
Cite this article: Kügler, P., Schon, C., Schleich, B., Staab, S., Wartzack, S. (2019) ‘Cascading Forgetting in Product
Development Challenges and Evaluation’, in Proceedings of the 22nd International Conference on Engineering Design
(ICED19), Delft, The Netherlands, 5-8 August 2019. DOI:10.1017/dsi.2019.259

ICED19

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED19
5-8 AUGUST 2019, DELFT, THE NETHERLANDS

ICED19

CASCADING FORGETTING IN PRODUCT DEVELOPMENT
CHALLENGES AND EVALUATION

Kügler, Patricia (1); Schon, Claudia (2); Schleich, Benjamin (1); Staab, Steffen (2); Wartzack,
Sandro (1)

1: Friedrich-Alexander-Universität Erlangen-Nürnberg; 2: University of Koblenz-Landau

ABSTRACT
Vast amounts of information and knowledge is produced and stored within product design projects.
Especially for reuse and adaptation there exists no suitable method for product designers to handle this
information overload. Due to this, the selection of relevant information in a specific development
situation is time-consuming and inefficient. To tackle this issue, the novel approach Intentional
Forgetting (IF) is applied for product design, which aims to support reuse and adaptation by reducing
the vast amount of information to the relevant. Within this contribution an IF-operator called Cascading
Forgetting is introduced and evaluated, which was implemented for forgetting related information
elements in ontology knowledge bases. For the evaluation the development process of a test-rig for
studying friction and wear behaviour of the cam/tappet contact in combustion engines is analysed. Due
to the interdisciplinary task of the evaluation and the characteristics of semantic model, challenges are
discussed. In conclusion, the focus of the evaluation is to consider how reliable the Cascading Forgetting
works and how intuitive ontology-based representations appear to engineers.

Keywords: Intentional Forgetting, Ontologies, Knowledge management, Semantic data processing

Contact:
Kügler, Patricia
Friedrich-Alexander-Universität Erlangen-Nürnberg
Engineering Design
Germany
kuegler@mfk.fau.de

2527

https://doi.org/10.1017/dsi.2019.259 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.259

 ICED19

1 INTRODUCTION

Towards efficiency, productivity and innovation the increasing volume of available data and

information in organisations becomes more and more a challenge. Especially in product design a lot of

data and information about projects is documented, thus the resulting product knowledge could be

reused. This can lead to saving costs and time in development projects on the one hand. On the other

hand, individuals become overwhelmed by this vast amount of information. This information overload

could reduce performance and affects decision making (Jackson and Farzaneh, 2012). Even if decision

making must involve an information basis, however empirical studies proofed that too many

information could reduce the quality of decisions because of simplification (Probst et al., 2002). This

phenomenon occurs, because we are not able to objectively analyse and evaluate vast amounts of

information, thus we have to simplify them (Probst et al., 2002). One strategy of simplification in that

case is according to Shenk (2007) the persistence of status quo, which can inhibit fresh ideas and

innovation. To prevent that phenomenon, a novel method called Intentional Forgetting (IF) has been

applied to product knowledge (Kestel et al., 2017). The main purpose of IF is to reduce the presented

amount of information during the product development process to relevant elements. Thus, the product

designer is supported by a more efficient and target-oriented reuse of information and knowledge.

This contribution aims at presenting the evaluation of a specific forgetting operator for ontological

knowledge bases, namely Cascading Forgetting. This operator is developed with the aim to determine

related elements in a knowledge base, which should be rejected together. As the method of IF in the

context of product knowledge is an interdisciplinary work between IT and engineers, there occur some

challenges. Therefore, besides the evaluation of Cascading Forgetting, the focus of this contribution is

also the overcoming of challenges caused by the highly interdisciplinary character of the topic and the

evaluation.

2 BACKGROUND ON KNOWLEDGE REPRESENTATION AND UPDATING

A general theory of knowledge reuse is given by Markus (2001), who presents the importance of

knowledge and its reuse in organisations and industry in general. There are at least four types of

knowledge reusers: shared work producers, shared work practitioners, expertise-seeking novices and

secondary knowledge miners (Markus, 2001). For product design especially the first two types are

important. With “shared work producers” a group of people is meant, who works together in a team,

which produces knowledge for their own later reuse (Markus, 2001). Thus, this reuse situation arises,

for instance, by the development of variants or a new generation of existing products. Otherwise,

“shared work practitioners” are people, who are doing similar work, but in different settings, thus they

produce knowledge for each other’s use (Markus, 2001). This is a typical team work situation, where

information and knowledge have to be shared and understood by all participants. Thus, for instance,

the information about product requirements have to be clear and should be shared among the whole

design team. Both reuse situations have some challenge in common: a medium to capture, analyse and

share the knowledge is needed and a common understanding of all participants has to be reached.

Furthermore, for long-term use, this medium has to tolerance dynamics and changes within the

knowledge base. In the following some more information about knowledge representation and reuse,

as well as dynamics in knowledge bases, is presented.

2.1 Knowledge representation and reuse

For capturing and analysing information and knowledge, several knowledge representation forms are

well-known. Rude (1998) introduced, inter alia, rule- and frame-based representation methods, as well

as semantic networks. While rule-based systems provide a more or less unstructured database with

rules as knowledge, the frame-based approach works with structured knowledge objects (Rude, 1998).

Semantic networks are a more logically formalism for representation, as they are graphs, which are

built with nodes and labelled edges (Seel, 2012). However, frames and semantic networks have a

strong common basis, because they aim both the representation of individuals and their relationships

(Baader, 2010). While network-based systems are human-centred and an intuitive way for knowledge

representation and especially visualization, they are not satisfactory, because they don’t provide a

precise semantic characterization (Baader, 2010).

2528

https://doi.org/10.1017/dsi.2019.259 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.259

ICED19

This leads to the result, that even virtually identical-looking systems behave differently. However,

semantic networks and frames are the basis for Description Logic (DL), which is a formal language

for representing knowledge and reason about it (Baader, 2010).

A knowledge representation based on DL is usually divided in a TBox and an ABox. The TBox

consists of the underlying terminology, which is needed to describe the presented domain. It contains

classes and relations between them in a specialized vocabulary describing the ontology. The ABox

instead contains assertions about individuals, which belong to the generalized classes of the ontology.

The term “ontology” is borrowed from philosophy and stands for an formal and explicit specification

of a shared conceptualization (Gruber, 1993). In practice, ontologies can be formulated in the Web

Ontology Language (OWL), which corresponds to DL (Baader, 2010). Ontologies are well-suited as a

formal knowledge medium for reuse. On the one hand, an ontology provides advantages by analysing

the underlying information, thus it is able to reason and infer. Otherwise, an ontology provides a

consistent and unique vocabulary, which can be shared and understood by all participants, thus it

prevents misunderstanding. Semantic approaches became popular during the last years, especially for

reusing knowledge. Due to these advantages, the use of ontologies for collaborative work and

knowledge reuse becomes more and more popular either. A general approach for reusing engineering

design knowledge was developed by Baxter et al. (2007). This methodology integrates best practice

reuse, capturing of design rationale and knowledge-based support and supports process, product and

task knowledge with one system (Baxter et al., 2007). The focus of this project is the storing and

monitoring of information and knowledge, thus the mentioned information overload can inhibit an

efficient reuse. Moreover, Li et al. (2018) introduced an approach for mapping design and

manufacturing knowledge with an ontology. This approach aims to support the designer by providing

manufacturing constraints already in the early design stages, thus the manufacturability can be

verified. The focus of this approach is on closing the gap between design and manufacturing. With

focus on manufacturing another semantic approach for knowledge reuse is given by Camarillo et al.

(2018), which supports process Failure Mode and Effects Analysis (FMEA) by an ontology. Within

additive manufacturing Hagedorn et al. (2018) present a method for innovative design. The approach

works with an ontology, which captures business and technical knowledge about the innovative use of

additive manufacturing. As already mentioned, the approaches focus more on the capturing and

representing aspect, not an efficient retrieval. Moreover, dynamics and evolutions in the built

knowledge bases are not considered.

2.2 Changing and evolving ontological knowledge bases

Once a knowledge base is built up, the information and knowledge is usually not static. Thus, when it

comes to changes and dynamics, the content has to be revised. Within the classical belief revision

theory according to Alchourrón et al. (1985), which is also called AGM model, there are three change

operations: expansion, revision and contraction The simplest form of change is the expansion, which

adds a new axiom to a given knowledge base (hopefully) without violating the consistency.

Contraction stands for the rejection of axioms, which were further in the knowledge base. Contraction

goes hand in hand with the challenge of determining the axioms, which have to be rejected in order to

make sure that the contracted axiom is not entailed anymore (Alchourrón et al., 1985). Revision is an

operation where axioms are added, which are inconsistent with the given knowledge base, thus it

could belong with some contraction operation. Finally, inconsistencies caused by changes in

ontologies are a main challenge for evolving and dynamic knowledge bases. How these

inconsistencies arise by updates in knowledge bases, can be seen in the following example of a

revision operation from Gärdenfors (1992). Suppose there is a knowledge base, which contains the

axioms from Table 1.

Table 1. Axioms of an example knowledge base (Gärdenfors, 1992)

Axiom Description

 All European swans are white.

 The bird caught in the trap is a swan.

 The bird caught in the trap comes from Sweden.

 Sweden is part of Europe.

Inferred axiom

 The bird caught in the trap is white.

2529

https://doi.org/10.1017/dsi.2019.259 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.259

 ICED19

Furthermore, the last axiom is derived from the facts - . If the bird in the trap turns out to be black,

the existing knowledge base has to be updated and becomes inconsistent, because now not every

European swan is white, as axiom is violated. Consequently, a revision has to be applied. The

question is, which of the axioms have to be rejected. This is not trivial, because every statement in the

knowledge base has consequences and effects caused by inference. Thus, the decision is, which of

these consequences to retain and which to retract (Gärdenfors, 1992). For instance, there is the

decision between the two revisions of axiom (see Table 2).

Table 2. Possible revised axioms (Gärdenfors, 1992)

Axiom Description

ʹ All European swans except the one caught in the trap are white.

ʺ All European swans except some of the Swedish are white

Dealing with such updates can be done in different ways, thus different semantics are applied to

prevent or debug the inconsistencies in updated knowledge bases. Schon and Staab (2017) present an

approach for using query-driven updates with SPARQL update on instance-level. Thus, they formulate

semantics for update operations within the ABox. SPARQL query-language (Harris et al., 2013) was

developed for accessing the information in OWL ontologies. Due to changes represented knowledge is

usually not static, thus the SPARQL update language (Gearon et al., 2013) was developed to meet the

requirements for dynamics in knowledge bases. As it could be seen in the shown example, dynamics

in knowledge bases is not just the single deletion of one database entry. Therefore, the challenge for

applying IF to engineering design knowledge bases is the development of operators to ensure the

forgetting of the desired elements.

3 CASCADING FORGETTING IN PRODUCT DEVELOPMENT

As mentioned in the previous section, there are different ways for dealing with updates in ontological

knowledge bases. In product development every piece of information is interdependent, thus for

instance, geometry and design is interdependent from requirements and function. For forgetting

operations, it is important to be consistent with regard to the dependencies, thus if one piece of

information is not needed anymore, related information is rejected as well. Therefore, the IF-operator

Cascading Forgetting is developed and implemented. For evaluation purposes, an example ontology is

introduced, which contains the semantic model of design information about a test-rig.

3.1 An example: Setting up an ontology as a semantic model of a test-rig

For evaluating the Cascading Forgetting, an example ontology was built as a semantic model of a test-

rig, which aims studying the wear behaviour and lubrication conditions of the cam/tappet contact in

combustion engines. This demonstrator was chosen, because its development is highly based on reuse

and adaptation of an earlier test-rig development, which is for studying friction behaviour. For more

information about the test-rigs and the studies further read the contribution of Marian et al. (2018).

Both development processes are well documented, thus design adaptations are traceable. For instance,

measuring friction forces was realized with piezoelectric sensors within the first test-rig, which are

expensive and not robust enough for long-term studies. Due to this, the second test-rig was modified

and the friction force is no longer detected by piezoelectric sensors. Those adaptions provide some

unintentionally used IF mechanisms, like Cascading Forgetting, thus it was used to inspire the

scenarios for IF. Figure 1 shows an excerpt of the graphical visualized semantic model of the test-rig,

which was firstly introduced in Kügler et al. (2018). In the left down corner the core structure of the

ontology describes the product development process with classes (yellow) and relations (blue). The

ontology for the test-rig is partly automatically generated. While requirements, functions and solution

principles have to be inserted manually, in Kügler et al. (2018) an automated approach is introduced

for generating individuals from CAD-data and assign them to classes of the core ontology, as well as

relate them. This approach uses text-mining methods like Information Extraction for extracting

classes, individuals and relations from CAD reference lists. In Figure 1 some individuals (purple),

which are assigned to the ontology, and their relations (arrows) to each other are shown. The semantic

of the relations is equal to the class system and is not explicit shown in the figure because of

transparency and comprehensibility.

2530

https://doi.org/10.1017/dsi.2019.259 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.259

ICED19

Figure 1. Graphical section from semantic model of the test-rig

As it can be seen the individuals are highly interdependent. For instance, the function

“measuring_friction_forces” and the requirement “RQ_possibility_measuring_friction_forces” are

connected due to the relation “derivedFrom”. Beyond the advantages of the test-rig as a demonstrator,

like traceability of adaptation, it causes some challenges through the interdisciplinary character of the

project. While for the engineers the adaptations of some components and functions caused by new

requirements are clear and understandable, for the project partners of the IT side this was hardly

transparent. Vice versa, the engineers hardly understood the effects of semantics for updating, which are

used for the IF operators. Due to this, the communication between the partners required a common basis,

which provides the possibility to deliver the forgetting scenarios from the test-rig development and the

other way round to discuss the implementation of semantics for IF. Therefore, the ontology provides this

basis, because the engineers can describe the forgetting scenarios using the formal logic of the ontology

in the form shown in Table 3. It is not important for the IT-experts to understand the technical

interdependencies, as long they understand the underlying structure of classes and relations from the

ontology. Vice versa, which effects metaproperties cause can be described in the same way.

3.2 Using metaproperties and SPARQL queries for Cascading Forgetting

The Cascading Forgetting operation is a meta-property-guided deletion, which exploits the

metaproperties rigidity and dependency to guide the deletion and the desired cascading behaviour (Schon

et al., 2018). Metaproperties provide information about classes and their relationship to one another. The

metaproperties are added manually as annotations to the classes in the TBox of the test-rig model by the

engineers, using the ontology as communication medium for the implementation of the Cascading

Forgetting by the IT-experts. The first metaproperty is rigidity. This metaproperty can be set for classes,

which are essential to all its individuals. For instance, usually a class person is rigid, because one cannot

stop being a person. However, rigidity can be exploited for Cascading Forgetting, because rejecting the

fact that an individual belongs to a rigid class removes such a fundamental property of this individual

that it should be entirely removed from the ABox. As seen in Figure 2 the classes requirement and

function are set rigid. Suppose the ABox contains the following axioms (see Table 3). If the function

“measuring_forces” (1) is rejected, also axiom (3) is deleted, because it contains the individual of the

rigid class. Furthermore, the deletion of axiom (2) is caused by the dependency-metaproperty

subfunction dependsOn function and no individual of function is left. (see Figure 2).

RQ_possibility_measuring_friction_forces

RQ_possibility_measuring_normal_forces measuring_forcesmeasuring_normal_forces

measuring_friction_forces

piezoelectric_sensors

calculation_from_torque_measurement

AS-TSPS-100

AS-TSPS-200 AS-TSPS-200-13

PT-TSPS-200-13-1
AS-TSPS-1-00-00-00

AS-TSPS-1-01-13-00

assembly

part

requirement

function

solution_principle

subfunction

subassembly

derivedFrom

isFulfilledBy

isRealizedBy

hasPart

hasPart

hasSubassembly

standard_part

givesSupportTo

isRealizedBy

requirement subfunction function

solution_principle

assembly

subassembly

part

2531

https://doi.org/10.1017/dsi.2019.259 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.259

 ICED19

Table 3. Example ABox of the test-rig

(1) function (measuring_forces)

(2) subfunction (measuring_friction_forces)

(3) givesSupportTo (measuring_friction_forces, measuring_forces)

This shows how the dependency supports the cascading behaviour of the operation. Due to the fact,

that some class depends on another class, the individuals of that class will be rejected with the

individuals from the class it depends on, if there is no individual left belonging to the class. The

Cascading Forgetting operator combines the dependency- and rigidity-guided deletions, allowing

interactions between rigid concepts and dependencies, which can lead to further forgetting (Schon et

al., 2018). A dependency-guided deletion can lead to the deletion of a rigid assertion, which will cause

the deletion of all related axioms, leading to the violation of dependencies (Schon et al., 2018).

Figure 2. Metaproperties rigidity and dependency class annotation

For the formal definition of dependency- and rigidity-guided deletion further read Schon et al. (2018).

The use of metaproperty-guided deletion seems to be well-suited for Cascading Forgetting of

engineering design knowledge, because it specifically rejects the highly interdependent elements. The

evaluation of the implemented operators will be part of the next section.

4 INTERDISCIPLINARY PERFORMANCE EVALUATION OF CASCADING

FORGETTING

The evaluation of the Cascading Forgetting operator was conducted by the IT partners of the project,

who also developed the operator. The knowledge base of the test-rig was developed by the engineers

within the project, who supported the evaluation with additional material for the test persons. In the

following the focus is on the conduction with the engineers.

4.1 Evaluation set up

The project-partners from the IT developed a questionnaire with 40 questions in the form shown in

Figure 3. Seven experts from the engineering side were chosen for the evaluation. Four of them were

not familiar with the development of the test-rigs, neither with the semantic model. One was an expert

of the test-rigs and one has developed the ontology and is author of this paper. The scheme is the same

in every question, thus the engineers had to decide if they want to delete the second assertion with the

first one.

assembly

part

requirement

function

solution_principle

subfunction

subassembly

derivedFrom

isFulfilledBy

isRealizedBy

hasPart

hasPart

hasSubassembly

standard_part

givesSupportTo

isRealizedBy

rigid

rigid

dependsOn function w.r.t. givesSupportTo

dependsOn part w.r.t. hasPart

dependsOn assembly w.r.t. isSubassemblyOf

dependsOn function w.r.t. fulfils

dependsOn part w.r.t. hasPart

dependsOn assembly w.r.t. isPartOf

2532

https://doi.org/10.1017/dsi.2019.259 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.259

ICED19

Figure 3. Example question of the questionnaire developed by Institute WeST

This means for the example in Figure 3 the engineers had to decide if they want to delete the solution

principle piezoelectric_sensors with the subfunction measuring_friction_forces or not. Due to that

decision the engineers had to know about the relations and hierarchical structure of the test-rig. The main

objective of the evaluation was finding out, how well the Cascading Forgetting operator matches the

desired and expected forgetting operations of the engineers. Different knowledge states of the test

persons are important for the engineering perspective of evaluation. The evaluation was used to improve

ontology modelling and to learn how the forgetting is perceived by the test persons. Also a question of

interest was, if there are significant differences between the answers persons related to different

knowledge states. For preparation and conduction of the evaluation there arise two main challenges:

1. Understanding the semantics

The challenge with the final questionnaire was, that the used semantics, and thus ontologies in general,

are not a very common knowledge representation form in engineering design yet. Thus, the main

question from engineering perspective at this point was, how well the test persons deal with these

semantics. Even if the vocabulary of the ontology was developed in cooperation with an expert for the

test-rig, the notation and structure of an ontology is sometimes difficult to understand. Therefore, the

following question should be answered by the evaluation from engineering perspective: Do one need a

deeper background knowledge by dealing with ontology representations or is it enough to know the

structure of the ontology?

2. Presenting the relations within the test-rigs

Some additional material was provided for the test persons, thus they know the relevant hierarchical

structure of the test-rigs and the interdependencies within the whole ontology. A main challenge for

providing this additional material was, that the information has to be clear enough to understand the

relationships within the semantic model of the test rig, but not influence the test persons by decisions of

forgetting. Therefore, an relevant excerpt from the basic ontology structure (see Figure 1, below left) and

an excerpt of a model tree representation (like in CAD software) was presented. Moreover, a table sheet

was added, which shows the relationships between requirements, functions and solution principles.

4.2 Results and Discussion

For evaluating the quality of the Cascading Forgetting operator the metrics precision and recall were

created. Precision is a metric for showing how many matches between the answers of the engineers

and the Cascading Forgetting are achieved. Recall stands for how many of the desired forgetting

operations, the Cascading Forgetting operator has performed. The precision of the Cascading

Forgetting was 1, which indicates, that the engineers agreed with all deletions the operator has

performed and there is no case the operator deletes to much (Schon et al., 2018). The recall was

comparatively low with 0.48, which means the engineers expected more forgetting operations, which

are not performed by the operator (Schon et al., 2018). For more detail on how the evaluation was

conducted further read Schon et al. (2018). An interesting difference within the interpretation of these

metrics arises during the discussion of the results between the interdisciplinary project partners: For

the IT-experts the low recall was interpreted more negative for the performance of the operator, as it

was for the engineers.

Assume the fact that

measuring_friction_forces belongs to class subfunction

is supposed to be forgotten. In your opinion, should the fact that

piezoelectric_sensors belongs to class solution_principle

be deleted as well?

rather yes

yes

rather no

no

2533

https://doi.org/10.1017/dsi.2019.259 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.259

 ICED19

A main reason for that is, that “forgetting” is associated with loss of information, which is a highly

sensitive topic in product design. Therefore, a so-to-say cautiously behaving forgetting operator is

perceived more positive from an engineering perspective. However, for a more efficient use of

Cascading Forgetting the recall should be a little bit higher. As described in Schon et al. (2018), by

analysing the questions, where the majority of the engineers wanted to delete more than the Cascading

Forgetting operator, some causes have been revealed. Some metaproperties were not set in the ontology.

This is a problem of the currently manual set of the metaproperties, which will supported by

spreadsheets in the future (see section 4.3). Moreover, some modelling errors occurred during the

evaluation. For instance, the class subfunction was not set as a subclass of function. Schon et al. (2018)

also mention that some kind of counting dependencies are needed, thus assertions like something is only

a subassembly if it has at least two parts, can be mapped. Another aspect are mutual dependencies, which

means, that the dependency was set for a property, but not for the one, which is symmetric to it (Schon

et al., 2018). These kind of dependencies are not supported by the current Cascading Forgetting.

From the engineering perspective there were some further results beside the quantification of the quality

of the Cascading Forgetting operator. All participants were largely in agreement about the forgetting

operations, which is an indicator, that the modelling of the ontology and the forgetting operations are

intuitive and largely understandable to the engineers. Thus, IF scenarios can be generalized, for instance

the starting point is often a function or a requirement. Moreover, the largely agreement of the different

participants is interpreted, that the semantics are understandable for experts and novices of a specific

technical system, when they have an engineering background. Therefore, the ontology itself can be used

for the presentation of the knowledge. However, some questions arise during the evaluation regarding

the modelling of the ontology. Some individuals were attached to more than one class, for instance, some

subassemblies are also classified as assemblies, because every subassembly is also an assembly. Such

double classifications lead to confusion when deciding on forgetting operations. Therefore, this issue will

be considered in future semantic models. The ontology was optimized, thus the above mentioned issues

were resolved. The missing metaproperties were set and the modelling errors were fixed, thus the recall

rises to 0.7, while the precision remain unchanged (Schon et al., 2018).

4.3 Automating the setting of metaproperties for Cascading Forgetting

For a better handling of Cascading Forgetting in product design, the dependencies between the classes

are stored in a spreadsheet (see Table 4). Due to the questionnaire the forgetting pairs are extracted,

which were deleted together by the engineers, even if they are not all yet supported by the Cascading

Forgetting operator. Therefore, Table 4 shows the pairs, which are connected through the dependency

metaproperty. As described in Section 3.2 an individual is rejected with another individual, on which it

depends. For instance, an individual x of class function is deleted, if the individual y of class

requirement is rejected, on which x depends with respect to (w.r.t) the relation derivedFrom. These

kind of rules are true for the entries (2) to (6) of Table 4. The pairs (7) and (8) have a special role,

because a dependency metaproperty is just set, if there is no subfunction or rather subassembly,

which is connected to the solution_principle or rather to the part.

Table 4. Table of metaproperties for Cascading Forgetting in product design

(1) requirement rigid

(2) function rigid dependsOn requirement w.r.t. derivedFrom

(3) subfunction dependsOn function w.r.t. givesSupportTo

(4) solution_principle dependsOn subfunction w.r.t. fulfils

(5) subassembly dependsOn assembly w.r.t. isSubassemblyOf

(6) part dependsOn subassembly w.r.t. isPartOf

(7) solution_principle dependsOn function w.r.t. fulfils

(8) part dependsOn assembly w.r.t. isPartOf

(9) subassembly consists of: [at least 1 part and 1 subassembly]

 or 2 parts or 2 subassemblies

(10) asssembly consists of: at least 1 part and 1 subassembly

 or 2 parts or 2 subassemblies

2534

https://doi.org/10.1017/dsi.2019.259 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.259

ICED19

For the pairs (9), and (10) we need a special dependency, which can count, because an assembly is

only an assembly, if it contains at least two parts or two subassemblies or a subassembly and a part.

This is equal to the subassemblies. Those counting dependencies are not possible with Cascading

Forgetting yet, but part of future research. The “rigid” property is added in a separate column to the

rigid classes. Due to the Protégé-Plugin Cellfie1, the spreadsheet can be automatically loaded as

annotations to the existing classes using rules in Manchester Syntax (Horridge and Patel-Schneider,

2012). The control by spreadsheets is much easier to handle and the usability can be improved by a

template, thus only the class pairs, which depend on each other, and the relation have to be chosen

from a list manually.

5 CONCLUSION AND FUTURE WORK

Due to the corporate performance of the evaluation, three main perceptions are gained. First of all, the

evaluation shows, that metaproperty-guided Cascading Forgetting rejects related information reliably,

even it is a little bit too cautious for now and needs some more dependencies, e. g. counting

dependencies. Second, ontologies are a powerful communication base for bridging the gap between

interdisciplinary caused misunderstandings, as long all participants have a basic understanding of the

logical structure of ontologies. This makes ontologies a quite good tool for knowledge engineers to

design uniform and universally understandable knowledge and information structures that can be used

for analysis. At least, Cascading Forgetting and the ontological notion of product design information is

intuitive to engineers, even if they did not work with ontologies before. In the questionnaire,

Cascading Forgetting was evaluated only with regard to pairs of statements. However, the operator for

Cascading Forgetting also deletes larger amounts of assertions, depending on the specified

metaproperties. These intelligent deletions provide a great support to product designers, by supporting

the rejection of related elements, especially if the connections are not obvious.

However, as mentioned before, some modelling errors occurred during the evaluation. Therefore, the

optimization of the basic ontology structure is part of future research. For a more robust design of a

product design ontology, which integrates and connects all relevant information for reuse and

adaptation, suitable Ontology Design Patterns (ODPs) will be searched. These are reusable patterns

and small ontology excerpts, which are validated for specific tasks, thus they reduce the occurrence of

modelling errors. Due to an ontological integration of reusable product design knowledge and the use

of Intentional Forgetting, reuse and adaptation becomes more efficient and transparent.

REFERENCES

Alchourrón, C.E., Gärdenfors, P. and Makinson, D. (1985), “On the logic of theory change. Partial meet

contraction and revision functions”, The journal of symbolic logic, Vol. 50 No. 2, pp. 510–530.

http://dx.doi.org/10.2307/2274239.

Baader, F. (2010), The description logic handbook: Theory, implementation, and applications, Cambridge

University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511711787.

Baxter, D., Gao, J., Case, K., Harding, J., Young, B., Cochrane, S. and Dani, S. (2007), “An engineering design

knowledge reuse methodology using process modelling”, Research in Engineering Design, Vol. 18 No. 1,

pp. 37–48. http://dx.doi.org/10.1007/s00163-007-0028-8.

Camarillo, A., Ríos, J. and Althoff, K.-D. (2018), “Knowledge-based multi-agent system for manufacturing

problem solving process in production plants”, Journal of Manufacturing Systems, Vol. 47, pp. 115–127.

http://dx.doi.org/10.1016/j.jmsy.2018.04.002.

Gärdenfors, P. (1992), “Belief revision. An introduction”, In Gärdenfors, P. (Ed.), Belief Revision, Cambridge

University Press, Cambridge, pp. 1–28. http://dx.doi.org/10.1017/CBO9780511526664.001.

Gearon, P., Passant, A. and Polleres, A. (2013), SPARQL 1.1 Update. [online] W3C, Available at:

http://www.w3.org/TR/2013/REC-sparql11-update-20130321/ (accessed 12 November 2018).

Gruber, T.R. (1993), “A translation approach to portable ontology specifications”, Knowledge Acquisition, Vol.

5 No. 2, pp. 199–220. http://dx.doi.org/10.1006/knac.1993.1008.

Hagedorn, T.J., Krishnamurty, S. and Grosse, I.R. (2018), “A Knowledge-Based Method for Innovative Design

for Additive Manufacturing Supported by Modular Ontologies”, Journal of Computing and Information

Science in Engineering, Vol. 18 No. 2, p. 21009. http://dx.doi.org/10.1115/1.4039455.

Harris, S., Seaborne, A. and Prud’hommeaux, E. (2013), SPARQL 1.1 query language. [online] W3C, Available

at: http://www.w3.org/TR/2013/REC-sparql11-query-20130321/ (accessed 12 November 2018).

1 https://github.com/protegeproject/cellfie-plugin

2535

https://doi.org/10.1017/dsi.2019.259 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.259

 ICED19

Horridge, M. and Patel-Schneider, P.F. (2012), “OWL 2 Web Ontology Language”. Manchester Syntax (Second

Edition), W3C Working Group Note. [online] W3C, Available at: https://www.w3.org/TR/2012/NOTE-

owl2-manchester-syntax-20121211/ (accessed 19 February 2018).

Jackson, T.W. and Farzaneh, P. (2012), “Theory-based model of factors affecting information overload”,

International Journal of Information Management, Vol. 32 No. 6, pp. 523–532.

http://dx.doi.org/10.1007/s00163-007-0028-8.

Kestel, P., Luft, T., Schon, C., Kügler, P., Bayer T, Schleich, B. and Wartzack, S. (2017), “Konzept zur

zielgerichteten, ontologiebasierten Wiederverwendung von Produktmodellen”. Design for X, Bamberg,

04.-05. Oktober 2017, TuTech, Hamburg, pp. 241–252.

Kügler, P., Kestel, P., Schon, C., Marian, M., Schleich, B., Staab, S. and Wartzack, S. (2018), “Ontology-based

approach for the use of Intentional Forgetting in product development”. 15th International Design

Conference, May, 21-24, 2018, The Design Society, Glasgow, pp. 1595–1606.

http://dx.doi.org/10.21278/idc.2018.0402.

Li, Z., Zhou, X., Wang, W.M., Huang, G., Tian, Z. and Huang, S. (2018), “An ontology-based product design

framework for manufacturability verification and knowledge reuse”, The International Journal of Advanced

Manufacturing Technology, Vol. 26 No. 1, p. 139. http://dx.doi.org/10.1007/s00170-018-2099-2.

Marian, M., Tremmel, S. and Wartzack, S. (2018), “Microtextured surfaces in higher loaded rolling-sliding EHL

line-contacts”, Tribology International, Vol. 127, pp. 420–432.

http://dx.doi.org/10.1016/j.triboint.2018.06.024.

Markus, L.M. (2001), “Toward a theory of knowledge reuse. Types of knowledge reuse situations and factors in

reuse success”, Journal of management information systems, Vol. 18 No. 1, pp. 57–93.

http://dx.doi.org/10.1080/07421222.2001.11045671.

Probst, G., Raub, S. and Deussen, A. (2002), Kompetenz-Management: Wie Individuen und Organisationen

Kompetenz entwickeln, Gabler, Wiesbaden.

Rude, S. (1998), Wissensbasiertes Konstruieren, Shaker, Herzogenrath.

Schon, C. and Staab, S. (2017), “Towards SPARQL instance-level Update in the Presence of OWL-DL

TBoxes”. Joint Ontology Workshop, Bozen-Bolzano, CEUR-WS.org.

Schon, C., Staab, S., Kügler, P., Kestel, P., Schleich, B. and Wartzack, S. (2018), “Metaproperty-guided deletion

from the instance-level of a knowledge base”. 21st International Conference on Knowledge Engineering

and Knowledge Management, Nancy, 12.-16. 11.2018, Springer, Cham, pp. 407–423.

http://dx.doi.org/10.1007/978-3-030-03667-6_26.

Seel, N.M. (2012), Encyclopedia of the Sciences of Learning, Springer US, Boston.

http://dx.doi.org/10.1007/978-1-4419-1428-6.

Shenk, D. (2007), Data smog: Surviving the information glut, Rev.ed., HarperCollins, New York.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the financial support of project WA 2913/22-1 and STA 572/15-1

within the Priority Program 1921, by the German Research Foundation (DFG).

2536

https://doi.org/10.1017/dsi.2019.259 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.259

	049_ICED2019_460_CE
	049_ICED2019_460_PE
	203_ICED2019_557_PE
	256_ICED2019_216_CE
	256_ICED2019_216_PE

