulence is seen only with
adiabatic electrons, a result that we therefore consider not robust.

3.1. Linear results

Figure 3 shows the linear growth rate, as a function of plasma triangularity and magnetic
shear, of the most unstable mode associated with k,p; = 0.01 (a), 0.3 (b) and 0.5 (c).
Besides the non-trivial dependence on shear and § for a given k, mode, one also observes
a shift of the most unstable mode towards negative triangularity and negative shear as k,
diminishes. While for large wavenumbers, k, 0, 2 0.5 (i.e. the most unstable linear mode),
positive triangularity is associated with the largest values of y (which for a given value
of § is stabilized by increasing shear s), this is not true anymore for smaller values of k.
For instance, at k,p; > 0.3 the maximum linear growth is found around s = 1 and § = 0,
while positive (respectively negative) triangularity is stabilized a small (respectively large)
magnetic shear. This is even more evident at k,p, = 0.01, where the maximum of linear
growth rate occurs for large negative triangularity. Assuming a simple mixing length
estimate, y /k?, it already appears evident that the balance between the contribution from
all k, modes to the nonlinear fluxes will be crucial in setting the actual transport level.
From now on, we restrict our attention to four different values of magnetic shear: s =
—0.6, 0.6, 0.8 and 1.3, and the two values of triangularity, § = £0.4. The values of § are
motivated by experiments; they represent some of the largest values routinely obtained
for the Last Closed Flux Surface in TCV. No particular reason forces us to choose those
values of shear, we simply take positive values (large and intermediate) and a negative
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FIGURE 3. Growth rate y as a function of triangularity § and magnetic shear s for different
values of the binormal wavenumber k, oy (indicated in the title of each plot).

shear value, of potential interest for advanced tokamak regimes. Furthermore, in order
to help the reader, unless differently stated, we will plot in red all results pertaining to
positive triangularity and use blue for negative.

We show in figure 4 the linear growth rates obtained for these values of shear for three
different values of ITG, R/Ly, = 8, 10 and 12. One observes that, for a given gradient,
negative triangularity has always a smaller maximum growth rate, but the spectra of linear
modes appear also to be shifted towards lower k, as the shear is decreased. This again
hints towards the need of accounting for all wave vectors, and the actual nonlinear spectra
peaking at different k, for the different shapes. Indeed, as it turns out and will be discussed
in the next sections, nonlinearly negative triangularity turns out to be beneficial, i.e. results
in lower fluxes for all these three cases, with the only exception of s = 0.8 where little
difference in transport is observed.

As already observed for elongation in Angelino et al. (2009), when considering shaped
plasmas the choice of the radial coordinate is not unique. As a consequence, the same
profile will result in different values of scale length when changing the definition of
the radial coordinate itself. Furthermore, because shaping flux surfaces are compressed
and stretched apart as one moves along the parallel direction such that simply using
a/Ly to characterize the turbulent drive might be not sufficient, accounting for the
effective gradient (a/L7,Vx), where (:) indicates a flux surface average, accounts for the
effect of triangularity only partially. For a given gradient, the difference in growth rates
between shapes is reduced, but not completely recovered, indicating that some additional
mechanism is at play in setting the different behaviour between the two geometries.

To gain further insight, we can consider the linear gyrokinetic equation, which in the
GENE field aligned coordinates reads

of C of g 3¢ dF,
— = ——— VUV _ _
ot JB, hl 0z 2TU|| 0z 8U||

C wdBy df 193F,9¢

+_ P—
JB, "2 9z 9u,  C ax ay
T (#Br 2\ o g om0
BQ ! ox 2TUH 31)” 0x

T
q
T ( nBo + 2v? 3 dF, 3¢
_ D[Ry K, of g Fhdg i (3.1)
q B() 8y 2T'UH 8UH ay
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FIGURE 4. Growth rate y as a function of the binormal wavenumber ky o, for positive (6 = 0.4,
red symbols) and negative triangularity (§ = —0.4, blue symbols). The values of s is indicated
in the title of each plot.

and selectively remove the terms appearing on the right-hand side. A similar approach
has been used in e.g. Dannert et al. (2008) to investigate the impact of fast ions. In
(3.1)K, = —1/BiB x VB - xand K, = —1/B°B, x VB, - y are the normal and binormal
curvatures and C = By + By, J™' = By - Vz/C and ¢ = J¢ is the gyroaveraged potential.
The various terms appearing in right-hand side terms are therefore the parallel advection,
the trapping term, the background drive and the contributions due to radial (x) and
binormal (y) curvature. As expected, linear results are not affected by removing the K, and
trapping terms, whereas modifications of any of the remaining terms leads to significant
changes in the linear growth rate. It might be tempting to replace the crucial terms, i.e.
the binormal curvature, the parallel dynamics and the perpendicular wave vector entering
in the gyroaveraging, with those of the opposite geometry, so as to measure their impact.
Such an analysis is, however, not capable of consistently capturing the effects of changes
in the plasma shape. As an example we show in figure 5 the results for the case s = 1.3,
i.e. the one with largest differences between positive and negative triangularity. Here, we
have replaced the K, curvature, the C/JB, geometrical factor appearing in the parallel
dynamics (change labelled with //) and the metric elements appearing in the calculation of
k, with those of the opposite geometry. As one sees, when starting from § > 0 it appears
sufficient to modify the binormal curvature to recover most of the change, whereas for
8 < 0 one has to modify all the geometrical coefficients to approach the results obtained
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FIGURE 5. Growth rate obtained by modifying the geometrical factors appearing in the

gyrokinetic equation by using those of the opposite triangularity. In (@) and (b) we consider
as a reference the positive and negative triangularity shapes.

from the different shape. We understand this as a consequence of using a non-consistent
geometry, such that only if a term is not relevant it can be dropped, but not arbitrarily
replaced.

In order to consistently evaluate the contribution of the different linear terms to the
growth rate, we evaluate the growth rate by analysing the time evolution of the system
free energy. As discussed in e.g. Manas ef al. (2015), from the energy conservation of the
Vlasov equation, one can express the growth rate of a given linear mode from the variation
of the potential energy E,; as

1 9E, 1 < 9E,,
_ 1k 15 0Ey 3.2
Y=E, o E, 2 ©2)

where the sum runs over all j-plasma species with charge ¢ and density ny. Here

nB qing; -
E¢,j =R (/ 02] 0]¢*ﬁ dU|| du dz) ’ G-
and |
—af" =R (/ T[BoanOj(P* —gt dv” du dZ) ’ G

are the potential energy and its derivative (Baiién Navarro et al. 2011), ¢ is the electrostatic
potential and f; is the distribution function. This definition allows us to separate the
contribution of the different linear terms to the overall growth rate, which is a result of
the destabilizing curvature terms and stabilizing parallel dynamics (the latter including
both the parallel streaming and the trapping terms). We can also use (3.2) to identify the
contribution from every species, as well do in §4.1. The results of such an analysis are
shown in figure 6.

As expected, we see that the linear instability result has a non-trivial dependence on
shear and triangularity. At large shear, the reduction of growth rates associated with
negative triangularity is due to a large stabilizing effect from the parallel dynamics, almost
twice as large when § < 0 with respect to 6 > 0, while the curvature induces essentially
the same destabilization. This behaviour changes for other values of magnetic shear. We
observe a less strong destabilization from curvature when shear is lowered for negative
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FIGURE 6. Growth rate contributions versus the binormal wave vector k, for (a—c) positive
and (d—f) negative triangularity and different values of magnetic shear. The contribution from
curvature is shown with green squares and that from the parallel dynamics with pink stars. The
growth rate is shown as a reference in red and blue lines.

triangularity, but at the same time also a smaller stabilization from the parallel dynamics,
such that, for the case at s=0.6 at low k,, the growth rate ends up being larger for < 0 than
for § > 0. This analysis confirms that the behaviour of the linear instabilities results from
a complex interaction between curvature and the parallel dynamics, which depends on
triangularity, magnetic shear and wave vector. No obvious differences are observed when
comparing the eigenfunctions of the most unstable mode, as show in figure 7, where we
plot the mode structure of the mode k,p, = 0.3 for different values of magnetic shear.
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FIGURE 7. Eigenfunctions (solid lines) for the mode k,p; = 0.3 together with the perpendicular
wave vector k| (dashed) and the binormal curvature K, (dot-dash). Red (blue) curves refer to
positive (negative) triangularity.

We also plot the values of the perpendicular wave vector k; as well as the binormal
curvature K. We observe clearly different values of both the binormal curvature (negative
here means in the bad direction) and the perpendicular wave vector, i.e. different finite
Larmor radius effects, but only minor difference in the eigenfunction. Nonetheless, by
using simple quasilinear estimates one expects a different linear stability to translate into
different spectral contributions, indicating that details in the mode structure are relevant.
Figure 8 plots the results of the quasilinear model discussed in Mariani et al. (2018), which
computes fluxes according to

Q" =40 ) Wi, (3.5)
ky

where Ay is a scaling factor associated with the absolute fluctuation amplitude, wﬁi is the
quasilinear weight modelling the saturation levels of the nonlinear electrostatic potential
and in is the linear spectral component to the flux associated with the k, mode, i.e. the flux
evaluated with the fields from the corresponding linear eigenmode. We refer to Mariani
et al. (2018) and the references therein for the exact definition of Q'. We use a simple
mixing length estimate (Casati et al. 2009) for the weights

a_ Vo (3.6)

(k)

where (k%) is the flux-surface average of the squared perpendicular wavenumber weighted
by the mode amplitude. As figure 8 shows, the increase of shear shifts the largest
contributing mode to higher k,, much more significantly for § < O than for § > 0. We
remark that, so far, we have set Ao = 1 for all shapes and not yet tuned the amplitude
estimate, which in principle can be shape and triangularity dependent. We leave such study
for the future and simply show in figure 9 the integrated heat fluxes as a function of shear.
As can clearly be seen, the quasilinear estimates correctly capture the reduction of fluxes
for both shapes as shear increases, see e.g. figure 11, as well as the lower fluxes for § < 0.
The value of s at which the transport is maximum appears instead to be underestimated
with respect to actual nonlinear results.

Finally, in figure 10 we partially address the question of (linear) critical gradients. For all
values of shear we scan both triangularity and I'TG until the mode is stabilized. As already
noted in Merlo et al. (2015), triangularity can affect the linear critical gradient and result
in higher R/L;,, for 6 < 0. However, we find here that the situation is more complex and
once again affected by the value of magnetic shear. Consistently with the results presented
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FIGURE 8. Quasilinear heat flux spectra computed according to (3.5) and considering the same
set of ky, modes as in the nonlinear runs of § 3.2. Red (blue) curves refer to positive (negative)
triangularity.
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FIGURE 9. Heat fluxes as a function of magnetic shear obtained from quasilinear estimates.
Red (blue) curves refer to positive (negative) triangularity.

in figure 4, at large positive shear, the linear critical gradient is higher for § < 0 while
the situation is reversed at small or negative shear, indicating that the increase of critical
gradient might not be a universal feature of negative triangularity.

3.2. Nonlinear results

We now move to nonlinear results, starting from the ones obtained for nominal parameters,
R/Ly. =10, R/L, = 3. This allows us to be sufficiently far from the nonlinear onset
of turbulence and focus exclusively on the transport level. The dependence of critical
gradient on § will be addressed later on. In figure 11 we plot the nonlinear fluxes obtained
for different values of magnetic shear. For both s=-0.6 and s > 1, negative triangularity
reduces the transport level. For s = 0.8 the flux is instead roughly the same, regardless of
the sign of triangularity. We remark that we are plotting only the heat flux and neglecting
the fact that the two shapes have different surface areas S. In this case, S50, the negative
triangularity surface, is approximately 6 % higher than its § > 0 counterpart, a minor
effect with respect to variations of the fluxes themselves that we will discuss.

Flux spectra are plotted in figure 12. Consistently with linear simulation, low k, modes
are more unstable when § < 0 but this is counterbalanced by the high k, modes. This is
particularly evident for the s=0.8 case, where the same transport level is obtained from a
downshifted flux spectrum in k.
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FIGURE 10. Growth rate of the mode k,p; = 0.3 as a function of triangularity and ITG for
(a)s =—0.6,(b) s =0.6,(c) s =0.8 and (d) s = 1.3.

The dependency of the heat flux on the temperature gradient is shown in figure 13. No
difference in stiffness is observed between the two different values of triangularity. We
observe an apparent increased Dimits shift for § > 0, in particular for the positive shear
cases where positive triangularity shows a significant increase of the nonlinear critical
gradient (see also figure 10), not seen for negative triangularity. This, however, appears to
be limited to the adiabatic electron cases. We have performed the same set of runs (only
for the case s = 1.3 for simplicity) also including kinetic electrons, obtaining the results
shown in figure 14. Simulations consider here electrons with deuterium mass ratio and
no electron temperature gradient and a small value of 8 = 103 for numerical reasons. A
systematic higher flux for § > 0 and no indication of a stronger Dimits shift is now found,
indicating that a triangularity dependence of the nonlinear upshift is not a robust feature
and it should not be investigated based on adiabatic electron simulations, which might lead
to incorrect results. Clearly, a definitive conclusion of the impact of triangularity on the
Dimits shift cannot be solely drawn from the results of figure 14 and requires a dedicated
investigation, which is left for future work.

4. The case of TEM dominated plasmas

We now move to investigate the behaviour of TEM dominated regimes, the condition
in which negative triangularity is expected to yield the best performance compared with
8 > 0 as TEMs may be suppressed, as already observed in some of the earliest modelling
of shaping effects on transport (Rewoldt, Tang & Chance 1982). We simplify the analysis
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FIGURE 11. Heat flux obtained from GENE simulation varying the magnetic shear s. Blue bars
correspond to § < 0 while red § > 0. Simulations consider adiabatic electrons.
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FIGURE 12. Ion heat flux spectra for the cases shown in figure 11.

by consider the electrostatic limit (we set 8 = 10~ for numerical reasons) and neglect
collisions. The same Miller parametrization as in the previous section is used and we
define our base plasma parameter set based on Merz & Jenko (2008). Thus, for the nominal
TEM case we use R/L, =4, R/L;y, = 10 and R/L;, = 0, with T,/T; = 3. Although for
reactor relevant conditions one might want to consider a smaller temperature ratio, the
results are not significantly affected by the temperature ratio. Therefore, we perform all our
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FIGURE 13. Sensitivity of ion heat flux with respect to variation of ITG for s = —0.6, 0.8
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FIGURE 14. Sensitivity of heat fluxes with respect to variation of ITG for s = 1.3. Red symbols
indicate results for § > 0 and blue § < 0; ion fluxes are shown with circles and electron fluxes
with triangles.

runs using the aforementioned value to avoid destabilizing electron temperature gradient
modes, allowing for a cheaper numerical set-up. We have nonetheless performed few runs
with equal ion and electron temperatures, drawing the same conclusions.

4.1. Linear results

We directly show the results obtained for four different values of magnetic shear: s = 0.4,
0.8, 1.2 and 2. For all of them we plot in figure 15 growth rates and frequencies of the
most unstable mode. Similar to the ITG dominated plasmas discussed in § 3, we observe
that flipping the sign of triangularity affects the behaviour at all values of k,, but more
significantly at large wavenumbers (k,p; > 0.6 in our case) which are strongly stabilized
by § < 0. The low k, behaviour is again shear dependent with similar, or even larger,
growth rates for § < 0 (see e.g. figure 15(a) where y is slightly larger for all k, < 0.4),
when shear is small.

The decomposition of the linear instability drive between curvature and the parallel
dynamics is shown in figures 16 and 17 for the two cases of s = 1.2 and s = 0.4. For
all cases, including the other values of magnetic shear not shown here for simplicity,
the linear instability is driven by the electrons, with the ions playing a stabilizing role
for modes at k, < 0.4 and otherwise being negligible. In all cases, the instability results
from the combined destabilizing effect of curvature and stabilizing effect of the parallel
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FIGURE 15. Linear growth rates y and frequencies w as a function of the wavenumber k, in red
(respectively blue) for negative (respectively positive) triangularity. The value of magnetic shear
is indicated in the title of each panel.

dynamics. The interaction between these contributions varies with k,, making the analysis
complicated. In addition, because the absolute magnitude changes it is difficult to compare
absolute contributions between shapes because they all change in amplitude, such that one
can only carefully compare ratios.
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FIGURE 16. Decomposition of the linear growth rates y among ion and electron contributions
for (a) positive and (d) negative triangularity shapes with s = 1.2. The total growth rate is shown
as reference with dashed lines. For both values of triangularity we then show in (b,c) and (e, f)
the contributions of curvature (squares) and the parallel dynamics (stars) to each species.

Considering first the s = 1.2 case, when going from § > 0 to § < 0, for all k, modes
the positive electron contribution to the growth rate is reduced as well as the negative
contribution from ions. The reduction is essentially the same for both species for k, <
0.3, such that the growth rate ends up being unaffected. For modes at k, > 0.3 instead
the reduction is more pronounced for the electrons (the ions are negligible), resulting in
lower growth rates. Considering in more detail the effect of changing triangularity on
the electrons, the destabilization from curvature for negative triangularity is reduced by
approximately 60 %—70 % of the positive § value for all k, modes, whereas the stabilization
from the parallel dynamics is less affected by the change of § as k, increases (the exact
ratios are shown in figure 21). Therefore, the modification of the electron parallel dynamics
appears to be responsible for the reduction of the linear growth. The opposite situation
can be observed for the cases with s = 0.4: inverting the triangularity reduces less the
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FIGURE 17. Same as figure 16 but showing results obtained with s = 0.4.

destabilizing electron contribution from curvature with respect to the parallel dynamics,
such that the growth rate increases, as one sees from figure 15.

The eigenfunctions of the mode k, = 0.3 are compared in figure 18, where one observes
again a minor difference in the central peak region |z/7m| < 1 but a less steep decay of
the tails for § < 0 and low values of shear, which can potentially indicate a different
role played by passing electrons (Hallatschek & Dorland 2005). The quasilinear model
discussed in § 3.1 can be applied to the TEM scenario as well, capturing certain features
of the actual nonlinear spectra, in particular the shift of the largest contributing mode.
The results are, however, much more sensitive to the choice of the model, in particular the
number of connected k, modes and the weights. We therefore leave developing accurate
quasilinear models for future work.

4.2. Nonlinear results

We performed corresponding nonlinear simulation for all four values of magnetic shear
varying the electron temperature gradient £20 %. The simulated heat fluxes are shown
in figure 19 (see Appendix B for the particle fluxes). We show the total heat flux,
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FIGURE 18. Ballooning structure of the electrostatic potential as a function of the extended
ballooning variable z and magnetic shear s for (a) negative and () positive triangularity. Panels
(c,d) compare the eigenfunctions for shear 0.4 and 1.2 with insets zooming over the region
|z/m| < 1.

sum of electrostatic and electromagnetic components, although the latter is negligible.
We observe, in agreement with the linear results and similarly to what is observed in
ITG dominated plasmas, that the effect of negative triangularity is large and beneficial
for large values of magnetic shear. For s = 2, figure 19(d), there is almost a factor of
eight reduction in the electron heat flux, from Q >~ 110 Qg for § > 0 to Q ~ 15 Qgp
for § <0 and a nearly complete stabilization of the ion heat flux. The situation is
reversed at low magnetic shear, see for example figure 19(a) for s = 0.4, where the
transport seen with negative triangularity is roughly 50 % larger than the one observed
for its positive triangularity counterpart. At sufficiently large negative shear, figure 19(a),
negative triangularity again becomes advantageous, similarly to what happened in the
ITG dominated scenario, with a roughly 20 % lower flux. Once again, we do not find
clear indications of a shape-dependent stiffness. Flipping triangularity simply results
in an up-shift of the flux levels, thus indicating an increase in the critical gradients,
regardless from the value of shear and thus the total transport level. An essentially identical
conclusion can be reached considering the particle fluxes (see Appendix B).

The electron heat flux spectra for the two cases with s=0.4 and 1.2 are shown in
figure 20. They reveal similar features to the ITG results, with the peak contribution
slightly shifted towards lower k, when & <0, and contributions at the different
wavenumbers following the same trends as the linear growth rates. At low shear the
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FIGURE 19. Simulated heat flux as a function of the electron temperature gradient for different
values of magnetic shear. Red solid (respectively blue dashed) lines indicate results for positive
(respectively negative) triangularity. Electron fluxes are indicated with circles and ion fluxes with

triangles.

difference between shapes is determined by the behaviour of low k, modes, which are
linearly more unstable and driving much more flux for § < 0. At larger shear instead
the difference is more significant due to the behaviour of high k, modes (k, > 0.3),
linearly stabilized by negative triangularity, and which make almost half the contribution

to nonlinear fluxes.
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FIGURE 20. Ratio of contributions to linear growth rates from the parallel dynamics and
curvature between negative and positive triangularity. Panel (a) shows ion contributions and
(b) electron contributions. Linear results are the same as in figure 16.

5. Summary and discussion

Performing local linear and nonlinear gyrokinetic simulations, we have investigated
the interaction between negative triangularity and magnetic shear, the latter parameter
affecting the overall transport levels in a complex manner.

Using a Miller parametrization to describe a given flux surface, linear simulations show
that negative triangularity is beneficial in conjunction with almost all the standard plasma
shaping parameters, that is, the linear growth rates decrease when triangularity is large and
negative. This behaviour is seen for both ITG and TEM dominated scenarios. The only
exception is represented by magnetic shear, which plays a non-trivial role. Also, § < 0
is found to be always advantageous for large magnetic shear, but this does not remain
true for lower values of s, where the behaviour can reverse, obtaining larger fluxes for
negative triangularity. The linear instabilities are in all cases we have considered driven
by curvature (and the trapping term for TEM) and stabilized by the parallel dynamics but,
for a given set of gradients and k, mode, the exact balance depends on both the values of
8 and s.

We find that negative triangularity can be beneficial already in ITG dominated plasmas
(even when modelled with adiabatic electrons), with a large reduction of the ion fluxes
for s > 1. At lower shear, we often observe a reduction (increase) of high (low) k, modes
when triangularity is reversed, such that the spectra are shifted towards lower k, for § < 0
but can result in equivalent fluxes regardless of the sign of triangularity. No indication of
a different stiffness depending on shape is found. For this latter investigation, it is crucial
to use a fully kinetic electron response. Only in that case we do not observe the strong
increase of nonlinear critical gradients associated with § > 0 that was otherwise seen when
using adiabatic electrons.

A similar behaviour is observed in TEM dominated regimes, where § < 0 is associated
with a strong reduction of fluxes for sufficiently large s. The situation is, however,
completely inverted when shear is reduced, with e.g. roughly 50 % larger fluxes for s = 0.4
and § < 0.

From the perspective of the impact of negative triangularity on turbulent transport
and § < 0 being a solution for future reactor operation, this work has at least two major
consequences. First, the role of triangularity is not always beneficial and it can interplay
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with other plasma shaping parameters in non-trivial ways. This can potentially lead to
an increase of fluxes rather than to a reduction of them, as commonly expected. This
should not be understood as a limitation to § < 0, but rather an option to further exploit
when designing discharges where the entire magnetic geometry is optimized for turbulence
reduction. Secondarily, the interplay with shear that we observe should already be taken
into account when analysing current experiments, which show different safety factor
profiles (Austin et al. 2019) for reversed edge triangularities. Clearly, this is even more
relevant for the near edge region, where not only § is large, but also shear can vary rapidly.

Finally, we point out that the major limitation of our current analysis is that we have
used a local model, i.e. analysed only a given flux surface. The magnetic geometry is
intrinsically a global property of a confined plasma and often with rapid radial variations
of shaping coefficients, in particular high-order shaping terms such as triangularity. As
such, it is desirable to extend the analysis we have performed to fully consistent global
equilibria, which ultimately have also to be used for any realistic optimization effort. We
will address this aspect in a future publication.
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Appendix A. Ratios between linear driving terms

The ratio of contributions to linear growth rates from the parallel dynamics and
curvature between negative and positive triangularity are shown in figures 21 and 22.
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FIGURE 21. Ratio of contributions to linear growth rates from the parallel dynamics and
curvature between negative and positive triangularity. Panel (a) shows ion contributions and
(b) electrons. Linear results same as in figure 16.
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(b) electrons. Linear results same as in figure 17.

Appendix B. Particle fluxes in TEM dominated scenario

We show in figure 23 the particle fluxes obtained for the simulations described in

figure 19.
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FIGURE 23. Particle flux as a function of the electron temperature gradient for different values
of magnetic shear. Red (respectively blue) curves indicate results for positive (respectibely
negative) triangularity.
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