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A Central Limit Theorem and Law of the
Iterated Logarithm for a Random Field
with Exponential Decay of Correlations

Byron Schmuland and Wei Sun

Abstract. In [6], Walter Philipp wrote that “. . . the law of the iterated logarithm holds for any process

for which the Borel-Cantelli Lemma, the central limit theorem with a reasonably good remainder and

a certain maximal inequality are valid.” Many authors [1], [2], [4], [5], [9] have followed this plan in

proving the law of the iterated logarithm for sequences (or fields) of dependent random variables.

We carry on this tradition by proving the law of the iterated logarithm for a random field whose

correlations satisfy an exponential decay condition like the one obtained by Spohn [8] for certain Gibbs

measures. These do not fall into the φ-mixing or strong mixing cases established in the literature, but

are needed for our investigations [7] into diffusions on configuration space.

The proofs are all obtained by patching together standard results from [5], [9] while keeping a

careful eye on the correlations.

1 Introduction

Our motivation for this paper is a problem from [7] concerning the stochastic dy-
namics associated with a continuous system of particles from classical statistical phys-
ics. In other words, we consider a system of interacting diffusion processes on R

d

whose equilibrium measure is a Gibbs measure µ with potential φ. As part of our
investigation into the large scale regularity of the distribution of particles, we needed
to prove that the law of the iterated logarithm holds in equilibrium. This application
will be explained further in Section 5.

If we discretize the problem by letting Nn represent the number of particles in the

box
(
−(n + 1/2), n + 1/2

] d
, what we want to show is that

lim sup
n

Nn − E(Nn)
√

2 Var(Nn) log log n
= 1, µ-almost surely.

It is a classical result in probability that this law of the iterated logarithm holds if the
number of particles in disjoint sets are independent random variables, that is, if µ
describes a Poisson point process. From the statistical mechanics viewpoint, this is

the case when the potential function φ is identically zero.
Extending the law of the iterated logarithm to dependent fields requires approx-

imate independence, that is, the number of particles in widely separated regions of
space should be weakly correlated random variables. The standard proofs [1], [2],
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[4], [5], [9] for dependent fields impose mixing conditions in order to get the re-
sult. Unfortunately, for the particular application we have in mind, it is not known

whether mixing conditions hold.
Therefore we wrote this paper to give a proof of the law of the iterated logarithm

that avoids using mixing conditions, but rather, relies directly on the decay of corre-
lations (Condition 2 below). It is our hope that these results may also be of use to

others who study measures where a decay of correlations is known, but not a mixing
condition.

2 Notation and Basic Inequalities

We begin with a multiparameter, mean zero, strictly stationary process (xi)i∈Zd with
E(x6

0) < ∞. For I ⊆ Z
d we let |I| denote its cardinality, and we put F(I) = σ(xi |

i ∈ I). All distances in Z
d will be taken in the `∞ norm (|i|∞ := sup{|i1|, . . . , |id|})

and for subsets I, J we let d(I, J) := inf{|i − j|∞ | i ∈ I, j ∈ J}. Define the discrete
`∞ ball of radius n by Bn = {i ∈ Z

d | |i|∞ ≤ n} and note that |Bn| = (2n + 1)d.

Conditions

1. There is a constant a so that 0 < a|I| ≤ Var(
∑

i∈I xi).
2. There exist constants α, c > 0 such that if ΨI , Ψ J are square integrable real

or complex valued random variables with ΨI ∈ F(I) and Ψ J ∈ F( J), then
|Corr(ΨI , Ψ J)| ≤ |I| | J|ce−αd(I, J).

Comment The factor |I| | J| in Condition 2 above means that (xi)i∈Zd does not satisfy
the usual φ-mixing or strong mixing condition. We lose control over the correlation

of very large sets at a fixed distance from each other. On the other hand this is more
than compensated for by the fact that ce−αd(I, J) decreases exponentially in d(I, J). It
is not hard to see that all the results in this paper hold if we replace |I| | J| by (|I| | J|)p

for any p ≥ 1. However, our proofs fail for exponential mixing with exponential

factors like exp(|I|) exp(| J|). This type of mixing was obtained for Gibbs measures
in [3].

Definition 1 The following explicit constants will prove useful.

σ2 :=
∑

i∈Zd

E(x0xi)

b :=
∑

i∈Zd

|E(x0xi)|

M := max{E(x2
0), E(x4

0), E(x6
0)}

c1 := M

∞∑

r=0

(2r + 1)3dce−αr/3

c2 := 24b2 + 4c1.
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Note that the decay of correlations in Condition 2 gives

σ2 ≤ b ≤ Var(x0)
∑

i∈Zd

ce−α|i|∞ <∞.

Lemma 3 combined with Condition 1 shows that σ2 ≥ a > 0.
From the definition of b, it is easy to see that

(1) E
[(∑

i∈I

xi

) 2]

≤ b|I|.

The analogous result for the fourth moment is more difficult, and is given in the
following lemma.

Lemma 1 For any index set I ⊆ Z
d,

(2) E
[(∑

i∈I

xi

) 4]

≤ c2|I|2.

Proof We first gather some basic facts on the moments of xi . From stationarity and
Cauchy-Schwarz we have Var(xi) ≤ M,

Var(xix j) ≤ E[(xix j)
2] ≤ E(x4

i )1/2E(x4
j )

1/2
= E(x4

0) ≤ M,

and Var(xix jxk) ≤ E[(xix jxk)2] ≤ E(x6
0) ≤ M. Now we analyze the fourth moment

of the sum

E
[(∑

i∈I

xi

) 4]

=

∑

(i, j,k,l)∈I4

E(xix jxkxl).

For each multiindex (i, j, k, l) ∈ I4 define the maximum distance between coordi-
nates by

r(i, j, k, l) := max
{
|s− t|∞

∣
∣ s, t ∈ {i, j, k, l}

}
.

Now divide the index set into pieces accordingly: I4
=

⋃∞
r=0 Ir , where

Ir = {(i, j, k, l) ∈ I4 | r(i, j, k, l) = r}.

Note that the cardinality of Ir satisfies |Ir| ≤ |I|(2r + 1)3d. The set Ir is, in turn,
divided into two pieces depending on whether there is one isolated index, or two

pairs of isolated indices. That is,

I1
r :=

{
(i, j, k, l) ∈ Ir

∣
∣ max

s∈{i, j,k,l}
min

t∈{i, j,k,l},t 6=s
|s− t|∞ ≥ r/3

}
,

and I2
r := Ir \ I1

r . For every (i, j, k, l) ∈ I2
r , the set {i, j, k, l} can be divided into two

pairs {s, t} and {u, v} so that |s− t|∞ ≤ r/3, |u− v|∞ ≤ r/3 and d({s, t}, {u, v}) ≥
r/3.
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If (i, j, k, l) ∈ I1
r , then supposing i is the isolated index, we get

|E(xix jxkxl)| = |E(xix jxkxl)− E(xi)E(x j xkxl)|

≤
√

Var(xi)
√

Var(x j xkxl)3ce−αr/3

≤ M3ce−αr/3.

On the other hand, if (i, j, k, l) ∈ I2
r , then

|E(xix jxkxl)| ≤ |E(xsxt )E(xuxv)| +
√

Var(xsxt )
√

Var(xuxv)4ce−αr/3

≤ |E(xsxt )E(xuxv)| + M4ce−αr/3.

Therefore

E
[(∑

i∈I

xi

) 4]

≤ 4M

∞∑

r=0

|Ir|ce−αr/3 + 4!
∑

(s,t)∈I2

∑

(u,v)∈I2

|E(xsxt )E(xuxv)|

= 4M

∞∑

r=0

|Ir|ce−αr/3 + 24
( ∑

(s,t)∈I2

|E(xsxt )|
) 2

≤ |I|4M

∞∑

r=0

(2r + 1)3dce−αr/3 + 24(b|I|)2

≤ c2|I|2.

Definition 2 Let ξ0 = x0 and for r ≥ 1 let ξr =
∑

i∈Br\Br−1
xi .

Lemma 2 For any indices R ⊆ {0, 1, . . . , n} and any x > 0 we have

P
(∑

r∈R

|ξr| ≥ x
)

≤ 4d2c2|R|4(2n + 1)2(d−1)

x4
.

Proof Using Jensen’s inequality we find the pointwise bound (
∑

r∈R |ξr|)4 ≤
|R|3 ∑

r∈R ξ4
r . Taking expectations and using Lemma 1 gives

E
[(∑

r∈R

|ξr|
) 4]

≤ |R|3
∑

r∈R

E(ξ4
r ) ≤ |R|4 sup

r∈R

E(ξ4
r ) ≤ |R|4c2|Bn \ Bn−1|2.

Now |Bn \ Bn−1| = (2n + 1)d −
(

2(n− 1) + 1
) d ≤ 2d(2n + 1)d−1, so square this and

the result follows from Chebyshev’s inequality.

Definition 3 Define Sn =
∑n

r=0 ξr =
∑

i∈Bn
xi .
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Lemma 3 For n ≥ 1 we have

(3)

∣
∣
∣
∣

Var(Sn)

(2n + 1)d
− σ2

∣
∣
∣
∣
=

∣
∣
∣
∣

E(S2
n)

(2n + 1)d
− σ2

∣
∣
∣
∣
≤ c1

2n + 1
.

Proof By stationarity we have (2n+1)dσ2
=

∑

i∈Bn

∑

j∈Zd E(xix j) and by definition

we have E(S2
n) =

∑

i∈Bn

∑

j∈Bn
E(xix j). Taking the difference gives

(2n + 1)dσ2 − E(S2
n) =

∑

i∈Bn

∑

j /∈Bn

E(xix j).

We will divide this sum into two pieces and estimate them separately:

n∑

r=1

∑

i∈Bn, j /∈Bn

| j−i|∞=r

E(xix j)

︸ ︷︷ ︸

I

+
∑

i∈Bn , j /∈Bn

| j−i|∞>n

E(xix j)

︸ ︷︷ ︸

II

.

. . . . . . . . . . .

.

.

.

.

.

.

.

.

.

...........

.

.

.

.

.

.

.

.

.

.

. . . . . . . . .

.

.

.

.

.

.

.

.........

.

.

.

.

.

.

.

.

In bounding the first sum, we observe that if i ∈ Bn, j /∈ Bn, and | j − i|∞ = r, then
n − r < |i|∞ ≤ n. The number of such i’s is the cardinality of Bn \ Bn−r, that is,
(2n + 1)d − (2(n− r) + 1)d which is less than or equal to 2dr(2n + 1)d−1. For each i,

the number of j’s with | j − i|∞ = r is less than or equal to (2r + 1)d. This leads to
the following bound.

|I| ≤
n∑

r=1

∑

n−r<|i|∞≤n,
| j−i|∞=r

|E(xix j)|

=

n∑

r=1

2dr(2n + 1)d−1(2r + 1)dMce−αr

≤ (2n + 1)d(2n + 1)−1M

∞∑

r=1

d(2r)(2r + 1)dce−αr

≤ (2n + 1)d(2n + 1)−1 c1

2
.
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Using stationarity, we bound the second sum as follows

|II| ≤
∑

i∈Bn ,| j−i|∞>n

|E(xix j)|

=

∑

i∈Bn

∑

| j|∞>n

|E(x0x j)|

≤ (2n + 1)dM
∑

r>n

(2r + 1)dce−αr

≤ (2n + 1)d(2n + 1)−1 c1

2
.

Combining the bounds for I and II, and dividing by (2n + 1)d gives (3).

3 Central Limit Theorem and Maximal Inequality

Lemma 4

sup
z∈R

∣
∣P

(
Sn/σ(2n + 1)d/2 ≥ z

)
− Φ(z)

∣
∣ = O(n−1/9),

where Φ is the standard normal error function.

Proof The strategy is first to show that the main contribution to Sn comes from x’s
whose indices form a collection of reasonably large, but well spread out, subcubes
Wi of [−n, n]d. We then use the decay of correlations to show that the contributions
from the different Wi ’s are nearly independent.

Fix ε < 1/2 and for n ≥ 21/ε define p(n) := bn1/2c, q(n) := bn1/2−εc, and
k(n) = b 2n+1

2p+q+1
c. Since n is large enough so that k(n) ≥ 1, the interval [−n, n]

contains k intervals I1, . . . , Ik of length 2p + 1 with a distance q between them.

2p+1←→ q↔
1 2 k

︸ ︷︷ ︸

2n+1

For each i ∈ {1, 2, . . . , k}d, define the cube Wi = Ii1
× · · · × Iid

. The collection
(Wi)i∈{1,2,...,k}d consists of kd subcubes of [−n, n]d, each with |Wi | = (2p + 1)d. The

ratio |⋃i Wi |/|[−n, n]d| of their cardinalities satisfies
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1 ≥ kd(2p + 1)d

(2n + 1)d
≥

(
2n+1

2p+q+1
− 1

) d
(2p + 1)d

(2n + 1)d

=

(

1− 2p + q + 1

2n + 1

)d (

1− q

2p + q + 1

)d

≥
(

1− 4n1/2

2n + 1

)d (

1− n1/2−ε

n1/2

)d

≥ (1− 2n−1/2)d(1− n−ε)d

≥ (1− 2n−ε)2d

≥ 1− 2d(2n−ε),

so that

(4)

∣
∣
∣
∣
1− kd(2p + 1)d

(2n + 1)d

∣
∣
∣
∣
≤ 4dn−ε.

For every i ∈ {1, 2, . . . , k}d let ζi :=
∑

j∈Wi
x j , and let (ζ ′

i )i∈{1,2,...,k}d be inde-
pendent copies of (ζi)i∈{1,2,...,k}d . Notice that ζi has the same distribution as Sp . The
central limit theorem for Sn uses the following series of approximations to a standard

normal Z:

Sn

σ(2n + 1)d/2
≈

∑

i ζi

σ(2n + 1)d/2
≈

∑

i ζ
′
i

σ(2n + 1)d/2
≈

∑

i ζ
′
i

(kd Var(ζ))1/2
≈ Z.

The first approximation is easiest, so let’s begin there. Using (1) and (4) we obtain

E

[(
Sn −

∑

i ζi

σ(2n + 1)d/2

)2]

=

Var(
∑

j∈[−n,n]d\∪iWi
x j)

σ2(2n + 1)d
≤ b(4dn−ε)

σ2
.

This gives us

(5) E

(∣
∣
∣
∣

Sn −
∑

i ζi

σ(2n + 1)d/2

∣
∣
∣
∣

)

≤ 2
√

bdn−ε/2

σ
.

For the third approximation we first use the independence to get

E

[( ∑

i ζ
′
i

σ(2n + 1)d/2
−

∑

i ζ
′
i

(
kd Var(ζi)

) 1/2

) 2]

=



1−
√

kd Var(ζ)

σ2(2n + 1)d





2

.
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Now rewrite the right hand side and use Lemma 3 and (4) to get

(

1−
√

kd Var(ζ)

σ2(2n + 1)d

) 2

≤
(

1− kd Var(ζ)

σ2(2n + 1)d

)2

=

(

1− kd(2p + 1)d

(2n + 1)d
× Var(ζ)

σ2(2p + 1)d

)2

≤
(∣

∣
∣
∣
1− kd(2p + 1)d

(2n + 1)d

∣
∣
∣
∣

+

∣
∣
∣
∣
1− Var(Sp)

σ2(2p + 1)d

∣
∣
∣
∣

)2

≤
(

4dn−ε + c1(2p + 1)−1
) 2

≤ (4d + c1)2n−2ε.

This gives us

(6) E

(∣
∣
∣
∣

∑

i ζ
′
i

σ(2n + 1)d/2
−

∑

i ζ
′
i

(
kd Var(ζi)

) 1/2

∣
∣
∣
∣

)

≤ (4d + c1)n−ε.

For the second approximation, we work directly on the characteristic functions. The
final bound is obtained by induction, here is the first step, where j is any index in

{1, 2, . . . , k}d.

∣
∣E(eit

∑

i ζi )− E(eit
∑

i ζ ′
i )

∣
∣ ≤

∣
∣E(eit

∑

i 6= j ζi eitζ j )− E(eit
∑

i 6= j ζi )E(eitζ j )
∣
∣

+
∣
∣E(eit

∑

i 6= j ζi )E(eitζ j )− E(eit
∑

i 6= j ζ ′
i )E(eitζ ′

j )
∣
∣

=

∣
∣Cov(eit

∑

i 6= j ζi , e−itζ j )
∣
∣ +

∣
∣E(eit

∑

i 6= j ζi )− E(eit
∑

i 6= j ζ ′
i )

∣
∣

≤ |Bn|2ce−αq +
∣
∣E(eit

∑

i 6= j ζi )− E(eit
∑

i 6= j ζ ′
i )

∣
∣

= (2n + 1)2dce−αq +
∣
∣E(eit

∑

i 6= j ζi )− E(eit
∑

i 6= j ζ ′
i )

∣
∣ .

Continuing in this way, peeling off the individual random variables one at a time, we
arrive at the uniform bound

|E(eit
∑

i ζi )− E(eit
∑

i ζ ′
i )| ≤ kd(2n + 1)2dce−αq

≤ (2n + 1)3dce−αq.

We also have

E

[( ∑

i ζi

σ(2n + 1)d/2

) 2]

≤
Var(

∑

r∈
⋃

i Wi
xr)

σ2(2n + 1)d
≤ bkd(2p + 1)d

σ2(2n + 1)d
≤ b

σ2
,

and

E

[( ∑

i ζ
′
i

σ(2n + 1)d/2

) 2]

≤
kd Var(

∑

r∈Wi
xr)

σ2(2n + 1)d
≤ kdb(2p + 1)d

σ2(2n + 1)d
≤ b

σ2
.
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This gives us

E

[( ∑

i ζi

σ(2n + 1)d/2
−

∑

i ζ
′
i

σ(2n + 1)d/2

) 2]

≤ 4b

σ2
.

Putting these together gives

(7)
∣
∣E(eit

∑

i ζi/σ(2n+1)d/2

)−E(eit
∑

i ζ ′
i /σ(2n+1)d/2

)
∣
∣ ≤ min

{

(2n+1)3dce−αq, |t|2
√

b

σ

}

.

From Esseen’s lemma, there is an absolute constant K so that

(8)
∣
∣ e−t2/2 − E(eit

∑

i ζ ′
i /
√

kdE(ζ2
i ))

∣
∣ ≤ K

E(ζ4
i )

E(ζ2
i )2

k−d|t|4e−t2/4,

if |t| ≤
√

kd
(

24E(ζ4
i )/E(ζ2

i )2
)−1

. Since n ≥ 4, we have

k ≥ b(2n + 1)/(3
√

n + 1)c ≥
√

n/4,

so by applying (1) and (2) to E(ζ4
i )/E(ζ2

i )2, we see that the bound (8) is valid for
|t| ≤ T := (a2/48c2)nε/4. Using (5), (7), (6), and (8) we have

∣
∣P

(
Sr/σ(2n + 1)d ≥ z

)
− Φ(z)

∣
∣

≤
∫ T

−T

∣
∣
∣
∣

E(eitSn/σ(2n+1)d

)− e−t2/2

t

∣
∣
∣
∣

dt +
4

T

≤
∫ T

−T

2
√

bdn−ε/2

σ
dt +

∫

0≤|t|≤T−1

2
√

b

σ
dt

+

∫

T−1≤|t|≤T

(2n + 1)3dce−αq

|t| dt +

∫ T

−T

(4d + c1)n−ε dt

+

∫ T

−T

K
c2

a2
k−d|t|3e−t2/4 dt +

4

T
.

The reader may now easily check that each term is O(n−ε/4) and by taking ε close to
1/2, we may guarantee that 1/9 ≤ ε/4, which gives the result.

Definition 4 Let χn :=
(

2σ2|Bn| log log(|Bn|)
) 1/2

.

Lemma 5 For fixed β > 1 and ε > 0, we have

P( max
1≤ j≤n

|S j | ≥ βχn) ≤ 2P
(
|Sn| ≥ β(1− ε)χn

)
+ O(n−1/2).
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Proof Define r = bn1/6c, k = bn/rc, and for j = 1, . . . , n,

E j = {|Si | < βχn, i < j} ∩ {|S j | ≥ βχn}.

Now

P( max
1≤ j≤n

|S j | ≥ βχn)

≤ P
( ⋃

1≤ j≤n

[E j ∩ {|Sn − S j | ≥ εχn}]
)

+ P
(
|Sn| ≥ β(1− ε)χn

)

≤
k−2∑

i=0

P
( r⋃

j=1

[Eir+ j ∩ {|Sn − Sir+ j | ≥ εχn}]
)

+ P
( n⋃

l=(k−1)r+1

[El ∩ {|Sn − Sl| ≥ εχn}]
)

+ P
(
|Sn| ≥ β(1− ε)χn

)

≤
k−2∑

i=0

P

(( r⋃

j=1

Eir+ j

)

∩
{

|Sn − S(i+2)r| ≥
ε

2
χn

})

+

k−2∑

i=0

P
( r⋃

j=1

[

Eir+ j ∩
{

|S(i+2)r − Sir+ j | ≥
ε

2
χn

}])

+ P
( n⋃

l=(k−1)r+1

[El ∩ {|Sn − Sl| ≥ εχn}]
)

+ P
(
|Sn| ≥ β(1− ε)χn

)

≤
k−2∑

i=0

P

(( r⋃

j=1

Eir+ j

)

∩
{

|Sn − S(i+2)r| ≥
ε

2
χn

})

+

k−2∑

i=0

P
(

|ξir+1| + · · · + |ξir+2r| ≥
ε

2
χn

)

+ P
(

|ξ(k−1)r+1| + · · · + |ξn| ≥
ε

2
χn

)

+ P
(
|Sn| ≥ β(1− ε)χn

)
.

Applying Lemma 2 (with x =
ε
2
χn and |R| ≤ 2r), for sufficiently large n we get

P( max
1≤ j≤n

|S j | ≥ βχn) ≤
k−2∑

i=0

P

(( r⋃

j=1

Eir+ j

)

∩
{

|Sn − S(i+2)r| ≥
ε

2
χn

})

+ k
642c2d2r4

ε2σ2(2n + 1)2
+ P

(
|Sn| ≥ β(1− ε)χn

)
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From the decay of correlations we get

P

(( r⋃

j=1

Eir+ j

)

∩
{

|Sn − S(i+2)r| ≥
ε

2
χn

})

≤ P
( r⋃

j=1

Eir+ j

)

P
(

|Sn − S(i+2)r| ≥
ε

2
χn

)

+ (2n + 1)2dce−αr.

Now for every i we have

P
(

|Sn − S(i+2)r| ≥
ε

2
χn

)

≤ E
(

(Sn − S(i+2)r)
2
)

(ε/2)2χ2
n

≤ 2b

ε2σ2 log log(|Bn|)
≤ 1

2
,

for sufficiently large n. Therefore

k−2∑

i=0

P
( r⋃

j=1

Eir+ j

)

P
(

|Sn − S(i+2)r| ≥
ε

2
χn

)

≤ 1

2

k−2∑

i=0

P
( r⋃

j=1

Eir+ j

)

≤ 1

2
P( max

1≤ j≤n
|S j | ≥ βχn),

and hence

P( max
1≤ j≤n

|S j | ≥ βχn) ≤ 1

2
P( max

1≤ j≤n
|S j | ≥ βχn) + (k− 1)(2n + 1)2dce−αr

+ k
642c2d2r4

ε2σ2(2n + 1)2
+ P

(
|Sn| ≥ β(1− ε)χn

)
.

That is,

P( max
1≤ j≤n

|S j | ≥ βχn) ≤ (2n + 1)2d+1ce−αr +
642c2d2r3

(2n + 1)
+ 2P

(
|Sn| ≥ β(1− ε)χn

)
.

Corollary 1 For fixed β > 1 there is ρ > 0 so that

P( max
1≤ j≤n

|S j | ≥ βχn) = O
(

log(n)−(1+ρ)
)
.

Proof Combine the central limit theorem (Lemma 4) with the maximal inequality
(Lemma 5).

4 Law of the Iterated Logarithm

Proposition 1 The law of the iterated logarithm holds, that is,

lim sup
n

Sn

χn

= 1 and lim inf
n

Sn

χn

= −1 P-almost surely.
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Proof The assertion will be proved if we show that for any ε > 0,

P
(
|Sn| > (1 + ε)χn i.o.

)
= 0(9)

P
(

Sn > (1− ε)χn i.o.
)

= 1,(10)

and

(11) P
(

Sn < −(1− ε)χn i.o.
)

= 1.

The proof of (9) is almost identical to [5, Theorem 1]. For τ > 0 and k so large that
(1 + τ )k/σ2 > 1, define nk = b(1 + τ )k/σ2c + 1. Then from the maximal inequality
we have

∑

k

P
(

max
1≤n≤nk

|Sn| > (1 + γ)χnk

)
≤ K

∑

k

(
log(nk)

)−(1+ρ)

≤ K
∑

k

(
k log(1 + τ ) + log(σ2)

)−(1+ρ)

<∞.

For sufficiently large k we have χnk
≤ (1 + 2τ )d/2χnk−1

. Fix 0 < γ < ε and choose τ

so that (1 + ε) > (1 + γ)(1 + 2τ )d/2. The Borel-Cantelli lemma tells us that

P
(
|Sn| > (1 + ε)χn i.o.

)
≤ P

(
max

nk−1≤n≤nk

|Sn| > (1 + ε)χnk−1
i.o.

)

≤ P
(

max
1≤n≤nk

|Sn| > (1 + ε)χnk−1
i.o.

)

≤ P

(

max
1≤n≤nk

|Sn| >
(1 + ε)

(1 + 2τ )d/2
χnk

i.o.

)

≤ P
(

max
1≤n≤nk

|Sn| > (1 + γ)χnk
i.o.

)

= 0,

and this gives us (9).

We proceed to prove (10). For k ≥ 1 define nk = k4k, mk = nk/k2, and for λ > 0

put Bk = Bk(λ) = {Snk
− Smk

≥ (1− 2λ)χnk
}. The first thing we need to do is show

that

(12)
∑

k

P(Bk) =∞.

We will use the inequality

(13) P
(

Snk
≥ (1− λ)χnk

)
≤ P(Bk) + P(Smk

≥ λχnk
).
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Using Var(Smk
) ≤ b|Bmk

| and recalling that χ2
nk
≥ σ2|Bnk

|, Chebyshev’s inequality
gives us

(14) P(Smk
≥ λχnk

) ≤ b|Bmk
|

λ2σ2|Bnk
| ≤

2db

σ2λ2k2d
.

Since this is summable it suffices to show that
∑

k P
(

Snk
≥ (1− λ)χnk

)
=∞. From

the Central Limit Theorem we have

∑

k

∣
∣P

(
Snk
≥ (1− λ)χnk

)
− Φ

(
(1− λ)χnk

/
σ|Bnk

|1/2
) ∣
∣ ≤ c

∑

k

|Bnk
|−1/9 <∞.

Therefore it suffices to show that

∑

k

Φ
(

(1− λ)χnk

/
σ|Bnk

|1/2
)

=

∑

k

Φ

(

(1− λ)
√

2 log log(|Bnk
|)

)

=∞.

But this follows in the usual way from the asymptotic relation Φ(x) ∼ x−1 exp(−x2/2)

and this gives us (12).
Let ζk be the indicator function of Bk. Considering the distance between mk+ j and

nk gives

(k + j)4(k+ j)−2 − k4k ≥ k4(k+ j)−2 + [4(k + j)− 2]k4(k+ j)−3 j − k4k

≥ [4(k + j)− 2]k4(k+ j)−3 j

≥ (k + j)2,

so by the exponential mixing condition, we see

exp(k + j)|Cov(ζk, ζk+ j)| ≤ exp(k + j)|Bnk+ j
|2c exp

(
−α(k + j)2

)

≤ exp(k + j)[2(k + j)4(k+ j) + 1]2c exp
(
−α(k + j)2

)

≤ exp(k + j)32[(k + j)8(k+ j)]c exp
(
−α(k + j)2

)

≤ 9c exp
(

10(k + j)− α(k + j)2
)

≤ 9c exp(25/α).

Adding gives us

K := 2

∞∑

k=1

∞∑

j=1

|Cov(ζk, ζk+ j)|

≤ 2

∞∑

k=1

∞∑

j=1

exp
(
−(k + j)

)
9c exp(25/α)

<∞.
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Therefore

Var
( n∑

k=1

ζk

)

=

n∑

k=1

Var(ζk) + 2

n−1∑

k=1

n−k∑

j=1

Cov(ζk, ζ j+k)

≤
n∑

k=1

P(Bk) + K.

Thus,

P
( ∞∑

k=1

ζk ≤
1

2

n∑

k=1

P(Bk)
)

≤ P
( n∑

k=1

ζk ≤
1

2

n∑

k=1

P(Bk)
)

≤ P
(∣

∣
∣

n∑

k=1

ζk −
n∑

k=1

P(Bk)
∣
∣
∣ ≥ 1

2

n∑

k=1

P(Bk)
)

≤ 4 Var(
∑n

k=1 ζk)
(∑n

k=1 P(Bk)
) 2

≤ 4
(∑n

k=1 P(Bk) + K
)

(∑n
k=1 P(Bk)

) 2
.

Since
∑

k P(Bk) =∞, letting n→∞ gives P(
∑∞

k=1 ζk <∞) = 0 so

(15) P
(

Bk(λ) i.o.
)

= 1.

Note that Bk(ε/4) ⊂
(

Snk
≥ (1− ε)χnk

)
∪

(
−Smk

≥ (ε/2)χnk

)
, so from (15)

1 ≤ P
(

Snk
≥ (1− ε)χnk

i.o.
)

+P
(
−Smk

≥ (ε/2)χnk
i.o.

)
.

But as in (14) we see that
∑

k P
(
−Smk

≥ (ε/2)χnk

)
< ∞ so that P

(
−Smk

≥
(ε/2)χnk

i.o.
)

= 0. From this (10) follows and (11) can be proved similarly.

5 An Application

The following example is extracted from [7] to which we refer the reader for complete

definitions and more details.
The space of locally finite configurations in R

d is defined by

ΓRd := {γ ⊂ R
d : |γ ∩ K| <∞ for every compact K},

where the configuration γ is identified with the Radon measure
∑

x∈γ εx. A Gibbs
measure µ is a probability measure on ΓRd that is specified by:

• an activity parameter z > 0, roughly the average number of particles per unit
volume in R

d;
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• and a potential function φ, where φ(r) roughly measures the correlation between
particles at a distance r from each other.

It is known that for sufficiently small z, the measure µ is translation invariant with ρ
the mean number of particles per unit space.

In the language of Section 4, we take P to be the Gibbs measure µ, and we define
the random field for i ∈ Z

d, by

xi = γ
(

i + (−1/2, 1/2]d
)
− ρ,

so that Sn is the number of particles in the cube Cn :=
(
−(n + 1/2), n + 1/2

] d
minus

its mean value. Under Conditions 1 and 2, Proposition 1 gives

(16) lim sup
n

Sn
√

2 Var(Sn) log log n
= 1, µ-a.s.

For certain of the Gibbs measures we consider, Spohn [8, Lemma 4] proved that
there is an exponential decay of correlations, exactly as required in Condition 2. In
[7] we show that condition 1 holds as well, and are able to conclude that (16) holds

true.
But this is only half of the story. The stochastic dynamics is a ΓRd -valued Markov

diffusion process Xt whose invariant measure is µ. Let Xn,t := Xt (Cn) denote the
number of particles in the cube Cn at time t ; then because the process is in equilib-

rium, equation (16) implies that

P
(

lim sup
n

Xn,t − E(Xn,t )
√

2 Var(Xn,t ) log log n
= 1

)

= 1, for all t ≥ 0.

Then, under certain conditions, we can use the theory of Dirichlet forms to strength-

en this result [7, Proposition 6] to be uniform in time, that is,

P
(

lim sup
n

Xn,t − E(Xn,t )
√

2 Var(Xn,t ) log log n
= 1 for all t ≥ 0

)

= 1.

This shows that the large scale regularity of the particles is not violated even as they

move through space.
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