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Abstract
An unexpected path reversal is discovered for a serial robot with an offset-axis wrist over a finite range of proximity to
the wrist singularity. This is replicated by a kinematic model. A prior spherical-wrist method transits the singularity
with limited joint rate and acceleration under a constant rate of tool traversal. Accurate position is maintained by
controlling a small deviation in orientation. Extensions to the method for an offset wrist (1) find the least-maximum
deviation, (2) identify and locate where a path reversal occurs, and (3) use this point to control step size in a
high-order predictor-correction path following procedure.

1. Introduction

An offset wrist is revealed to have unexpected behavior when its initial and final joint axes become
parallel. This discovery was made when applying a recent method for mitigating excessive joint rates at
singularity encounter [1] to a 6 degree-of-freedom (dof) serial robot with this type of wrist. A spherical
wrist having all three joints intersecting at a common center may experience a condition where a constant
rate of traversal of the robot terminal link – the tool – exceeds a wrist-joint rate limit [2]. This also occurs
with an offset wrist. An offset wrist is further revealed to have a condition where traversal of the tool
halts instantaneously and then reverses direction. This occurs when bounded robot joint rates require
the tool traversal rate to cross through zero.

Such motion is known for a planar slider crank. A piston in a cylinder linked to a crank by a connecting
rod is a well-known example. As the crank turns, the piston advances toward top dead center (TDC),
reaches zero velocity, and then reverses. For such behavior to be associated with a wrist is unanticipated
in prior work on singularity avoidance [3, 4], where use with an offset wrist was indicated to be a
straightforward application of those methods.

ANSI/RIA R15. 06 (1999) [5] Definition 3.40 states that a robot singularity is a “condition caused by
collinear alignment of two or more robot axes resulting in unpredictable robot motion and velocities.”
The assertion that a robot with an offset wrist does not have a wrist singularity [6, 7] is correct inasmuch
as the type of offset in question allows the critical pair of joint axes to be parallel but not collinear. For
this assertion to be made without qualification, however, further suggests that the path reversal occurring
near where those joint axes become parallel is indeed not heretofore known. This location is the notional
singularity of an offset wrist.
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The singularities of a serial robot are only a problem for the inverse kinematic transformation. Once
singularities are identified and either avoided or otherwise mitigated, the resulting joint-angle time his-
tories may be safely applied to the robot joints. This displaces the tool through the forward kinematic
transformation. Such is generally not the case with parallel robots [8, 9, 10], which are not considered
here.

1.1. Prior methods

Huang et al. [11] classify methods for mitigating the adverse effects of singularities into (1) damped
least-squares regularization of the robot Jacobian [12, 13, 14], which encompasses tracking eigenvalues
to set the regularization coefficient [15, 16], (2) null-space control of redundant manipulators [17, 18,
19, 20], and (3) interpolation of joint angles between inverse-kinematic solutions on each side of the
singularity. Chembuly and Vorganti (2017) [21] control a redundant planar robot without the eigenvalue
decomposition in the null-space methods. Buss and Kim [22] apply a varying amount of regularization
to different eigenvalues to effect greater control near the singularity. Null-space control is also applied to
nonredundant manipulators by setting an eigenvalue threshold on close approach to the singularity [23,
24]. With nonredundant manipulators, the regularization and null-space methods produce deviations in
both tool position and orientation.

The methods of Huang and Milenkovic [3, 25], Aboaf and Paul [26], Cheng et al. [4], and Milenkovic
[1] enforce placement of the tool contact point with the work surface during a constant rate of traversal.
A small deviation in the tool orientation is tolerated when limiting joint rates. This capability is useful
in seam welding, sealant, and paint application along with other manufacturing operations. Cheng et al.
[4] along with Milenkovic [1], however, accomplish this by adjusting the displacement path of the robot
to pass directly through the wrist singularity instead of close by. Huang et al. [11] nevertheless classified
these as singularity avoidance.

Of the four methods enforcing tool position, Milenkovic [1] is unique in finding for a spherical wrist
(1) a path optimized to give the least amount of the peak magnitude of tool orientational deviation
occurring along this path (i.e., the least maximum) and (2) the least interval of the traversal over which
the tool deviates from its desired orientation when satisfying limits on both joint rate and acceleration.
The procedures in the path-planning and execution stages are derived from a high-order path-following
algorithm, which was found to have a 10-fold reduction in calculation time [27] over a prior second-
order predictor-corrector [28]. Meeting these objectives for an offset wrist motivates the current study.
Furthermore, the singularities of the robot arm are readily avoided by staying within reach of the arm
and away from the overhead position [17]. This justifies concentrating on wrist effects.

Differing from other optimizations applied to robot paths [29, 30, 31], the least-maximum optimal
path is found by searching for a single robot posture for the path to pass through. The optimal path
satisfies multiple stationarity conditions at this location. These conditions are met by a path-following
procedure conducting a single-parameter search for a spherical wrist [1]. An offset wrist requires the
multiparameter search in Section 3.2. When following the pair of paths outward from the least-maximum
point, velocity and acceleration constraints are applied by a numerical integration method [32]. All of
these procedures are conducted here by searches along a single displacement parameter of a kinematic
chain.

High-order path following employs algorithmic differentiation [33] for directly determining the series
coefficients of the inverse kinematic transform. These coefficients have a concise derivation and simple
expression leading to rapid calculation at high orders [27, 34]. Conditions on a virtual displacement are
applied to this process. These control the redundant degrees of freedom accounting for the allowed tool
orientational deviation [1]. More recently, Di Gregorio [35] constrains kinematic redundancy in like
manner by distinguishing between virtual and actual path displacements in a series expansion of the
inverse kinematics. Those symbolic formulas of derivatives are limited to second order (acceleration)
with third order (jerk) stated to “yield big analytic expressions.”
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The manner in which velocity and acceleration are limited at singularity encounter with high-order
path following also differs from procedures addressing related problems in kinematics. Hassan et al. [36]
review the application of neural networks to finding constrained-optimal solutions of redundant inverse
kinematic problems. Arguing that such methods are much too computationally intensive for limiting
both velocity and acceleration during real-time path updates, Huber and Wollherr [37] apply such con-
straints to a power-series expansion of the forward kinematic transformation of combined translation
and rotation in 3D Euclidian space (SE3). The rotation portion is conducted by the Magnus expansion,
which is related to the Baker–Campbell–Hausdorff (B-C-H) expansion [38]. Having its first complete
closed-form expression due to Dynkin [39], the B-C-H becomes unwieldy from its rapid growth in num-
ber of terms beyond third order. In contrast, velocity and acceleration are limited at singularity encounter
using a much simpler expression of the series coefficients for the inverse kinematic transform used in
path following. A 10th-order expansion gives a good balance between accuracy and calculation speed.

1.2. Novel contributions

In extending the method of Milenkovic [1] to an offset wrist, the current paper (1) discovers heretofore
unnoted reversals occurring along paths within a finite range of close approach to the notional singularity
of an offset wrist, (2) explains how these reversals can occur in a simplified kinematic model, (3) finds
either the inflection on a through path or the turning point marking a path reversal, and (4) continues
a displacement path beyond where it is otherwise blocked by a path reversal by applying an optimal
deviation in orientation when maintaining precise position. The revealed offset-wrist path reversals are
analogous to those associated with maximum extension of the robot arm. There, it is possible to deviate
in position from the intended path [40, 41, 42] to continue a displacement otherwise blocked by the
turning point singularity at maximum arm extension [28, 43].

Locating the path inflection, or turning point that can occur for an offset wrist, is important in limiting
the length of displacement steps along the actual path followed by the robot. This is the path where tool
deviation is kept at zero. These steps do not benefit from mitigation of the effects of the singularity along
the avoidance path. This is where a joint rate in the wrist is limited and orientational deviation of the
tool is allowed at singularity encounter. Knowing this location not only helps plan an optimal avoidance
path, it also obtains rapid series convergence on the actual path prior to the start and after the end of the
avoidance path. This is accomplished by keeping the step length on the actual path to a fraction of the
distance to either a turning point singularity or an inflection indicating a close approach to a singularity.

Finding the inflection or turning point is a challenge unique to an offset wrist. The singularity locating
maneuver [1] places the robot at its wrist singularity with the least orientational deviation of the tool.
This location is useful in limiting path-following step sizes on the actual path for a spherical wrist. It is
not reliable for an offset wrist, however, where a turning point singularity can occur before this location.
The inflection or turning point for an offset wrist therefore needs to be located along the actual path
by procedures that do not benefit from allowing orientational deviation to obtain singularity mitigation.
The method to locate and identify either type of point is hence a particularly important contribution.

1.3. Organization of the paper

Section 2 reviews the extension of a 6-axis robot with virtual joints. The complete 9-joint closed-loop
kinematic model of the robot gives its desired tool motion. It allows the tool to deviate in orientation
while maintaining precise position. The arrangement of these joints also quantifies a measure of the
amount of deviation to be optimized at singularity encounter. Section 3 describes how this kinematic
loop is displaced to locate the wrist singularity, plan an optimal avoidance path, and then execute that
path in carrying out a preplanned task. New procedures allowing for an offset wrist are indicated.

Results of testing the proposed method in computer simulation are presented in Section 4. These
tests reveal the transition between through paths and path reversals along actual displacement paths.
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Those paths are at different degrees of close approach to the notional singularity of an offset wrist. The
closeness of approach is varied by tilting the plane of the intended tool motion in small increments.
The tests show how the singularity avoidance path bridges isolated segments of the actual path under
path-reversal conditions. Furthermore, Section 4.2 offers an approximate kinematic model of how an
offset wrist can undergo such a path reversal.

Appendix A extends the guided virtual displacement method [1] to multiple virtual displacements.
This capability is required to find the least-maximum tool deviation for an offset wrist as described in
Section 3.2. Appendix B offers a refinement to an earlier algorithm finding roots of the displacement
path as represented by a power series [1]. This refinement covers more cases of possible root locations.
The improved algorithm is used in Section 3.4 to locate the point of inflection or path reversal along the
actual path. It is also applied to the path displacement in Section 3.4.2 meeting an acceleration limit.

2. Role of additional joint axes in singularity avoidance

Kieffer’s [28] numerical inverse-kinematic procedure solves for time histories of the joint rates in a 6-
axis robot generating a desired tool trajectory. This trajectory is represented by an angular rate applied
to virtual joint 7. The articulation of that joint represents the desired motion of the tool with respect
to a base and axis direction fixed in space with respect to ground reference. Such completes a 7-joint
kinematic loop, where a predictor-corrector path-following method tracks its displacement.

Milenkovic [1] represents tool displacement in a singularity avoidance procedure for a 6-axis robot
with two additional virtual joint axes to complete a 9-joint loop. The physical joints in a robot are
numbered 1–6. These are followed by a virtual wrist representing the tolerated orientational deviation
of the tool, the joint axes of which intersect at the tool contact point (TCP) with its work surface. The
joints in the virtual wrist are numbered 6–8, with physical joint 6 and virtual joint 6 assigned the same
joint number because they share a common axis line. Furthermore, the path-following algorithm solves
for their combined angle θ6 about this common axis. This angle is separable into θ6W for the physical
joint and θ6T for the virtual joint. Finally, virtual joint 9 represents the desired or intended tool motion
in relation to ground.

The allowed deviation of the tool, therefore, is that of a spherical joint pivoting about the TCP. The
articulation of this joint represented by the spherical virtual wrist does not displace its center point,
enforcing positioning of the tool contact point without the iterative pointwise corrections required in
other methods [3, 4].

Two robots are evaluated, each with a different orientation of the wrist offset. Recent robots include
the Yaskawa Motoman-MA1400 and Fanuc M-710iC/50E. The MA1400 offsets the axis line of joint 6
in a perpendicular direction to the axis of joint 5. This affords joint 5 an asymmetric angle range [44],
one allowing it to point the tool back along the forearm on one side of its joint-5 deflection arc. This
capability avoids workspace obstacles in welding tasks. The 50E offsets the axis line of joint 6 along the
axis line through joint 5. Its manufacturer describes its wrist as offering “super-flexible positioning” and
recommends this robot “for grinding and polishing applications.” There, the robot grasps the work piece
to hold it against a grinding or polishing wheel, where this offset direction allows 380◦ of usable deflec-
tion on joint 5. An earlier welding robot required this second type of offset wrist for its increased load
carrying capability [45]. The MA1400 and 50E robots are thus selected as representative of industrial
practice.

Wu et al. depict the MA1400 as carrying a curved tool nearly a half meter long. In the current paper,
the tool length on the 50E is set to a mid-range value between this length and the 0.2 m distance between
wrist center and work piece tested for a spherical wrist [1]. Commercial literature reveals the tool used
with the MA1400 to be a welding torch. Both straight and curved torches are commercially available.
A curved torch, however, violates the requirement of the proposed method that the tool axis line be
collinear with joint 6. The MA1400 is considered here with a straight torch in accord with the tool
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(a) (b)

Figure 1. Two postures of the MA1400 robot having an offset wrist. Joint J9 represents the desired task
motion of a tool having the specified tool contact point (TCP), with J6, J7, and J8 allowing deviation in
tool orientation about the TCP.

(a) (b)

Figure 2. Two postures of the 50E robot having an alternative direction of the wrist offset.

contact point shown in Fig. 1. Consideration of singularity avoidance with a curved torch is reserved for
future work.

Figures 1 and 2 therefore depict the 9-joint kinematic loops embedding the two robots. The point of
contact of the tool with the work surface is marked TCP at the designated distance along the axis line
of joint 6. Joint 9 displaces the desired position and orientation of the tool in relation to the coordinate
frame of the base as depicted by the dashed line in Fig. 2(b), with the tool meeting its desired position
at the TCP but allowed to deviate in orientation by pivoting about that point. These drawings represent
each revolute joint with a “shaft-in-bearing” CAD model, where the shaft (narrower cylinder) points
away from its bearing (broader cylinder) in the direction of the rotation axis. For example, the axes of
joints 2 and 3 in the of Figs. 1(a) and 2(a) point up from the drawing surface toward the reader, where a
positive angle on either of these joints rotates the downstream links in the conventional counterclockwise
direction. The drawings depict each robot in its reference posture where each joint is at its nominal zero
angle. The wrist is also at its notional singularity where the axes of joints 4 and 6 are parallel. Owing
to arm/wrist coupling occurring with an offset wrist, the location of an actual singularity marked by
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Table 1. D–H parameters of the MA1400 robot (for the 50E robot, angles +θ and α are identical,
whereas lengths d and r are in parenthesis).

+θ d (m) r (m) α

J1 90◦ 0.150 (0.146) 90◦
J2 90◦ 0.760 (0.875)
J3 0.220 (0.170) 90◦
J4 −90◦ 0.870 (1.025) −90◦
J5 (0.170) .045 90◦
J6 −90◦ 0.550 (0.375) 90◦
J7 180◦ 90◦
J8 −90◦ 0.300 −90◦

(a) (b)

Figure 3. Placing the MA1400 robot in an initial posture in relation to its wrist singularity.

the path inflections and path reversals seen in Figs. 4, 5, 6 and 7 of Section 4 may differ from this
position. Cheng et al. [4] describe how for either a spherical or an offset wrist, interpolating a path
through θ5 = 0 avoids a 180◦ excursion of θ4. As θ5 = 0 marks where joints 4 and 6 become parallel,
the proposed method in similar fashion redirects the displacement path followed by the wrist to pass
through its notional singularity.

Fig. 1(b) shows the MA1400 in the posture illustrated by Wu et al. [7] showing the wrist offset. The
dimensions of the MA1400 are from that source. As link dimensions for either robot are not disclosed on
manufacturer data sheets, the dimensions of the 50E were measured from the drawing on its data sheet
by using 2D illustration software. The goal is not absolute precision but rather representative proportions
of robots for algorithm testing.

Table 1 gives Denavit–Hartenberg (D-H) parameters for these two robots, with the six joints of each
robot augmented with joints 7 and 8 of the virtual wrist followed by joint 9 representing the desired
translational and orientation displacement of the tool. Rows of this table reference each numbered joint
together with the link that follows it; +θ gives the value added to the nominal joint angle to direct the
local x-axis to intersect the next joint-axis line, d is the offset distance along the local z-axis of joint
rotation, r is the link length along the local x-axis to the next joint axis, and α is the angle of rotation
about this x-axis orienting the z-axis of rotation for the next joint. The difference in joint offset directions
between robots is manifest in row J5 of the table. The MA1400 wrist offset is along the joint 5 local x-axis
(parameter r), whereas the 50E offset is along the joint 5 local z-axis of joint rotation (parameter d).

For the plane containing unit joint axis-direction vectors ω6 and ω8 in Fig. 3(b), rotation by angle θ7
about direction ω7 normal to that plane represents a change in body orientation. Conjugate joint angles
θ6T =−θ8 in the virtual wrist result in a change in body orientation between the actual and desired
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orientation of the tool, by the same angle of rotation about the same axis but in a rotated coordinate
frame. In turn, θ7 is the least angle of rotation about an axis redirecting the axis line of joints 6 to align
with joint 8 in any frame, constraining the allowed change in body orientation [1]. Angle θ7 in this way
expresses the tool deviation angle with the least change in body orientation meeting this constraint.

The deviation angle θ7 may be minimized by orienting its arc plane depicted in Fig. 3(b). This is done
by controlling the combined angle θ6 to rotate axis direction ω7 about ω6. Under the conjugate angle
condition θ6T =−θ8 and expressing θ6 = θ6T + θ6W , physical joint 6 is actuated by θ6W = θ6 − θ6T =
θ6 + θ8.

3. Singularity avoidance planning and execution

In both the path planning and path execution phases, maneuver in close proximity to the singularity
of a spherical wrist is conducted by constraining the rate of joint 4 in relation to joint 9 and accepting
nonzero tool deviation appearing on joint 7. Under this condition, the tool is displaced along an adjusted
path, achieved by the 6-axis robot and differing from the desired tool displacement along the reference
path on account of nonzero θ7. The zero-deviation condition of θ7 = 0 makes the actual and desired
tool displacements the same along the actual path. Segments of the actual path occur before and after
making such path adjustments along the singularity avoidance maneuver.

When holding in a constant ratio the rate of joint 4 in the physical wrist and joint 9 representing
the tool traversal and with the angle of combined joint 6 controlling the tool deviation angle occurring
on joint 7, path-following steps may be conducted with joints 1, 2, 3, 5 in the robot and joints 7 and
8 in the virtual wrist supplying the necessary number of six passive joints to displace a spatial loop.
The methods of Milenkovic and Huang [25] as well as Aboaf and Paul [26] effectively fix combined
angle θ6 = 0 without attempting to minimize θ7. Furthermore, joints 5, 7 and 8 have axis directions
ω5 =ω7 ×ω6, ω7 and ω8 that are nearly separated by 90◦ when tool deviation θ7 is kept well under
90◦ (see inset to Fig. 3). This condition supplies a mobile wrist when joint axes ω4 and ω6 are in near
alignment, placing the physical wrist with joints 4, 5, and 6 near its singular posture. For the robots under
consideration, this condition is observed to be maintained in an offset wrist near its notional singularity.

3.1. Place the tool on a path encountering the wrist singularity

In preparation for planning an avoidance path and its subsequent execution, the robot is positioned to
make joints 4 and 6 collinear, or parallel in the instance of an offset wrist, and the axis of joint 9 is
inclined by the tool deflection angle depicted in Fig. 3(b). Rotation about joint 9 to find a starting point
away from this posture, followed by rotation about joint 7 to remove the tool deviation, places the tool
on an actual path. Starting from that location, the singularity locating maneuver [1] displaces the tool
back to where joints 4 and 6 are aligned with axis directions ω4 =ω6, with θ6 giving a minimum tool
deviation θ7.

3.2. Find the least-maximum tool deviation

Along a path directed through ω4 =ω6, the least-maximum deviation is the smallest amount of the peak
magnitude of the tool deviation angle occurring along all such paths. A necessary condition is for θ7 to
be stationary with respect to changes in θ4, θ5 and θ6. A least-maximum occurs at a saddle point where
the minimum θ7 resulting from adjusting θ6 is a maximum over the collection of adjusted paths through
all possible pairs θ4 and θ5. Stationarity occurs when joints 1, 2, 3, 7, 8, and 9 are made passive and the
instantaneous rate C7 of joint 7 is zero when a nonzero rate C4, C5, and C6 is applied to either of joints
4, 5 or 6. This condition is met at the end of a finite displacement step guiding angles θ4, θ5, and θ6 by
the method in Appendix A. This is a change from a spherical wrist where the least-maximum θ7 occurs
at θ5 = 0, reducing the number of stationarity conditions.
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The virtual wrist is singular, however, when tool deviation θ7 = 0 aligns joints 6 and 8. This condition
is avoided at zero or small θ7 by substituting joint 6p for 6 in the virtual displacement (see Appendix A)
giving stationary θ7. Joint 6p has axis ω6p =ω7 ×ω6 perpendicular to joints 7 and 6. The axis line of
6p passes through the tool center point (TCP, not WCP as stated earlier [1]). The proof [1] that joint 6p
can substitute for joint 6 is correct for the TCP as were subsequent numerical results.

3.3. Follow paths outward to reduce the tool deviation to zero

A path is followed outward from θ4 = θ4ref and θ9 = θ9ref at the point of least-maximum deviation on the
adjusted path, to intercept the actual path where θ7 = 0 – see Fig. 7(a) in Section 4.1. This is done both
before and after singularity encounter. Differing from the spherical wrist case, successfully reaching
segments of the actual path before and after encounter of an offset wrist requires limiting the rate on
joint 4 in relation to joint 9, even if the initiation and termination points on those segments are later
adjusted to shorten the path length of the avoidance maneuver.

3.4. Locate singularities along the actual path

An offset wrist introduces new restrictions on movement along the actual path before and after singu-
larity encounter. To achieve satisfactory convergence of the high-order series expansion described in
Appendix A, path-following steps are limited to 0.3 (θ9 − θ9ref). Whereas θ9ref satisfactorily supplies a
bound on the region of convergence for a spherical wrist, this is not the case with an offset wrist where
a singularity can occur near but not at its notional singularity.

Locating proximity to a singularity along the actual path is problematic when the adjusted path no
longer indicates the singularity location needed to limit the step size. The proposed solution follows
the actual path upon making joint 9 passive in place of joint 4, using the method of Appendix B to
locate where rate C9 reaches a minimum, indicating proximity to the type of singularity encountered by
a spherical wrist, or crosses through zero, indicating a turning point along a path reversal encountered
by an offset wrist. The value θ9sing at this point is recorded. The path steps in this procedure are limited
to 0.3 (θ4 − θ4ref). The horizontal line marks θ4ref in Figs. 4, 6, and 7 in Section 4 in relation to the
asymptotic values of that angle before and after singularity encounter. These results along with low
loop closure error at the end of path-following steps confirm that θ4ref supplies a usable bound on the
region-of-convergence for conducting steps in θ4.

3.4.1. Set initial avoidance-maneuver starting point
The path-following variable reverts to θ9 when making adjustments along the actual path.
For an approach to the wrist singularity along a “before” path segment with increasing θ9,
±0.3

(
min

(
θ9ref , θ9sing

)− θ9
)

gives a conservative step length for advancing or retreating from the sin-
gular region. In seeking the shortest interval for the singularity avoidance maneuver when allowing the
highest rate on joint 4, advance along the actual path is limited to min

(
θ9ref , θ9sing

)− 0.5◦. An angle
separation below 0.5◦ allows a shorter interval of the adjusted path with nonzero tool deviation in trade
for more calculations.

For a maximum tool deviation magnitude below 0.001◦, an alternative procedure avoids possible
numerical degeneracy. Starting from θ9ref and setting θ9sing = θ9ref , the procedure of Section 3.1 reaches
θ9← θ9sing − 0.5◦ with θ7 = 0.

3.4.2. Adjust starting point to meet joint acceleration and rate limits
The avoidance maneuver is to be conducted at a constant tool traversal rate C9 when limits are applied
to wrist rate C4 and acceleration Ċ4. Angle θ9 is the path variable for adjusting the starting point along
the actual path to meet these limits. In place of separate procedures for coarse and fine corrections [1],
the complete adjustment is now made by the procedure of Appendix B.
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To ensure this adjustment is only away from the singularity, especially at a high rate limit on an
offset wrist, a third procedure is introduced below to find the acceleration meeting the rate limit without
adjusting θ9. Applying C9 = 1 rad

/
s and when 0 < r/s < 1, a prior formula [1] gives

θ4limit =CV4maxs− 0.5 (CV4max −CV4) r (1)

where θ4limit = θ4ref − θ4, CV4max is the C4
/

C9 limit, CV4 is the ratio C4
/

C9 at θ9, path length
s= θ9ref − θ9, and r is the path length over which a constant acceleration applied to joint 4 reaches
the rate limit. Acceleration is therefore change in rate over path length giving

a4no adjust = CV4 max −CV4

r
= 0.5

(CV4 max −CV4)
2

(CV4 maxs− θ4limit)
(2)

where angles are expressed in natural units of radians, rates in rad
/

s, and acceleration in rad
/

s2.

3.4.3. Adjust before- and after-singularity paths to match peak rate
The before- and after-singularity halves of the avoidance maneuver meet at (θ9ref , θ4ref) with largest tool
deviation θ7. To achieve continuity of joint rates, the peak rate of joint 4 after applying Section 3.4.2 to
the “before” half supplies the rate limit for this procedure applied to the “after” half. If “after” reduces
the rate limit further, the adjustment of “before” is repeated. If the before and after rates still disagree,
neither rate limit is active. Adjustments are then made to the constant accelerations applied to before
and after. This condition is expected to occur for low maximum deviation, but it was not required for
any of the cases presented in Section 4.

3.5. Determine step sizes on the avoidance maneuver

The avoidance maneuver is conducted at a constant rate of tool traversal applied to joint 9. Along both
halves of the singularity avoidance maneuver meeting at (θ9ref , θ4ref), constant acceleration is applied
to joint 4 until its rate limit is reached, after which the rates of joints 4 and 9 are held in a constant ratio.

In the absence of a known singularity on the adjusted path, fixing constant-rate steps of joint 4 at 20◦,
however, gave elevated closure error (position 94× 10−6m, angle 3324× 10−6◦ at −8◦ tool deviation
for the MA1400). A step limit of 14◦ gives the results reported in Tables 2 and 3 in Section 4 without
resorting to a variable step size responding to closure error.

Increasing the entry for d in row J8 of Table 1 places the tool-motion pivot point on virtual joint 9
farther away from the robot. This in turn places steps along the avoidance maneuver closer to reaching
the turning point of maximum arm extension. Such would require further restrictions on step length
during the avoidance maneuver.

The following procedure effectively limited steps conducted at constant acceleration without occur-
rence of high closure error requiring shortening the step and recalculating. The sine and cosine functions
of displacement generated by joint rotation have an infinite radius of series convergence, but consider
1 rad (57.3◦) to be its effective value where convergence becomes impractically slow. A maximum
allowed step s is calculated for either direction that changes θ4 by ±1 rad. This is expressed as the solu-
tion to Ċ4s2/2+C4s± 1= 0 at acceleration a= Ċ4 and rate v=C4. For α = ∣∣C4

/
Ċ4

∣∣, g= ∣∣2/
Ċ4

∣∣, the
smallest positive-valued step length meeting these conditions is

s1 =
∣∣∣−α +√

α2 + g
∣∣∣ ,

if α2 < g, s= s1

otherwise, s=min
(
s1,

∣∣∣−α +√
α2 − g

∣∣∣
) (3)

The step length limit is subsequently set to 0.3 s. This limit is found to give low closure error with a
small number of steps over a wide range of acceleration and rate limits.
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Table 2. Singularity avoidance paths of MA1400 robot: wrist offset 0.045 m, tool length 0.55 m.

Tool angle (◦) Avoidance θA9(◦) Loop closure error

Position Angle
Deflection Deviation Actual path Limit C4/C9 Start End (10−6m) (10−6 ◦)

−8 −9.476 Through 6 −8.3 7.0 1.071 39.637
−4 −4.634 Through 12 −4.3 3.7 0.078 4.256
−2 −2.201 Through 24 −2.4 2.0 0.070 4.159
−1 −0.982 Through 48 −1.5 1.3 0.034 2.111
−0.408 −0.259 1 s−curve 34.5 −1.1 0.9 0.010 0.605
−0.289 −0.114 2 s−curves 20.2 −0.9 0.9 0.005 0.279
−0.197 −0.001 2 s−curves 0.5 −0.5 0.5 0.000 0.006
−0.196 0.000 Bifurcated −0.1 −0.5 0.5 0.000 0.003
−0.195 0.001 Reversal −0.7 −0.5 0.5 0.000 0.004

0.49 0.838 Reversal −48 −1.0 1.1 0.039 2.479
0.5 0.850 2 s−curves −48 −1.0 1.1 0.039 2.513
0.594 0.965 2 s−curves −48 −1.1 1.2 0.044 2.822
0.698 1.092 1 s−curve −48 −1.1 1.2 0.049 3.160
2 2.686 Through −24 −2.0 2.2 0.086 5.792
4 5.138 Through −12 −3.7 4.2 0.044 2.878
8 10.057 Through −6 −7.3 8.2 0.032 2.808

Table 3. Singularity avoidance paths of 50E robot: wrist offset 0.170 m, tool length 0.375 m.

Tool angle (◦) Avoidance θA9(◦) Loop closure error

Position Angle
Deflection Deviation Actual path Limit C4/C9 Start End (10−6m) (10−6 ◦)

−8 −9.821 Through 3 −11.0 9.9 1.563 107.137
−4 −4.977 Through 3 −7.9 7.3 0.593 21.700
−2 −2.543 Through 6 −3.8 3.5 0.032 1.814

0.082 −0.001 Through 0.5 −0.5 0.5 0.000 0.003
0.083 0.000 Bifurcated −0.1 −0.5 0.5 0.000 0.000
0.084 0.001 Reversal −0.6 −0.6 0.6 0.000 0.003
2 2.347 Reversal −18.9 −5.6 4.4 0.037 1.615
4 4.801 Reversal −23.1 −7.3 4.9 0.050 3.392
6.207 7.516 Reversal −27.7 −8.2 4.7 0.031 3.500
8 9.726 Reversal −32.6 −8.4 3.9 0.036 2.139
12.115 14.808 Reversal −48 −5.4 2.7 0.236 15.056
12.270 15.000 Inflected −48 −6.3 2.7 0.084 3.807
16 19.615 Through −3 −16.2 16.6 0.124 5.460

4. Numerical simulations

Results for the MA1400 and 50E robots are presented in Tables 2 and 3, respectively. In these tables,
deflection is the amount the joint 9 tool-motion axis is tipped as depicted in Fig. 3 in Section 2, whereas
deviation is the extremal θ7 along the adjusted path followed by the avoidance maneuver.

The mean calculation time over conditions in the two tables is 0.983 ms (Intel Core i5 2.5 GHz,
64-bit OpenJDK 10 and Windows 10), separating into 0.038 ms to locate the singularity, 0.514 ms for
avoidance planning, and 0.431 ms when executing the avoidance maneuver. After doubling the times
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(a) (b)

Figure 4. MA1400 robot path transition between through and 2 s-curves conditions.

(a) (b)

Figure 5. MA1400 robot initial path bifurcation between 2 s-curves and path reversal.

for portions conducted on only one side of the singularity for proper comparison, timings for the prior
spherical-wrist method are [1] 0.030,0.174, and 0.246 ms, calculated at−8◦ tool deflection. Comparing
to the same large deflection, the new method applied to the MA1400 at −8◦ requires 0.044, 0.696, and
0.270 ms. The path planning time for an offset wrist is hence seen to be substantially increased owing to
locating singularities along the actual path, but the avoidance execution time is nearly the same. Having
a worst-case overall time of 1.335 ms, the offset-wrist procedures remain favorable for real-time use.

The purpose of the avoidance maneuver is to limit C4
/

C9, the ratio of rate on wrist joint 4 in relation
to the tool traversal rate on joint 9. Rate C6 on joint 6 may exceed the C4 limit by a modest factor, but
many commercial robots have a higher rate limit for joint 6. For a spherical wrist conducting a task
in spherical space, limiting C4

/
C9 to ±6 generates approximately a 10◦ exclusion cone for an actual

path passing near the wrist singularity [1]. A high avoidance-maneuver rate limit (C4
/

C9 =±48) along
with a high acceleration limit (5000rad

/
s2 at C9 = 1 rad

/
s) is evaluated. The rate limit is subsequently

reduced as needed to be below what is measured on the actual path, otherwise, the avoidance maneuver
isn’t needed. This accounts for lower C4

/
C9 limits at higher deflection angles in the tables. Otherwise,

the higher rate limit is a more severe test of how close the initiation of avoidance can be to a singularity
along the actual path.

The sequence of varying tool deflections in Figs. 4, 5 and 6 illustrates the evolution of conditions
listed in the actual path column of Table 2. Displacement paths are depicted by plots of wrist angle θ4
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(a) (b)

Figure 6. MA1400 robot final path bifurcation between reversal and 2 s-curves.

in relation to tool-traversal angle θ9. An actual path is where tool deviation θ7 = 0. The steep portion
of such a path indicates a high rate on joint 4 for a constant rate of tool traversal on joint 9. The point
(θ9ref , θ4ref) of least-maximum tool deviation θ7 is found according to Section 3.2. The dashed line for
θ9ref contributes to a step-size bound on θ4 locating either a path inflection or an initial reversal by the
method of Section 3.4. The search was restarted manually as required for plotting s-curves in Figs 4(b),
5(a) and 6(b). Planning and execution of paths that avoid high rates by allowing θ7 to vary are completely
automated.

Figure 4(a) depicts the through condition showing two branches of the robot inverse-kinematic solu-
tion along paths allowing a continuous tool traversal rate. These branches are separated by a “flip” of
joint 4 [4], exactly 180◦ for a spherical wrist, and approximately this amount for an offset wrist. The
through condition occurs on all paths passing nearby the singularity of a spherical wrist. A path avoid-
ing the steep, high-rate portion of the actual path joins two branches with a shallower slope governed by
a joint rate limit. The rounding of this slope to meet the actual path is governed by an acceleration limit.
Starting at (θ9ref , θ4ref), the procedures in Sections 3.3 and 3.4 work outward from that location to plan
this avoidance maneuver. The ends of steps in the execution of the maneuver are marked in the plots.

Figure 4(b) depicts the s-curve condition occurring on two connected paths. It still allows a complete
tool traversal, where the tool motion represented by joint 9 allowed to cross through zero rate, reverse,
and then do this a second time to continue. The reversal condition occurring in Figs. 5(b) and 6(a)
introduces an orientational exclusion zone between two isolated segments of the actual path. The robot
is blocked from completing the tool traversal along the actual path, and it can only cross that zone when
tool deviation is permitted on joint 7. An avoidance maneuver conducts that crossing. Each path reversal
also exhibits a change in sign of θ5, meaning each isolated segment of the actual path passes through
the notional offset-wrist singularity and changes branch as defined by Cheng et al. [4].

Tool deflections −0.195◦ and 0.49◦ in Table 2 and Figs. 5(b) and 6(a) hence bound the small yet
finite range of a turning-point singularity for the wrist of the MA1400 robot. The “bifurcated” condition
in Tables 2 and 3 marks the transition to a fully developed turning point seen in Fig. 5(a) and (b).
Figure 6(a) and (b) show the second bifurcation at the other end of the range of tool deflection exhibiting
path reversal. This bifurcation occurs on the opposite side from where the avoidance maneuver meets
the actual path. It is made more apparent by plotting the right-hand path segment after adding 360◦. This
gives identical displacement on revolute joint 4 because 360◦ is a complete cycle of joint rotation.

Table 3 shows the 50E robot to switch between through and reversal paths without the transitional
s-curve condition. The inflected condition noted in the table occurs on a reversal path. Its onset is when
the tool deviation crosses below 12.27◦, and an inflected reversal is shown for 12.2◦ in Fig. 7(a). Tracing
the left-most curve in its tool-traversal direction, starting at the bottom, and continuing up to its abrupt
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(a) (b)

Figure 7. 50E robot at 12.2◦ tool deflection where (a) shows paths intercepting a path reversal that
contains slope inflections (b) magnified view, where these inflections occur at the curvature zero
crossings.

reversal near its top, it shows a pair of shallow inflections. This curve is magnified in Fig. 7(b). For this
segment of the curve, θ9 is a single-valued function of θ4. Path curvature d2θ9

/
dθ2

4 is shown on the same
chart. The chart also shows the parametric model from Section 4.2 to approximate the actual path. The
range of θ4 where the path is inflected is bounded by where curvature changes sign.

Tracing the right-hand path segment in Fig. 7(a) also required manual intervention. In taking steps of
θ4 downward from θ4ref , the singularity locating procedure stopped short of the turning point where the
closure error exceeded a threshold. This procedure does not need to reach the turning point, however, to
bound the region of convergence limiting steps of θ9 along the actual path.

4.1. Intercepting the actual path

Section 3.3 raises the concern of reaching the actual path from the least-maximum point on the adjusted
path. An intercept path starts at the point in the avoidance maneuver of maximum tool deviation and
follows a line of constant C4

/
C9 slope as shown in Fig. 7(a). The actual-path region where θ9 as a

function of θ4 has positive slope and negative curvature is intercepted by C4
/

C9 =−6. This supplies
a usable starting point for planning the avoidance maneuver. Ratio C4

/
C9 =−80 intercepts the wrong

segment but on a region of negative slope and positive curvature, so this intercept is rejected and C4
/

C9
is reduced by a factor of 2 before trying again. The intercept path at C4

/
C9 =−50 does not intercept

any branch, but method of Appendix B detects this to allow rejecting this intercept, updating C4
/

C9,
and retrying. Ratio C4

/
C9 =−33, however, intercepts a region between the inflections, where the slope

and curvature are both positive. This intercept can also be rejected.
For all reported cases, rate ratio C4

/
C9 =±6 met three conditions on the sign of slope, curvature,

and rate-of-change of curvature of the actual path at the point of intercept. This ratio gave usable path-
planning starting points. In instances found where these tests fail, the actual path could be followed
backward to identify missed inflections.

4.1.1. Kinematic model of path reversal
Figures 8 and 9 are maps in stereographic projection of the surface of a sphere [46] used to visualize
the articulation of a robotic wrist [1]. Alternatively, Milenkovic and Huang [25] use a joint-angle radial-
coordinate plot not based on a map projection. In all such plots, the point of the axis direction vector of
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(a) (b)

Figure 8. Singularity avoidance maneuver for 50E robot at 12.2◦ tool deflection in stereographic pro-
jection (a) zero wrist offset and (b) offset 0.170 m. The acceleration limit is set to 50rad/s2, giving a
smooth onset of the avoidance maneuver. The actual path divides into the reference path traced by the
pole of joint 8 and the adjusted path traced by the pole of joint 6 when separated by a nonzero tool
deviation arc 7.

(a) (b)

Figure 9. Actual path traced by joint 6 for the 50E robot at 12.2◦ tool deflection in stereographic
projection of (a) zero wrist offset and (b) offset 0.170 m. For clarity, only one of two actual-path branches
of the offset wrist is shown.

a joint represents its pole. The maps in Figs. 8 and 9 are centered on the pole of joint 4 for the first joint
in the robot wrist, marked by the fixed dot. As a consequence, they are polar plots where articulating
joint 4 changes the angle and joint 5 changes radial distance to the dot for joint 6.

The axis of joint 5 is located 90◦ from joint 4, separating its pole from that of joint 4 by a large
distance outside the region of the map. The equator of joint 5, however, is along a radial line of constant
longitude in this map projection emanating from the pole of joint 4. Varying θ5 sweeps the pole of joint 6
along that line. Actuating joint 6 can rotate another line passing through its pole in relation to the sweep
induced by joint 5, completing the change in body orientation effected by rotations about the three axes
of the physical wrist. Setting θ5 = 15◦ and varying θ4 sweeps joint 6 along a non-equatorial latitude
line, the quarter-circle shown on each map. Setting θ5 = 0 makes the poles of joints 4 and 6 coincident.
Because the maps only represent orientation and thus cannot distinguish collinear from parallel axes,
this condition marks the singular posture of a spherical wrist yet only the notional singularity of an offset
wrist.

Figure 8 depicts the singularity avoidance maneuver for both a zero-offset spherical wrist and the
offset wrist condition from Fig. 7. A forward tool traversal of increasing θ9 proceeds from right to left,
which is reversed from Figs. 4, 5, 6, and 7. The path divides into reference and adjusted paths after
the onset of tool deviation. The two paths are connected by the arc swept by the pole of joint 8 when
articulating joint 7. The least-maximum deviation occurs at the spherical wrist singularity. In an offset
wrist, the least-maximum deviation can occur a small displacement away from the notional singularity.

The kinematic model is formulated by considering that when maintaining a target tool position,
articulating an offset wrist also produces a translational displacement to be compensated by further
articulation of the robot arm. This action of the arm, in turn, adds to the orientational change to be
generated by the wrist. Hence even when their axis lines are parallel at that notional singularity, and
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unlike in the spherical wrist, joints 4 and 6 could still effect different orientational changes owing to
such wrist–arm interaction.

Figure 9(b) shows a reversal in the actual path of an offset wrist. Even in the zero offset case where
the actual path completes the traversal, the reference path in Fig. 8 shows a dip not seen in the Fig. 9(a)
actual path. The axis of joint 8 gives the correct direction in relation to ground from which the tool
deviates, but its change relative to joint 4 is attributable to arm/wrist coupling when articulating joints 7
and 8, both from the offset of the physical wrist along with the separation between physical and virtual
wrist centers.

Figure 9 shows angle θ = θ4 − θ4ref , where θ4ref is the reference angle of joint 4 giving −90◦ < θ <

90◦. Path position s is the similarly referenced value of joint 9 angle θ9 where s= 0 and θ = 0 at the
notional wrist singularity. Constant d = θ5 min is the minimum angle on joint 5 at close approach along
the actual path. These relations applied to Fig. 9 give

s= d tan θ (4)

This formula generates the through-path curve characteristic of a spherical wrist. The offset wrist at the
tool deflection angle shown in Fig. 4(a) also shows such a curve. Treating s as the independent variable,
it also accounts for the rapid rotation about joint 4 along with its sudden onset when passing the wrist
singularity at small d.

Considering the wrist in the 50E robot where the axis of joint 4 is offset from the intersection of
joints 5 and 6, rotation about joint 4 produces a circular translation about that intersection point. Joint
6 generates a similar translation in the MA1400 robot where the axis of joint 6 is offset from the other
two wrist axes. The arm effects a change in orientation as it articulates to compensate for the translation
generated by the wrist in either type of robot. Considering the robot and accompanying virtual joints
to form a closed kinematic loop, this in turn changes the orientation of joint 9 with respect to a wrist-
based orientation frame. The resulting three degrees of orientational change may alter the offsets to θ4
and θ9 giving θ and s along with the value of d. An approximation only considers d changing with θ

according to

d(θ)= d0 + dc cos θ + ds sin θ = d0 + dr cos (θ − θr) (5)

where either d0, dc, and ds or d0, dr , and θr form sets of three coefficients parameterizing the model. Over
the course of a singularity encounter, θ4 and in turn θ vary over nearly a 180◦ range, and the translation
generated by the wrist follows nearly a complete semicircle. The robot arm is assumed to be sufficiently
far from its singular positions that its orientational change is nearly proportional to the compensating
translation of the arm along each of two Cartesian axes in the plane of the semicircle. Such sinusoidal
displacement from articulating an offset wrist is observed by Trinh et al. [6].

This coupling of close-approach distance d to angle θ replicates the behavior of an offset wrist under-
going a path reversal. Consider θ as the independent variable and s as the dependent variable. Viewing
Fig. 9(b) as θ increases from its initial value near −90◦, the path is traversed from right to left until the
reduction in d with increasing θ draws it back toward the joint 4 pole. When d crosses through zero upon
passage of a critical angle of θ , the tool path crosses the joint 4 pole, also marked by wrist deflection
angle θ5 changing sign. As θ increases toward its opposite asymptote at +90◦, the sign change of d in
Eq. (4) has reversed the path direction to proceed from left to right.

Expressing cos θ , sin θ , and tan θ in terms of t = tan
(
θ
/

2
)
, Eqs. (4) and (5) become

0= st4 + 2 (d0 − dc) t3 + 4dst2 + 2 (d0 + dc) t − s (6)

at path location s derived from tool traversal angle θ9. This polynomial has no more than four real-valued
roots in t, from which may be θ4 is derived. Tool deflections−0.25◦,−0.197◦,−0.195◦, 0.49◦, and 0.5◦
from Figs. 4, 5, and 6 exhibit ranges of θ9 showing 4 solutions for θ4. Other ranges and figures show two
solutions, and Fig. 7 has a range with zero solutions. A fourth-order polynomial does not allow either
1, 3 or more than 4 solutions, and there are no examples of these in Figs. 4, 5, 6, and 7.

https://doi.org/10.1017/S0263574721000461 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000461


206 Paul Milenkovic

The modeled path plotted in Fig. 7(b) results from manual adjustment of parameters giving θ = θ4 −
141.5◦ + 90◦, θ9 = s− 6.5◦ and d (θ)= 3.5◦ (0.05+ cos (θ + 3.5◦)). For the model’s range of −90◦ <
θ < 90◦, d (θ) only crosses zero when θ reaches 89.4◦. The model will switch from this reversal to a
through path when the zero crossing is delayed beyond 90◦. This accounts for a path bifurcation being
sensitive to small parameter changes in the model.

Whereas the model also exhibits a path inflection where its curvature changes sign, this occurs over
lower values of θ4 than the actual wrist in Fig. 7. The model is not able to reproduce the sharp corner
occurring in the actual path either. This level of approximation nevertheless offers insight into how an
offset wrist can undergo a path reversal.

Interestingly, the offset wrist on the Universal Robots UR robot is not expected to show path reversals.
The UR has the axes of joints 2 and 3 in the arm along with joint 4 of the wrist in parallel. At the notional
singularity where joint 5 is articulated to place joint 6 in parallel with 4, joints 2, 3, 4, and 6 form a planar
four-bar linkage. The translational displacement resulting for articulating joint 4 can be compensated by
joints 2 and 3 to allow joint 6 to rotate about its axis line fixed in space. The orientation change produced
by the arm is in this way compensated by rotation of joint 4, only. Offset d is therefore not changed as
joint 4 articulates similarly to a spherical wrist. A video produced by the CoRo lab at ETS in Montreal
[47] shows this compensation.

5. Conclusions

A serial robot with a nonspherical offset wrist has more complicated than anticipated paths when
encountering its wrist singularity. Added path types over a spherical wrist include single (turning point)
and double (s-curve) path reversals. These occur over a small yet finite range of passage near the notional
offset-wrist singularity where its first and third joints become parallel. An approximate kinematic model
accounting for arm/wrist interaction replicates a turning point along the robot path, giving a wrist
orientation exclusion zone.

Extending the prior procedure formulated for a spherical wrist [1] required meeting multiple rather
than a single stationarity condition to find an adjusted displacement path giving a least-maximum
tool deviation. The joint-rate ratio C4

/
C9, however, needed to be limited when tracking outward from

the least-maximum point to locate before-and-after singularity-encounter path segments at zero tool
deviation. A rate ratio of C4

/
C9 =±6 was found effective for the offset-wrist robots considered.

Owing to the different singular conditions occurring away from the notional singularity of an offset
wrist, new procedures were required to locate them on the actual path. The ability to distinguish between
either a through-path or a turning-point singularity is an important advance over the prior method. This
allows determining the minimum path length bridging either through paths or reversal paths of the offset
wrist.
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Appendix A
The guided displacement path-following method [1] is extended to multiple guiding coefficients as required to optimize the
avoidance path for an offset wrist. Minor optimizations omitting zero terms in summations are not shown.

The robot joint numbers start at 1 at the robot base. To keep the same notation used in prior work [27, 34, 48], the grounded
base is numbered link 1, which is connected to initial moving link 2 in the robot by joint 1. A nonredundant serial robot is extended
with a virtual joint representing tool motion that closes a kinematic chain. This loop allows solving the robot inverse kinematics
giving the desired tool displacement using a path-following algorithm[49]. The guided displacement method can supply joint rates
allowing a similar solution for a redundant robot. The series expansion of a serial robot is restated in what follows, the derivation
of the guided displacement from these equations is extended to multiple coefficients, and finally, such guiding is directed by one
or more virtual displacements occurring along an actual displacement path.

A revolute joint has screw Tj = (ωj ;v0j = rj ×ωj ) constructed from a pair of three-element vectors: unit length ωj gives the
joint axis direction, rj selects a point on the joint axis line, and × denotes the vector cross product [50, 51]. The instantaneous
screw or twist TCi of link i in the above numbering scheme is

TCi =
i−1∑
j=1

CjTj (A1)
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where Cj is the rate of joint j having joint screw Tj . Apart from joints connected to ground at each end of a chain, the joint screw
in turn varies according to the differential equation

Ṫi = TCi × Ti (A2)

for TCi the instantaneous screw imparted on the link immediately preceding the joint in the designated numbering scheme and
Lie product × (boldface ×). For these variables varying with time and having series expansions

Tj = Tj (t)= Tj [0]+ Tj [1] t + Tj [2] t2 + · · · ,

Cj =Cj (t)=Cj [0]+Cj [1] t +Cj [2] t2 + · · · ,

TCi = TCi (t)= TCi [0]+ TCi [1] t + TCi [2] t2 + · · ·
Equation (A1) relates the series coefficients of these variables by

TCi [k]=
i−1∑
j=1

Cj [k] Tj + TBCi [k]

TBCi [k]=
i−1∑
j=1

k∑
m=0

C̃j [m] Tj [k −m]=
i−1∑
j=1

C̃j [k] ∗ Tj [k] (A3)

where initial joint screws Tj = Tj [0]= Tj (0) and C̃j [m]=Cj [m] apart from C̃j[k]= 0. Operator ∗ denotes discrete convolution
expressed by the inner summation. For link i= n+ 1 closing the chain, the loop closure constraint TCn+1(t)= 0 is expressed

A C [k]+ TBCn+1 [k]= 0 (A4)

where the columns of matrix A are the initial joint screws Ti . Solving for rate vector C[k] comprised of elements Ci[k] subsequently
allows updating TCi[k] from TBCi[k] in Eq. (A3). Typically, a solution is found by designating a nonredundant subset of coeffi-
cients Ci as passive joint rates, whereas the remaining coefficients are designated as independent variables controlling the active
joints. Setting one or more of these independent variables to zero locks those joints. When the calculated loop closure error [49]
accumulates at the end of a path-following step, a nonzero TBCn+1[0] is applied to the next step in a combined predictor-corrector
procedure [27, 52, 53].

Equation (A2) tracks the joint screws over a finite displacement giving

Ti [k + 1]= 1
k + 1

Ṫi [k]= 1
k + 1

TCi [k] ∗× Ti [k] (A5)

that in turn determines C[k + 1]. Operator ∗× denotes discrete convolution over the Lie product ×.
The guided displacement method supplies additional independent variables to Eq. (A4) needed to meet constraining

conditions. The joint-rate vector is separated into terms

C [k]=Cγ γ [k] +Cβ [k] (A6)

where γ [k] is the guiding coefficient – γ denotes “guiding” and β “baseline.” In the prior single-guiding method, Cγ is the column
vector of joint-rate values [ Cγ 1 · · · Cγ n ]T for n joints and γ [k] is a scalar [21]. Multiple guiding coefficients are elements of
column vector γ [k]= [ γ1[k] · · · γν [k] ]T . Row vectors Cγ i = [ Cγ i,1 · · · Cγ i,ν ] for 1≤ i≤ n make up the n× ν matrix Cγ for
number of guiding coefficients ν. Hence product Cγ γ [k] remains a column vector under either single or multiple guiding.

Equation (A4) is satisfied for all γ [k] upon substituting C[k] from Eq. (A6) into Eq. (A4) giving

A Cγ = 0, A Cβ [k]+ TBCn+1 [k]= 0 (A7)

The one or more columns of Cγ giving homogeneous solutions to the linear system with matrix A are calculated once at the start
of a series expansion. Subsequently at each index k, scalar or vector γ [k] weights this collection of homogenous solutions to meet
one or more side conditions. The resulting value of C[k] then updates the value of TBCn+1[k + 1] to allow solving Eq. (A7) for
Cβ [k + 1].

Substituting Eq. (A6) into (A3) gives the influence of γ [k] on the link instantaneous screws

TCi [k]= Tγ Ciγ [k]+ Tβ Ci [k] , where

Tγ Ci =
i−1∑
j=1

TjCγ j , Tβ Ci [k]=
i−1∑
j=1

Cβ j [k] Tj + TBCi [k] (A8)
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Substituting this expression of the instantaneous screw into Eq. (A5) does the same for the joint screw

Ti [k + 1]= 1
k + 1

Tγ iγ [k]+ Tβ i [k + 1] , where

Tγ i,r = Tγ Ci,r × Ti for 1≤ r ≤ ν, Tβ i [k + 1]= 1
k + 1

T̃Ci [k] ∗× Ti [k] (A9)

and where T̃Ci[m]= TCi[m], m < k and T̃Ci[k]= Tβ Ci[k]. As with Cγ i , Tγ Ci = [ Tγ Ci,1 · · · Tγ Ci,ν ] and Tγ i = [ Tγ i,1 · · · Tγ i,ν ]
are right-multiplied by scalar or column vector γ [k] for one or more guiding coefficients. For Lie product ×, Tγ i,r = Tγ Ci,r × Ti
applies over the range of guiding-coefficient index r. As with Cγ , the one or more columns of Tγ Ci and Tγ i to be multiplied by
the one or more guiding coefficients are calculated once at the start of a series expansion. In this way, Eqs. (A6)–(A9) of the scalar
guiding coefficient formulation [1] have been extended to the vector case allowing multiple guiding coefficients.

The guiding coefficients γ [k] are calculated to meet constraints on the series coefficients of one or more joint-rate vectors
CV (t) comprised of elements CVi(t)= δθi(t)/.δx. These elements represent a virtual displacement δθi(t) of joint angle θi at time t
with respect to variation δx in parameter x. This is an infinitesimal displacement satisfying A(t)CV (t)= 0 at all times t along the
actual, finite-displacement path. The trajectories of the joint screws Ti(t) making up the columns of A(t), however, are determined
as before from the joint rates C(t) on the actual. Because the virtual displacement CV (t)is a property of the mechanism posture
having angles θ (t) determining those joint screws through the forward kinematic constraint, instantaneous rate vector CV can
represent a constraint on joint-angle vector θ .

The influence of γ [k] on the joint screws Ti[k + 1] from Eq. (A9) will be applied to A(t) in the solution of A(t)CV (t)= 0.
For simplicity of the following formulas, only a single virtual displacement CV (t) is considered. This generalizes to multiple
virtual displacements CV ,r (t), with each value of index r selecting one of those virtual displacements. Initial series coefficient
CV [0]=CV (0) is determined by solving A CV [0]= 0 for one or more active joint rates among the elements of CV driving the
virtual displacement; CV [0] is in this way determined by the initial joint angles of the robot along its actual displacement path. To
see how successive coefficients CV [k + 1] for k ≥ 0 are linear in the elements of the guiding vector γ [k] adding a constant offset,

A CV [k + 1]+
n∑

i=1
C̃Vi [k + 1] ∗ Ti [k + 1]= 0 (A10)

where C̃Vi[m]=CVi[m] apart from C̃Vi[k + 1]= 0. According to Eq. (A9), scalar γ [k] influences joint screw coefficients Ti[k + 1],
which in turn determines CV [k + 1] by Eq. (A10). Substituting

CV [k + 1]= 1
k + 1

Cγ V γ [k]+Cβ V [k + 1] (A11)

together with Eq. (A9) into Eq. (A10) and then grouping by dependence on γ [k] gives

A Cγ V +
n∑

i=1
CVi [0] Tγ i = 0,

A Cβ V [k + 1]+
n∑

i=1
C̃Vi [k + 1] ∗ T̃i [k + 1]= 0 (A12)

Constant Cγ V is an n× ν matrix as is Cγ that is also solved once at the start of a series expansion whereas Cβ V [k + 1] is solved at
each index k ≥ 0. Each γ [k] controls the next series coefficient CV [k + 1] by way of Eq. (A11). In a single-guiding example where
CV7(0)=CV7[0] �= 0, CV7(t) may be placed on a linear path restoring it to zero at t = 1 by setting γ [0] to make CV7[1]=−CV7[0],
with γ [k] chosen to make CV7[k + 1]= 0 for k ≥ 1. By correcting in this way for any CV7(t) �= 0 at the start of each successive
step that may result from predictor error in the preceding step, the side condition CV7(t)= 0 is “achieved and maintained” along
an actual displacement path.

In the instance of multiple side conditions of this form, Eqs. (A11) and (A12) will update series coefficients for the multiple
instances of virtual-displacement joint-rate vectors CV ,r(t) with initial coefficient CV ,r [0], each of which having a separate matrix
Cγ V ,r calculated once at the start of each series expansion along with its own baseline series coefficients Cβ V ,r[k + 1]. This
collection of virtual displacements, however, will share a single series of guiding coefficient vectors γ [k].

In the multi-guiding solution to the problem posed in Section 3.2 having passive joints 1, 2, 3, 7, 8, and 9 with guiding joints
4, 5, and 6 and virtual displacement active joints 4, 5, and 6 p, A Cγ = 0 is solved for the three columns of Cγ and Eq. (A12) is
solved for the three instances of Cγ V designated Cγ V , r for 1≤ r ≤ ν = 3. When CV ,r 7(0)=CV ,r 7[0] �= 0, the collection of virtual
displacements CV ,r 7(t) for 1≤ r ≤ ν = 3 may be placed on linear paths restoring them to zero at t = 1 by setting 3-vector γ [0] to
make each CV ,r 7[1]=−CV ,r 7[0], with 3-vector γ [k] chosen to make each CV ,r 7[k + 1]= 0 for k ≥ 1. With the single selection
of passive joint 7 in this example from each CV ,r (t), Eq. (A11) applied to each virtual displacement vector 1≤ r ≤ ν = 3 therefore
generates a 3× 3 system of linear equations solvable for the three elements of γ [k].

Algorithm: Given the initial joint screws Ti comprising matrix A, solve for constants Cγ , Tγ Ci , Tγ i along with the one or
more vectors CV [0] and matrices Cγ V defined above. For each index starting at k = 0, perform the following steps. Evaluate Eqs.
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Figure 10. Cases of quadratic functions f2(x) (dashed lines) and their lower-bound polynomials f̆p(x) (solid lines).

(A7)–(A9) for Cβ [k] and Tβ i[k + 1] followed by Eq. (A12) for one or more coefficients Cβ V [k + 1]. Solve Eq. (A11) for γ [k]
meeting conditions on the one or more virtual displacement coefficients CV [k + 1]. Use this vector γ [k] in Eqs. (A6), (A8), and
(A9) to update C[k], TCi[k] and Ti[k + 1] on the actual displacement path.

Appendix B
Path-planning stages described in Section 3 require articulating the robot to bring a targeted joint angle, its rate or a rate derivative
(angular acceleration) to zero. Prior procedures [1] displaced an active joint to make a coarse adjustment to the targeted quantity
of a passive joint. The fine adjustment exchanges the roles of active and passive between the two joints, which allows directly
declining a targeted joint angle to zero. In the case of a joint rate, the guided displacement method of Appendix A declines the
ratio of its rate with that of another joint (a speed ratio [54]) to zero. Finding an accurate zero of a rate derivative is important
for an offset wrist. The difference between this location and the notional singularity of the offset wrist can affect the convergence
of path-following steps along with the starting and ending points of the maneuver bridging a path reversal. Applying a guided
displacement to a rate derivative would require extending the complicated method of Appendix A to second order. Even in the
case of an angle or rate, this is a reversion of series that introduces new concerns regarding series convergence.

A reversion of series expands the inverse function x= g(y) from the coefficients of y= f (x), exchanging the roles of indepen-
dent and dependent variable. Inverse function g is singular, however, at the pair of values x, y where the forward function has an
inflection point. The Newton–Raphson method finding a zero of f (x) from its value and its derivative at a starting point x1 may
be regarded as a low-order reversion [55]; its iterations can diverge wildly near inflection f ′(x1)= 0 [56].

With a kinematic loop that admits a high-order power series expansion of the coupled Eqs. (A1) and (A2), a high-order guided
displacement method potentially allows solving for a zero of a speed ratio over a large angle displacement of the guiding joint in
one update step. Unfortunately, inflections of f (x) giving the speed ratio as a function of a joint angle make g(y) singular. Even
if that singularity is some distance from the zero in question, a high-order series converges slowly or even diverges if the step
size is large in relation to the distance to the inflection singularity. Such remains the case even when taking a step in the opposite
direction. Along with the need to extend Appendix A to the rate derivative, f (x) having an inflection on the scale of the distance
to its zero motivates deriving an alternative.

Consider expanding f (x) to high order, treating the truncated series as coefficients of polynomial fp(x), and solving for its
first real root. This process is heuristic inasmuch as this polynomial is not f (x). A high-order series truncation, however, gives
small kinematic closure error when its steps are restricted according to the limits described in Section 3.4. Taking a final step
that is a fraction ρ of that limit makes the error of an order p expansion even smaller by O(ρp+1). The problem then is one of
finding the first real root x0 > 0, if any, of a polynomial. Newton–Raphson iterations are of low calculation cost when applied to a
polynomial relative to function evaluations of the kinematic problem. Those iterations are prevented from overshooting the root
by applying them to a bounding polynomial. The procedure used for course adjustments [1] is improved by considering all cases
of the quadratic portion of this polynomial to ensure it contains one real root. The following also allows dispensing with reversion
of series for the final, fine adjustment at minor increase in calculation cost.

The approximating polynomial fp(x)= fp[0]+ fp[1]x+ fp[2]x2 + · · · + fp[p]xp is normalized so that fp[0]= fp(0)≥ 0 without
changing its roots. If fp(0)≡ 0, the first root is already located. The lower-bound polynomial f̆p(x) retains the quadratic coefficients
fp[0], fp[1], fp[2] and sets all positive coefficients fp[i] for 2 < i≤ p to zero. This guarantees that f̆p(x)≤ fp(x) for positive x and
that its first real root is a lower bound on the roots of fp(x). Function f̆3:p(x) leaves out the quadratic terms of f̆p(x), ensuring
f̆3:p(x)≤ 0 for x≥ 0 making it either constant or monotone down.

Considering the relationships between its order 2 quadratic part and the complete bounding polynomial in Fig. 10, case (a)
has a quadratic of initial negative slope and curvature, whereas case (c) has negative slope, positive curvature, and its first real
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root on the positive real line. Both quadratics are monotone down, to which is added a nonpositive monotone function f̆3:p(x),
establishing f̆p(x) to be monotone down in the interval up to the root of the quadratic. The bounding polynomial f̆p(x) therefore
has one real root between zero and this location.

In case (b), both the quadratic and the bounding polynomial f̆p(x) are initially of upward slope and downward curvature. Both
functions will continue to increase until they reach their respective slope inflection points. Hence f̆p(x) has no real root until after
its inflection. Between its inflection point and the positive-real root of the downwardly curved quadratic, f̆p(x) has one real root.

In case e) both functions are initially of positive slope and upward curvature. This condition is taken to be the absence of a
root and the search stops. If continuing the search, the bounding polynomial f̆p(x) will continue to increase until it passes first
its curvature inflection followed by its slope inflection. After that, f̆p(x) is monotone down if f̆3:p(x) has at least one nonzero
coefficient. It follows that f̆p(x) has only one real root on the positive real line. If f̆p(x) has not crossed below zero before the
end of the allowed step length, the search is continued with the next step.

As the quadratic has no real root on that interval, f̆p(x) would need to be sampled at increasing intervals to determine where it
changes sign, marking the upper limit on a single real root. In case d), the quadratic is downward sloping but upward curving with
no real roots. The bounding polynomial f̆p(x) cannot be guaranteed to be monotone down, and Fig. 10 shows an example f̆p(x) that
has an inflection between negative and positive slope before it will eventually have another inflection making it monotone down.
There is no simple means to judge the bound function to have a single real root on an interval. On this one case, and in exchange
for reducing the order of the error term, the quadratic is maintained up to its minimum in Fig. 10, after which it is replaced by a
constant of that minimum value. A nonzero f̆3:p(x) makes the resulting piecewise function of the “2–1 bound” monotone down.
It also gives the bound function negative slope at the location of the parabolic minimum. A single outward Newton–Raphson
iteration using that slope finds the upper limit of an interval containing one real root. A zero f̆3:p(x) results in a bound function that
does not trend downward, and this condition is taken to be the absence of a root where the search stops. If continuing the search,
the path is advanced to the allowed length of the current step, and the search is continued with the next step.

The final length of a step using series reversion is known before conducting the expansion, allowing the expansion to correct
the error from the previous step. Such a corrector is not as easily combined with the predictor step here in the non-reversion
method. Function f (x) needs to be expanded at the start of the step to obtain its bounding polynomial f̆p(x) giving a step limit
not overrunning the zero. Reducing the step length to meet this limit under-applies any correction combined into the expansion
of f (x). The non-reversion method is therefore conducted with a separate, second-order corrector, the calculation time penalty
being under 20% [27]. The algorithm below estimates the first zero of θ

{d}
z , where d is the order of the derivative of the angle of

a passive joint.

method findZeroAngleDerivative(int d,
return boolean success)

{
Apply corrector;
Conduct series expansion for predictor;
Evaluate θ

{d}
z1 from series coefficients;

θ
{d}
z0 ← θ

{d}
z1 ;t0← tZeroBound

(
θ
{d}
z [0 . . . p− d]

)
;

while (t0 > 10−12 && θ
{d}
z1 θ

{d}
z0 >

∣∣∣θ {d}z0

∣∣∣ 10−10) {
tx←maxStep();
// Limits steps approaching zero to .14 tx
if (t0 ≥ .14 tx)

{t0← (1− .07) tx ; if (t0 > tx) t0← tx ;}
Update kinematic variables at t0

from series expansion;
Apply corrector;
Conduct series expansion for predictor;
Evaluate θ

{d}
z1 from series coefficients;

t0← tZeroBound
(
θ
{d}
z [0 . . . p− d]

)
;

}
success = t0 > 0 ||θ {d}z1 θ

{d}
z0 ≤

∣∣∣θ {d}z0

∣∣∣ 10−10;
}
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