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HOMOMORPHISMS BETWEEN LATTICES OF
ZERO-SETS

BY
S. BROVERMAN'

AssTrACT. For a completely regular Hausdorff topological space
X, let Z(X) denote the lattice of zero-sets of X. If = is a continuous
map from X to Y, then there is a lattice homomorphism 7' from
Z(Y) to Z(X) induced by 7 which is defined by 7'(A)=7"(A). A
characterization is given of those lattice homomorphisms from Z(Y)
to Z(X) which are induced in the above way by & continuous
function from X to Y.

1. Introduction. The theory of duality linking topology and algebra has been
studied in depth in the past. Most notably in this area, is the work of M. H.
Stone in [3], which describes the duality between compact, Hausdorff, 0-
dimensional spaces (i.e. spaces with a base of open-and-closed sets) and
Boolean algebras. In particular, it is shown that if X and Y are compact,
Hausdorff, 0-dimensional spaces and B(X) and B(Y) are their Boolean algeb-
ras of clopen sets then if ¢:B(Y)— B(X) is a homomorphism such that
t(Y) =X, then there is a continuous map f: X — Y such that t(A)=f<(A) for
all A € B(Y). In chapter 10 of [1] this aspect of duality is studied where the
algebraic object is C(X), the ring of continuous functions of a completely
regular, Hausdorff space. It is shown that if X and Y are realcompact spaces
and if ¢t:C(Y)— C(X) is a homomorphism such that ¢((1y)=1x (where 1
denotes the constant function whose range is {1}), then there is a continuous
function f: X — Y such that #(g) = gef for all ge C(Y).

In this paper we consider the lattice Z(X), of zero-sets of a completely
regular, Hausdorff space and characterize these lattice homomorphisms be-
tween zero-set lattices that arise, in the natural way described above, from
continuous functions.

1.1. DermrTioN. (a) Let X and Y be spaces and let Z(X) and Z(Y) denote
their respective zero-set lattices. By a o-homomorphism t from Z(Y) to Z(X)
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we will mean a lattice homomorphism ¢: Z(Y)— Z(X) such that ¢ preserves
countable meets (ie. if {A;}7,<Z(Y), then t(N7, A)=7, t(A)), and
such that t(¢)=¢, t(Y)=X.

(b) Let X and Y be spaces and let 7: X — Y be a continuous map. Then the
““homomorphism induced by 7" is the map 7': Z(Y) — Z(X) defined by 7'(A) =
7 (A) for Ae Z(Y).

Note that in 1.1(b) 7' is actually a o-homomorphism in the sense of 1.1(a). In
section 2 it is shown that these are precisely the homomorphisms induced by
continuous maps.

The notation will be that of [1]. The set of integers is denoted by N. All
spaces discussed are assumed to be completely regular and Hausdorfl.

2. The homomorphism induced by a continuous map. Before getting to the
main characterization theorem, some results of general interest on the induced
homomorphism are obtained.

2.1 DEeFINITION. (a) A subspace W of X is Gs-dense in X if every G, in X
meets W in a non-empty set.

(b) A subspace W of X is z-embedded in X if every zero-set in W is the
restriction to W of a zero-set in X.

2.2. THEOREM. Let T be a continuous map from X to Y and let 7' be the
induced homomorphism from Z(Y) to Z(X). Then

(a) 1" is one-to-one iff T(X) is Gs-dense in Y, and
(b) 7' is onto iff T is a homeomorphism onto a z-embedded subset of Y.

Proof. (a) Necessity. Suppose 7(X) is not Gs-dense in Y. Then there is a
non-empty G; set H=();.n U; in Y (where U; is open in Y for all i€ N) such
that HN7(X)=¢. Let ye H. Then there is a zero-set Z in Y such that
ye Z < H (for each i € N there is a zero-set Z; in Y such that y € Z, < U, since
Y is completely regular, thus ye Z=(\;.n S Z ()ien U: = H). Hence 7'(Z) =
T (Z)=¢=7"(¢)=1'(¢) and thus 7' is not one-to-one.

Sufficiency. Suppose 7’ is not one-to-one. Then there exist Z,, Z,e€ Z(Y)
such that 7(Z,)=17"(Z,) but Z,#Z,. Let pe Z,— Z,. Then there is a Z;¢€
Z(Y) such that pe Z; and Z,;N Z,= ¢ (as Y—Z, is a neighborhood of p). Let
Z=7Z,NZ;. Then 7(Z)=7"(Z,NZ)=7(Z)NT7(Zy)=7"(Z)NT(Z3) =
T (Z,NZ)=7(¢dp)=¢. Thus ZN7(X)= ¢ and hence 7(X) is not G, dense
in Y.

(b) This result has been obtained independently by Mandelker in [2, p. 619],
to which the reader is referred for a proof.

2.3. DerINITION. Let X be a space. A z-filter ¥ on X is a filter on the lattice
Z(X). That is #< Z(X) such that i) ¢£ %, ii) if Z,, Z,€ F then Z,NZ,€ %,
and iii) if Z, € % and Ze Z(X) such that Z, = Z, then Ze &%. A z-filter ¥ on X
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is prime if Z,U Z,€ % implies that either Z, € % or Z,€ %. A z-ultrafilter is a
maximal z-filter. A real z-ultrafilter is a z-ultrafilter closed under countable
intersection (i.e. if {Z},.nS %, then (;cn Z: € F).

2.4. Remark. If {p} is the one point space, then Z({p}) ={o,{p}} is the
two-point lattice which will be referred to here as {0, 1}. There is a one-to-one
correspondence between o-homomorphisms from Z(Y) onto {0, 1} and real
z-ultrafilters on Y. Clearly if & is a real z-ultrafilter on Y, then t:Z(Y)—
{0, 1} defined by (Z)=1 if Ze %, t(Z)=0 otherwise, is a o-homomorphism.
On the other hand, if t:Z(Y)—{0,1} is a o-homomorphism, then clearly
F=1t—({1}) is a prime z-filter on Y. Since t is a o-homomorphism, ¥ is closed
under countable intersection. Thus, by [1, 7TH4], & is a real z-ultrafilter. It is
also apparent that there is a one-to-one correspondence between all
homomorphisms from Z(Y) to {0, 1} and all prime z-filters on Y.

2.5. TueoreM. Let Y be a realcompact space and let t be a homomorphism
from Z(Y) to Z(X). The following are equivalent.

(i) t is a a-homomorphism.
(i) t=17" for a unique continuous map 7: X — Y.

Proof. (ii) implies (i). We have already noted in the introduction that this
implication is true.

(1) implies (ii). Let xe X. Let A, ={Ze Z(X)|xeZ}. Then A, is a real
z-ultrafilter on X. Let t(A,)={Ze Z(Y)|t(Z)e A,}. Then t~(A,) is clearly a
prime z-filter on Y. Furthermore, t*(A,) is closed under countable intersection
(since ¢ is a o-homomorphism). Thus, by [1, 7H4], t(A,) is a real z-ultrafilter
on Y. Since Y is realcompact, there is a unique y € Y such that () t~(A,) ={y}.
Define 7(x)=y. Then 7 is a well-defined map from X to Y.

Let Z€ Z(Y). Then t(Z)=7(Z), for xet(Z) iff (Z)ec A, iff Zet—(A,) iff
x € 77(Z). This shows that t = 17" and 7 is continuous, as every closed subset of
Y is an intersection of zero-sets.

If 0:X— Y such that o' =17"=1t, then o7(Z)=17(Z) for every Zc Z(Y).
Thus o"({yh=0"(N A)=7( A)=7({y}). Hence o=17, and 7 is
unique.

The condition “Y is realcompact” in 2.5 cannot be dropped because, as is
shown in [1,8D2], Z(X)=Z(vX) (lattice isomorphic by the isomorphism
Z — cl,x7Z, where vX denotes the Hewitt realcompactification of X) for any
space X, thus Z(X) does not distinguish between X and vX. This immediately
gives the following corollary to 2.5.

2.6. CoroOLLARY. If tis a o-homomorphism from Z(Y) to Z(X), then there is
a unique continuous map 7:X — vY such that t(Z)=1"(cl,yZ) for all Z¢
Z(Y).
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Theorem 2.5 also yields the following results.

2.7. CoroLLARY. If X and Y are two spaces then Z(X)=Z(Y) (lattice
isomorphic) iff vX=vY.

Proof. Sufficiency. This follows from the fact, noted above, that Z(X)=
Z(wX) and Z(Y)=Z(vY).

Necessity. Let t:Z(vY)— Z(vX) be an isomorphism. Then s:Z(vX)—
Z(vY) defined by s(Z)=t"(Z) is also an isomorphism. By 2.5 there are
continuous maps 7:0X — vY and o:vY — vX such that t=7" and s=¢' (as
an isomorphism is, in particular, a o-homomorphism). Then ¢'o7' =sot=
120y (the identity map) and 7'eg’ =tos=1,,x), ie. o'o7'=(1l,y) and
teg’'=(1,x) But o'or'=(100) (as o'°7(Z)=0"(v(Z2))=(r00)(Z)=
(1°0)'(Z)), and 7'°c0’'=(o°7). Thus (r°0) =(1,y) and (ogo71)=(1,%)". By
uniqueness 70 =1,y, 0°7=1,x. Thus ¢ and 7 are homeomorphisms.

2.8. CoroLLARY. vY contains a continuous image of X iff Z(X) contains a
o -homomorphic image of Z(Y).
2.2 together with 2.5 yield the following results.

2.9. CoroLLARY. Z(X) contains a o-isomorphic copy of Z(Y) iff vY contains
a Gg-dense continuous image of X.

2.10. CoroLLARY. VY contains a Z-embedded copy of X iff Z(X) is a
o-homomorphic image of Z(Y).
Results 2.5 to 2.10 are the Z(X)-analogues of 10.6 and 10.9 in [1].

3. The continuous map induced by a homomorphism. In section 2 we were
concerned only with o-homomorphisms. We now show that any lattice
homomorphism ¢: Z(Y)— Z(X) (such that {(Y)=X and t(¢)= ¢) induces a
continuous map 7:8X — BY.

3.1. DeFiNiTION. Let X be a space. Let
MP={ZeZ(X)|pecl;xZ} and
0»={Ze Z(X)| clgxz is a neighborhood in BX of p}.

3.2. PropostTiON. Let t:Z(Y)— Z(X) be a lattice homomorphism. Then
there exists a continuous map 7: BX — BY such that v (clgyZ) 2 clgxt(Z). For a
given Ze Z(Y), the above containment is equality if t—(M?)=M"® for every
p € 1(clgyZ) (i.e. is t—(MP) is an ultrafilter for every p € 7 (clgyZ)).

Proof. Let t: Z(Y) — Z(X) be as hypothesized and let x € 8X. Then t—(M~*)
is a prime z-filter on Y. Thus, by [1.2.11], ~(M*) is contained in a unique
z-ultrafilter MP, on Y. Let 7: BX — BY be defined by 7(x)=p. Let Ze€ Z(Y).
Let x € clpxt(Z). Then t(Z) e M*, and thus Z e t=(M*)< M"™. So 7(x) € clyyZ,
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and hence x €7 (clgyZ), ie. clgxt(Z)<= 7 (clgyZ). Now we show that 7 is
continuous.

First we show that t(0"®)c 0* for every x€ X. Let xe X. Consider A =
{PcZ(X)|0*< P, and P is a prime z-filter}. Then t—(P) is prime for every
Pe A, and t=(P)c t—(M*) = M™™ (as 0* is contained in only one z-ultrafilter,
namely M*). Thus, by [1,7.15], t=(P)20"® for every P A. But by [1, 2.8]
0* = () pea P. Therefore t(0"®)< N pca P=0"

Let xe BX, and let We 0™ (i.e. clgyW is a neighborhood of 7(x)). Then
t(W) e 0*. However, clgxt(W)< 7 (clgy W), and the former set is a neighbor-
hood of x in BX (as (W)€ 0%). Thus 7 (clgyW) is a neighborhood of x. Since
the closures in BY of the sets in 0" form a neighborhood base 7(x), this
shows that 7 is a continuous map.

Suppose Ze Z(Y) and t(MP) is maximal for every pe v (clgyZ). If pe
7 (clgyZ), then 7(p)€clgyZ and hence Ze M™®. Since t~(MP) is maximal
and is contained in M™® we must have t~(MP)=M"®. Thus Z € t~(MP) and
so t(Z)e MP and p e clgxt(Z). Hence clgxt(Z) = 1" (clgxZ).

It is evident that distinct homomorphisms from Z(Y) to Z(X) may induce
the same map from BX to BY. All that is required for two homomorphisms £,
and t; from Z(Y) to Z(X) to induce the same map from BX to BY is that
given x € BX, there is a point pe BY such that ¢ (M), tz(M*)< MP.

The continuous map 7 induced by ¢ in 3.2 in turn induces a homomorphism
t':Z(BY)— Z(BX) defined by ¢'(Z)=7(Z). Thus if ZeZ(BY), then
'NX=1(Z2)NX27(cley (ZNY)NX2H(ZNY). So if ZeZ(Y) and
We Z(BY) such that Z=WNY then (W) NX2t(WNY)=t(2).

Thus it can be seen that if f: X — Y is continuous, then t:Z(Y)— Z(X)
defined by t(Z)=f(Z) is a (0-) homomorphism. Then by Proposition 3.2
there is a map 7:BX — BY such that 7 (clgyZ) 2 clgxt(Z) = clgx (f(Z)) for
any Z e Z(Y). Thus 7 must agree with f on X. For if 7(x) # f(x), let Ze€ Z(Y)
be such that f(x)e Z and 7(x)€ clsyZ. Clearly x € clgx(f(Z)), hence, xe€
7 (clgyZ). But then 7(x)eclzyZ contrary to assumption. Therefore = is
precisely the Stone extension of f. Since t is also a o-homomorphism it follows
that 7(vX)cvY.
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