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Electron backscatter diffraction (EBSD) has become an established characterization tool in a wide range 

of research fields. EBSD’s popularity is driven by its high level of automation, relatively fast acquisition 

speeds (especially with modern CMOS-based detectors) and, importantly, by the extensive variety of 

microstructural information that can be extracted from the raw phase and orientation data. Conventionally 

EBSD indexing involves detection of the Kikuchi band positions using the Hough transform, followed by 

an indexing process against a set of known phases (and associated look-up tables of Kikuchi band positions 

and intensities). This requires a certain degree of pre-knowledge about each sample and necessitates 

enough differences between the atomic and crystallographic structure of each phase so that the Hough-

based indexing process can differentiate between the phases. Over the past 20 years a number of technique 

refinements have improved the EBSD technique’s ability to discriminate between phases with similar 

structures: these include the use of chemical information (typically using energy dispersive X-ray 

spectrometry – EDS), the use of the relative width of Kikuchi bands and, more recently, the use of pattern-

matching techniques [1-4]. Recent developments have also indicated the potential of machine learning to 

determine the crystallography of unknown phases from EBSD patterns [5]. All of these approaches have 

drawbacks, including limited spatial resolution, limited crystallographic resolution or the requirement for 

extensive offline reprocessing. 

As EBSD data processing tools have become more sophisticated, it has become commonplace to divide a 

dataset into specific partitions or subsets, enabling individual components of a microstructure to be 

analyzed independently. This is particularly useful when separating a dataset into components based on 

grain size or location but is usually less successful when thresholding more continuous parameters such 

as Kernel Average Misorientation or EBSD pattern quality. In this presentation we introduce new tools 

within Oxford Instrument’s latest EBSD data processing software, AZtecCrystal, that utilize machine 

learning and a wide selection of microstructural parameters in order to discriminate between constituent 

parts of a microstructure. These can include phases that are typically indexed using the same 

crystallographic structure (such as bainite, ferrite and martensite in steels – all usually indexed using a 

body centered cubic (BCC) structure), or may involve microstructural elements that have been affected 

by different mechanisms, such as recrystallized and deformed fractions. Within the AZtecCrystal 

interface, a user can select a limited number of parameters and then train the system to identify regions as 

a specific class or phase. This recipe can then be applied to similar datasets, enabling a fast and 

reproducible classification of microstructures into its relevant constituent parts. 

In the example shown in Fig. 1, the Kernel Average Misorientation (KAM) map of a deformed and 

partially recrystallized Fe3Al microstructure (Fig. 1a) shows clearly the presence of small, recrystallized 

grains. However, although thresholding the KAM values (Fig. 1b) provides a reasonable first 

approximation of the 2 main fractions, the local variations in KAM values leads to locally poor results. In 

contrast AZtecCrystal’s phase reclassification tool, using a combination of pattern quality, KAM value 

and grain information, has successfully separated the microstructure into its 2 major fractions – 

recrystallized (Fig. 1c) and deformed (Fig. 1d). These fractions can then be used to define subsets and 

their properties (e.g. texture, boundary populations etc.) can be examined independently. Other examples 
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of the application of this novel and powerful approach will be presented, including case studies showing 

the reclassification of bainite, ferrite and martensite structures in steels. 

 
Figure 1. Figure 1. Reclassifying deformed and recrystallized fractions in a Fe3Al EBSD dataset. (a) 

Kernel Average Misorientation map of the whole dataset. (b) Standard thresholding approach, using KAM 

values > 0.65 deg: recrystallized shown in blue, deformed in red. Note small areas classed as recrystallized 

within the deformed grains and vice versa. (c) and (d) Results from AZtecCrystal’s machine-learning 

based reclassification tool, showing orientations (IPF-z direction) of the recrystallized and deformed 

fractions, respectively with a pattern quality background. 

References 

1. Nowell and S. Wright (2004), J. Microsc. 213, 296-305 

2. Goulden et al. (2015), Microsc. Microanal 21 (S3), 2033-2034 

3. Sitzman et al. (2015), Microsc. Microanal 21 (S3), 2037 

4. Winkelmann et al. (2018), Phys. Rev. Mat. 2, 123803 

5. Kaufmann et al. (2020), Science 367, 564–568 

 

https://doi.org/10.1017/S1431927620013410 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927620013410

