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Summary

Polygenic variation can be maintained by a balance between mutation and stabilizing selection.
When the alleles responsible for variation are rare, many classes of equilibria may be stable. The
rate at which drift causes shifts between equilibria is investigated by integrating the gene frequency
distribution W2NY\{pqYNl''1. This integral can be found exactly, by numerical integration, or can be
approximated by assuming that the full distribution of allele frequencies is approximately
Gaussian. These methods are checked against simulations. Over a wide range of population sizes,
drift will keep the population near an equilibrium which minimizes the genetic variance and the
deviation from the selective optimum. Shifts between equilibria in this class occur at an
appreciable rate if the product of population size and selection on each locus is small (Nsa2 < 10).
The Gaussian approximation is accurate even when the underlying distribution is strongly skewed.
Reproductive isolation evolves as populations shift to new combinations of alleles: however, this
process is slow, approaching the neutral rate (x/i) in small populations.

1. Introduction

How is polygenic variation maintained, and how does
it evolve? How does a population separate into two
incompatible species? How can a population search
through the vast space of possibilities to find better
adapted combinations of alleles? How is selection on
the whole organism reflected in the evolution of
individual genes? Because many genes interact to
produce the observable phenotype, these questions
have proved hard to approach, either empirically or
theoretically.

In this paper, I will analyse the effects of sampling
drift on polygenic variation which is maintained by a
balance between mutation and stabilizing selection. A
character is determined by the sum of effects of a large
number of genes, each of which segregates for two
alleles. Stabilizing selection tends to reduce variation,
and is strong enough that each gene is close to
fixation. This model was first proposed by Wright
(1935); it has since been elaborated by Latter (1960),
Bulmer (1972, 1980), Kimura (1981), Barton (1986),
Hastings (1987), and Burger el al. (1988). Despite its
simplicity, it is relevant to each of the issues raised
above.

Since most quantitative characters must be subject
to stabilizing selection, at least in the long run, some
other force must maintain variability. The simplest

possibility is that mutation alone is responsible for the
high heritabilities which are found in nature (Lande,
1975). If this is so, one might hope that the genetic
variance could be predicted from measurable
quantities, such as the total mutation rate, the effective
number of loci, and the strength of selection.
Unfortunately, predictions depend on the distribution
of allelic effects at individual loci: if a large number of
alleles segregate, giving an approximately Gaussian
distribution, then the variance is proportional to the
square root of the ratio between mutation rate and
selection pressure, whereas if variation depends on
rare alleles with large effects, it is directly pro-
portional to this ratio (Turelli, 1984). In general, the
evolution of the mean and variance of a character
(which are usually all that can be measured) depends
on the higher moments of the underlying distribution
of allelic effects: only by making strong and unrealistic
assumptions can a closed set of equations be obtained
(Barton & Turelli, 1987). Even when all the loci are
close to fixation, as in the case considered here, the
outcome may still be unpredictable. Barton (1986)
showed that many stable equilibria can coexist:
the genetic variance can range from that given by the
'rare allele' approximation up to that given by
the Gaussian approximation. So, the phenotypic state
depends on how populations move between different
equilibria.
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Since many different combinations of alleles may be
able to satisfy the constraints imposed by selection,
many distinct stable equilibria will generally be
available. Wright (1932; Provine, 1986) illustrated this
point using the 'adaptive landscape': a graph of mean
fitness plotted against the possible states of the
population. In all but the simplest cases, this surface
will contain many local 'adaptive peaks'. The central
problem for Wright was how populations can move
towards superior peaks, despite their tendency to be
trapped by local irregularities in the surface. He
proposed that sampling drift, or perhaps random
fluctuations in selection pressures, could knock
populations between peaks, and that, for a variety of
reasons, populations would tend to accumulate at the
higher peaks. Here, I consider just one factor which
favours higher peaks: random transitions from low
peaks to high tend to be more likely than those in the
opposite direction. In the present model of a quan-
titative character, the question is whether this tendency
is efficient enough that the population will usually be
in the equilibrium with lowest variance, and the
highest mean fitness. If this is so, then the simple 'rare
alleles' approximation can safely be used to predict
the evolution of the mean and variance.

Shifts between alternative equilibria are important
even if they have no direct phenotypic or adaptive
consequences. Even when stabilizing selection is strong
enough that the phenotype is confined within narrow
limits, shifts between different combinations of alleles
may still be possible. This process is of interest from
two points of view. First, the rate and pattern of
substitution at individual loci will be affected by
selection (Kimura, 1981, Hastings, 1987, Foley, 1987):
is the observed level of selection on the whole organism
consistent with effectively neutral evolution at the
molecular level? Second, two populations may
eventually come to have very different combinations
of alleles, leading to substantial reproductive barriers
between them. How rapid is this process, relative to
other mechanisms of speciation?

Progress on these questions depends on techniques
for analysing stochastic systems with many degrees of
freedom. Though such techniques are well developed
in other fields, their application to genetical problems
requires some innovations. The simple model analysed
here is interesting in its own right. However, the main
aim is to develop methods which can deal with
evolution in many dimensions.

2. Deterministic behaviour

The deterministic behaviour of the model is de-
scribed by Barton (1986); this section summarizes the
necessary results. Consider a single character, z, which
is determined by the sum of effects of n biallelic loci.
Individuals are diploid. Substitutions at all loci have
an identical effect a on the character; its value must
therefore range between — net and +na. The character

is assumed to be completely heritable: environmental
variation would merely weaken selection, and would
have no qualitative effect. Individual fitness follows a
Gaussian curve centred on some optimum z0, and
with variance \/s.

Provided that selection is weak, the population can
be considered to change approximately continuously
in time. If selection is also much slower than
recombination, linkage disequilibrium can be
neglected (Bulmer, 1980; see Turelli & Barton, 1989,
for a general justification). The effects of selection are
then given by the general relation:

dp,
dt dp,

(1)

(p,, qt are the frequencies of the + and — alleles at the
z'th locus).

If the number of loci is large, and selection is weak,
then the mean fitness, W, of a population with mean
z and variance v is approximately:

log(»f) = -

where

s(z-z0)
2

sv
"2

(2)

z = Ilac(pi-qi), v = '£l2a.2piqi
I i

Including mutation at an equal rate /i in each direction:

(3)

Here, 8 = (z — zo)/x is the deviation from the optimum
relative to the effect of a substitution at a single locus.

The equilibria of eqn (3) satisfy a cubic; provided
that S and /i are not too large (\S\ < f, /i < sa2/8;
Barton, 1986), it has three solutions, denoted by
[p,p, F\. The equilibria which can be reached by the
whole system can be described by the numbers of
loci which are at each of these three frequencies,
[m, v, M] (m+u + M = n). Each combination [m, v,M]
represents a class of equilibria with the same overall
properties, but includes many different permutations
across loci.

The deterministic equilibria can be calculated by
solving eqn (3) numerically (Table 1). The nature of
the stable equilibria depends on the ratio between
mutation and selection at each locus. When this is
extremely small (/i < sa2/(n + I)2), mutation is neg-
ligible: one locus can be kept polymorphic by
(effectively) heterozygote advantage, whilst the re-
mainder contribute negligible variance. At the other
extreme, when /i > s<x2/S, selection is negligible, and
all loci are kept polymorphic by recurrent mutation.
In the intermediate range, sa2/(n + 1 )2 < /t < sa.2/S,
all loci are close to fixation for one or other allele (i.e.,
all stable equilibria are of the class [m, 0, M]).
However, several different classes of stable equilibria
may exist: approximately 1 +(« —2) y//i/sa2. Though
the phenotypic means of these alternatives are never
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Table 1. Properties of the deterministic equilibria

61

m

(a)
45
45
46
46
47
47
48
48
49
49
50

55

(b)
17
17
18
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26

(c)
48
48
49
49
50

52

(d)
12
12
13

r

n =
0
1
0
1
0
1
0
1
0
1
0

0

n =
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

n =
0
1
0
1
0

0

n =
0
1
0

M

100, y
55
54
54
53
53
52
52
51
51
50
50

45

100, 7
83
82
82
81
81
80
80
79
79
78
78
77
77
76
76
75
75
74
74

iOO.y
52
51
51
50
50

48
25,y
13
12
12

P

= 0-01, r0
00123
00123
00124
00124
00126
00127
00132
00135
00150
00163
00204

00981

= ooi,.-0
00123
00123
00124
00124
00124
00125
00126
00127
00130
00131
00138
00141
00156
00170
00209
00310
00382
00654
00686

= 00025,
00027
00027
00029
00030
00050

00372

= 001,z0

00137
00204
00422

P

= 0, 5 = 1,

0-8967

0-8750

0-8400

0-7754

0-6292

= 5, s= 1,

0-8955

0-8820

0-8638

0-8383

0-7996

0-7343

0-6029

0-3272

01547

z0 = 0, 5 =

0-9314

0-8486

= 0, J = 1,

0-5000

P

a = 01
0-9018
0-9018
0-9181
0-9189
0-9349
0-9366
0-9517
0-9548
0-9675
0-9725
0-9795

0-9876

a = 01
0-9029
0-9030
0-9137
0-9141
0-9248
0-9256
0-9361
0-9373
0-9475
0-9494
0-9590
0-9618
0-9702
0-9743
0-9801
0-9846
0-9858
0-9873
0-9874

l , a =
0-9627
0-9634
0-9810
0-9835
0-9949

0-9972

a = 0-2
0-9577
0-9795
0-9862

r

00311
00311
00307
00306
00292
00289
00255
00244
00169
00118
00000

-00311

50311
50311
50309
50309
50303
50302
50290
50288
50267
50262
50225
50210
50144
50094
4-9987
4-9843
4-9789
4-9708
4-9704

0-2
00796
00795
00704
00670
00000

-00796

00463
00000

-00463

r

01084
01084
00924
00924
00762
00761
00603
00602
00465
00470
00400

01084

01496
01496
01336
01335
01172
01172
01006
01005
00839
00835
00672
00666
00514
00504
00394
00414
00393
00516
00516

01596
01596
00874
00871
00400

01596

00550
00584
00550

log (HO

-10-9367
-10-9367

-9-3371
-9-3345
-7-7107
- 7-7003
- 6 1 0 3 9
- 6 0 8 2 6
-4-6798
-4-7224
-4 0 0 0 0

-10-9367

-150580
-150579
-13-4551
-13-4532
-11-8182
-11-8115
-101507
-101341

-8-4617
-8-4263
-6-7755
-6-7052
-51701
-5-0521
-3-9473
-41741
-3-9760
-5-2547
-5-2516

- 4 1 5 0 2
- 4 1 4 8 6
-2-3099
-2-2902
- 1 0 0 0 0

- 4 1 5 0 2

-1-4307
-1-4600
-1-4307

U

-26-9722
-26-9722
-25-791'4
-25-7979
-24-6551
-24-6602
-23-6034
-23-6305
-22-7701
-22-8978
-22-4207

-26-9722

-28-9093
-28-9093
-27-7326
-27-7328
-26-5705
-26-5719
-25-4413
-25-4469
-24-3754
-24-3929
-23-4274
-23-4790
-22-7037
-22-8635
-22-4223
-22-9494
-22-8680
-23-8739
-23-8702

-9-4002
-9-4006
-7-8931
-7-9114
-6-9915

-9-4002

-5-8564
-5-9641
-5-8564

A

-00087
00087

-00760
00718

-01670
01466

-0-3033
0-2345

-0-5351
0-3127

-0-9200

-00087

-00130
00129

-00563
00541

-01088
01007

-01750
01540

-0-2633
0-2155

-0-3910
0-2832

-0-5960
0-3326

-0-8920
0-2709

-0-4302
01271

-01452

-0-0580
-00552
-0-2213

01698
-0-9800

-00580

-0-3734
01107

-0-3734

log(D)

-232-578
-230-567
-113-211
-110-784

-70-365
-67-237
-40-404
- 3 6 0 5 0
- 1 7 0 8 7
-11-850

- 6 0 6 6

-232-578

-345123
-343-073
-221-620
-219-291
-165-923
-163181
-126-223
-122-831

- 9 3 0 2 3
-88-524
- 62-404
-55-824
-32-316
-21-706
-4-564

4-329
4-823

-11-661
- 1 4 1 7 7

-115-415
-112-680

-48-232
-40-762

-0-908

-115-415

-6-732
-2-869
-6-732

Notation: [m, v, M], numbers of loci at the three possible equilibria; [p,p, P], the corresponding allele frequencies; z, v, the
mean and variance of the character; log(WO> V, the log mean fitness, and the potential function which accounts for mutation;
A, the leading eigenvalue (negative for a stable equilibrium); \og(D), the log of the absolute value of the determinant of the
stability matrix (i.e. the log of the product of the eigenvalues). Where z0 = 0 (a, c, d), the tables are symmetrical; here, only
one set of equilibria are shown.

far from the optimum (\8\ < §), the phenotypic eigenvalues of the matrix ^(dpJdO/dpj, which governs
variance may differ substantially. In this deterministic the dynamics near equilibrium. Whenever an equi-
case, therefore, the amount of variation that can be librium of the class [m, 0, M] exists, it is stable: all the
maintained by a mutation/selection balance depends eigenvalues are negative. The degree of stability can
on the history of the population. be measured by the product of (minus) these

The stability of the equilibria is determined by the eigenvalues (D = dei{ — c(dpt/dt)/Zpj)); we will see in
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the next section that this quantity is important in the
stochastic behaviour of the system. For the stable
equilibria [m,0,M]:

(G + 4MPQ)\ ( 4 a )

where g = 1 — 6pq + 4/i/sa2 — 28(p — q)

G = 1 -6PQ + 4fc/sa2-28(P-Q)

(from eqn 12) in Barton, 1986; note the difference in
sign in the definition of g, G here).

To move from one stable equilibrium to another,
the population must pass through an unstable state.
In general, the most likely path for such a transition is
via an unstable equilibrium; the chances of such a
transition depend on the dynamics near this equi-
librium (Barton & Rouhani, 1987). Though I will not
attempt a formal proof, it seems certain that the most
likely route from an equilibrium of the class [m,0, M]
to an adjacent equilibrium [m+ 1,0, M— 1] is via the
unstable state [m, 1, M— 1] (Fig. 5). This corresponds
to a shift of one of the loci from near fixation for the
+ allele, through a polymorphism, to near fixation
for the — allele, as this shift occurs, allele frequencies
at all the other loci adjust so as to keep the mean close
to the optimum.

Numerical results show that whenever an equi-
librium of the class [m, 1, M] exists, it is unstable: one
eigenvalue is positive, whilst the remaining (n— 1) are
negative. The degree of instability can still be measured
by the product of (minus) the eigenvalues, which is
now negative:

= gm-1GM-1
= g det

I (g + 4mpq) 4pq 4Mpq

4mpp (T + 4pp) AMpp
4mPQ 4PQ (G + 4MPQ).

(4 b)

(where T is denned in the same way as g,G above;

P = P)-
Thus far, the deterministic behaviour has been

described by a set of differential equations (3), coupled
together by the deviation, 8. The stochastic analysis
below rests on the fact that the dynamics of this model
can also be described in terms of a potential function,
U:

dp1_
dt

where

2 dPj
(5)

The rate of change of allele frequency is given by
the product of the additive genetic variance (piqi/2)
and the gradient of U. The population can be seen as
climbing towards local peaks of U, on a surface which

represents the graph of U plotted against allele
frequency. This surface is not quite the same as
Wright's 'adaptive topography', because it includes
the effects of mutation: peaks of U do not coincide
with peaks in mean fitness, because mutation
maintains maladaptive polymorphism. The stability
of an equilibrium depends on the curvature of the
potential surface (32 U/dpt 9/>;) near a stationary point.
This is related to the eigenvalues discussed above:

D= Kdet(32 U/dp,dp}). (6)

The deterministic properties of the system are
summarised in Table 1, for various parameter
combinations.

3. Stochastic behaviour: simple approximations

The three central questions are: first, what is the
distribution of the phenotypic mean and variance?
Second, what is the chance that a population will be
in the vicinity of one deterministic equilibrium out of
the many alternatives? Third, how often do
populations shift between equilibria? A full answer to
these questions must follow the whole set of allele
frequencies. However, before beginning the multi-
dimensional analysis, it will be helpful to discuss some
simple approximations.

The distribution of the mean and variance

In the limit where the alleles responsible for polygenic
variation are rare, and where the distribution of
breeding values is symmetric, changes in the mean and
variance under selection and mutation are approxi-
mated by:

dz
d7
dv
d7

v 0\/-s(z-zo)\ ( 0
.0 va2j\ -.9/2 ) \2njLia2 (la)

(from Barton, 1986, eqn 14, setting the third moment
to zero).

The effects of drift are given by the same matrix that
mediates the effects of selection in eqn (7 a) (Barton &
Turelli, 1987, eqn (3.7)). The covariance of random
fluctuations in the mean and variance is:

(7 b)
E(8z2) E(8z8v)\_\_fv 0

E(8z8v) E(8v2))~~N\0 va2)

(where N is the effective number of diploid
individuals).

Sampling drift will also decrease the expected
variance by a factor (1 — 1/2/V) in each generation.
The expectations of the mean and variance can be
found by setting eqn (la) to zero. The variance of the
mean is given by E(8z~)/2A, where A = s is the rate of
return to the equilibrium mean.

Similarly, the variance of the variance is E(Sv'2)/2A,
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where A is now the rate of return to the equilibrium
variance. The A are derived from eqn (7 a).

1
E(z) = z0

EW> = -7*

var (z) = 2Ns

:var(») = h73
1

Ns2)(l+[l/Ns<x2])2'
(8)

The formula for the expected genetic variance, E(v),
was obtained heuristically by Burger et al. (1988).
Fluctuations in the mean, var(z), depend only on the
product of population size and selection on the
phenotype (Ns), and are independent of the genetic
variance, v. This is because both the size of
perturbations due to drift, and the response to
selection, increase with v; these two effects cancel
(Lande, 1975). The variance of the genetic variance
also depends only on measurable, phenotypic
parameters; the question addressed below is whether
the genetics underlying these parameters significantly
distort these phenotypic approximations.

Substitution rates

In the parameter range we are considering, a shift
between equilibria approximates to a substitution at'a
single locus. As this substitution occurs, allele
frequencies at all the other loci adjust to keep the
mean near the optimum. The simplest case is where
the population is sufficiently small, and selection at
each locus sufficiently weak, that substitutions are
effectively neutral (Nsoc2 <̂  1). Then, the rate of
substitution at each locus is just /i. This neutral
approximation sets an upper limit to the substitution
rate: for symmetric equilibria at least, stabilizing
selection must reduce the rate.

Next, consider the dynamics of one locus in
isolation. One might assume that adjustments at all
the other loci keep the mean at the optimum, and
calculate the rate of substitution from eqn (3) alone;
this was the approach taken by Kimura (1981).
However, there are two difficulties. First, the mean
will generally deviate from the optimum, and this
deviation will change during the substitution.
Neglecting the deviation altogether (i.e. 8 = 0) gives a
poor approximation, which does not distinguish
between different classes of equilibria. One can instead
interpolate between the deviations at the upper and
lower equilibria (i.e. S = 8+p + 8_q). This method is
still approximate, since the deviation does not change
linearly (see Table 1), and since the probability of a
shift depends on the magnitude of transverse
fluctuations, as well as on the dynamics along the
main path.

A second difficulty is that when many mutations
enter the population in each generation {AN/J, > 1),
one cannot calculate the rate of change from the
probability of fixation of individual mutations. This
problem is treated by Barton & Rouhani (1987), who

give a formula for the single locus case which is valid
with recurrent mutation.

4. Stochastic behaviour: multidimensional analysis

Background

Because the covariance between random fluctuations
in allele frequency is proportional to the same factor
(PtQi/Z) a s determines the response to selection and
mutation (eqn 5), an explicit formula for the equi-
librium distribution i/r0 can be found:

This is just Wright's (1935) formula:

(10a)

(106)

(where dp = H?^ dpt).
The potential U, and the corresponding distribution

i/r0, is dominated by sharp peaks at the stable
deterministic equilibria. The normalization constant,
Z, can be calculated by integrating around each peak,
and then summing over peaks:

where Z.:a=f
J near T

(11)

Here, the sum is taken over all distinct equilibria, and
the integral is taken around one peak in U. The
subscript m refers to one particular equilibrium in the
class [m, 0, M]; N is assumed to be large enough that
the peaks are well separated.

The chance that, after a steady state has been
reached, the population is near equilibrium m is just
Zm/Z. The rate of shifts from the vicinity of one stable
equilibrium, through a saddle in U, to a new state, is
denoted by F. It can be calculated from the equilibrium
distribution (Gardiner, 1983, Barton & Rouhani,
1987, eqn 14):

F"1 = 27V (12)

The integration proceeds in two steps. \j/a is first
integrated across surfaces S which are transverse to
the ridge which connects the two stable states, via the
saddle; each of these surfaces contains a peak on the
ridge. This integral across 5 is a function of position
along the ridge (e), and decreases to a minimum at the
saddle. The inverse of this function is then integrated
to give the inverse of the transition rate.

Exact integration

It is not easy to evaluate eqns 11 and 12. The integrals
involve many degrees of freedom, and so they cannot
be calculated numerically, short of direct simulation
or related Monte Carlo methods (Hastings, pers.
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comm.). However, in the particular case of an additive
character, an exact solution can be found. The problem
is simplified by the fact that we are only interested in
a few of the many dimensions. For example, we might
be interested in the phenotypic mean and variance. If
the phenotypic distribution is approximately normal,
and if selection acts only on the polygenic character,
then the mean fitness depends only on the mean and
variance. Therefore, the integral of ^0 over allele
frequency, conditional on the mean and variance is:

(13)

the constraint of fixed z,v by two Dirac delta
functions: - •

where F(z, v) = j ViN'' ldp (the integral being taken
over fixed z, v).

When 4N/i < 1, this integral will include many
peaks, corresponding to near fixation for different
alleles. It can be split into separate components, Fm, as
in eqn (11). Equation (13) separates the distribution
into a factor reflecting the effects of selection, and a
factor F(z,v) which reflects the genetic structure; this
latter is just the distribution of phenotype in the
absence of selection.

There is a close analogy here with thermodynamics.
The function W2N is equivalent to the Boltzmann
distribution, \og(W) being analogous to the energy,
and 2N to I/AT, the inverse temperature. The integral
over all possible states (eqn 11) gives the partition
function, Z. The entropy, S, can be defined by
F=exp(27V5); it is a measure of the number of
microscopic states (here, allele frequencies) which
give a specified macroscopic state (here, z,v). The
distribution of the macroscopic variables (eqn 13)
depends on the log mean fitness ('energy') and also on
the density of states ('entropy'). One could draw the
analogy differently, by equating the whole potential U
with the energy, and defining F as J V'1 dp; the latter
then becomes a purely geometric term. The effects of
mutation would then be included with the energy,
rather than the entropy. It is not obvious which
analogy is more helpful.

Because the trait is assumed to be determined by the
sum of effects of the n loci, the distribution in the
absence of selection, F(z, v), can be found simply by
convolving the separate distributions contributed by
each locus. Since we need to know the distribution
when the population is in the vicinity of some
particular equilibrium of the class m, F must be
divided into its components, Fm. The division is made
by dividing each of the n allele frequencies at the
appropriate unstable threshold, p. Strictly, one should
subdivide the allele frequency space into the domains
of attraction of the various equilibria; however, the
procedure used here will be a good approximation
when the populations cluster close to the equilibria.

The convolution can be carried out by a method
based on Fourier transformation. We first represent

^ *P- (14«)

Since the delta function can be written as 8{x) =
jeixidx/2n,

I J j exp iz (z - 2 aip, - qs) j I exp I iS f 0 - S 2oc2
Pj q)

JL/plq<\iN>'-1

x l l l — I dpdzdv. (146)

This separates into a product over loci:

where

H_{a,b)=

H+(a,b) =

x {HXtxz, a2v))m(H+(az, <x.H))M dzdv (14 c)

^ dp (14rf)

^Y"""1 dp. {Ue)

The functions H_, H+ are the Fourier transforms of
the allele frequency distributions at loci near fixation
for the — or + alleles, respectively. The limits of
integration are at the unstable equilibria which must
be crossed by loci passing from a — allele to a + allele
(p_), or by loci passing from a + allele to a — allele

The above derivation uses the fact that the Fourier
transform of a convolution is the product of the
Fourier transforms of the individual distributions.
The method could easily be extended to include
dominance, but would be complicated by epistasis.
For example, if distinct pairs of loci (/',/) interact, eqn
(14c) becomes a product over functions H which are
two dimensional integrals over p, and pr

Equation \4d, e is similar to those given by Bulmer
(1972), who derived expressions for the expected
variance in this model. However, there are two key
differences. First, Bulmer assumes that the mean
always coincides with the optimum, so that the loci
evolve independently. Here, the term W2* in eqn (13)
introduces a coupling between the loci. Second,
Bulmer calculates the overall variance, rather than the
variance when the population is near one of the many
stable equilibria. Because we are concerned with only
a part of the allele frequency space, eqns \4d,e cannot
be solved analytically: Bulmer was able to write the
expected variance, averaged over all equilibria, in
terms of hypergeometric functions.

Equation 14 can be applied to find the probability
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that the population is near some equilibrium (Zm/Z),
the rate of transition between equilibria (F), the
marginal distribution of allele frequency (i/ro(p)), and
the distribution of phenotypic mean and variance.
This method will be referred to below as 'exact
integration'; details are given in Appendix 1. The
calculations can be speeded up by assuming that
F(z, v) is Gaussian. This leads to simple expressions
for the distribution of the phenotypic mean and
variance (eqn A 1.8-1.10), and will be referred to as
the 'partial Gaussian' approximation.

The full Gaussian approximation

Explicit formulae can be obtained by making two
approximations. First, assume that 4N/i is large
enough that allele frequency distributions at each
locus are approximately Gaussian. (This should not
be confused with the approximation that allelic effects
are normally distributed (Nagylaki, 1986): that clearly
cannot be the case here, since there are only two alleles
at each locus. Nor should it be confused with the
much weaker assumption that the distribution of the
phenotype in the absence of selection, F(z, v), is
Gaussian - the 'partial Gaussian' approximation).

Second, instead of integrating over fixed (z, v), the
average allele frequencies at the m loci near fixation
for the — allele (p = Hpjm) and at the M loci near
fixation for the + allele (P = X P,/M) are fixed. This
is less elegant, because it does not lead to a separation
between mean fitness and the underlying allele
frequencies. However, it does not affect the accuracy
of the calculations in this paper. This is because loci
will usually be close to fixation, so that (assuming
v = 0) v x 2<x2(mp + MP), and so is approximately
fixed. In any case, the integrals will be taken around
points where the surface of fixed (z, v) is tangent to the
surface of fixed (p, P), and only small fluctuations will
be considered. Though one can argue that this 'full
Gaussian' approximation is unnecessary, since nu-
merical results can be obtained by exact integration, I
include it here because it is widely used to approximate
stochastic systems (Barton & Rouhani, 1987), and
because it is surprisingly successful, even where the
allele frequency distribution is in fact far from
Gaussian.

The equilibrium distribution can be found by using
eqn (2) to substitute for W in eqn (10). The formula
separates into three factors. Two of these correspond
to the two sets of m and M loci; they are coupled
together by the first term, exp ( — Nsa.2S2):

= exp(2NU) = e\p(-Nsa.2S2)

xexp\-2Nsa* £ Plq\ \[ (W .
\ t-m + l 1 t-m+1 \ *• I

We wish to integrate out (m — l) + (M— 1) degrees of
freedom, to find the distribution of average allele

frequencies (p, P) at the two sets of loci. This reduced
distribution is:

fio(p, P) dp dP = exp ( - Nsa2S2) I(m, p) I(M, P)dpdP
(16)

where

,p) = J exp
(oa 4A>-1

«Jn^J dp.
Formally, the integrand in /includes many peaks: the
range of integration must be restricted to include only
the peak near p( = p. The integral is taken over the
(m — 1) dimensional region Ti™.xp( = mp.

Suppose that Nsa2 is large enough that fluctuations
around pt= p are small, and / can be approximated
by a Gaussian integral. To a first approximation, / is
given by the value of the integral at p( = p. Fluc-
tuations around pt = p can be approximated by a
factor exp (— wY.{pt —p)2/2); vv is the curvature around
the peak, and equals $n(/i(\—2pq)/s<x2p2q2—l). The
integral of this factor, subject to the constraint
Z(Pt—p) = °> is

 V/(2TT/H')'""7W, and so:

YNI'~1 t 2 /) (±J
(17)

Equations 16 and 17 now combine to give the
distribution of average allele frequencies (/?, P). The
derivation has been based on the assumption that
Mra2 is large, so that only leading terms in (\/Nsa2)
are needed, and so that the distribution of individual
allele frequencies is approximately Gaussian. Given
this assumption, the distribution of average allele
frequencies must also be Gaussian. Furthermore, we
can take the peak of this distribution to be at the
deterministic equilibrium; then, eqns (3b, 4a) show
that w = 2Nsa2g/pq, where g is the eigenvalue of the
deterministic equations defined by eqn (4b). Inte-
grating out superfluous degrees of freedom:

4ro(p,P)dPdP = exp(2NU) If 2n

X -

Nsa.'

- dpdp. (18)

This joint distribution is applied in Appendix 2 to
give expressions for the probability that the population
is near some equilibrium (Zm/Z), the rate of transition
between equilibria (F), the marginal distribution of
allele frequency (^0(p)), and the distribution of
phenotypic mean and variance.

(15) Simulations

Simulations were run to check these analytic
predictions. Ideally, one would use direct Monte
Carlo simulations, which would represent each in-
dividual, and allow for linkage disequilibrium. How-
ever, this is not feasible: many loci must be involved

GRH 34
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before multiple equilibria can coexist, and shifts will
occur at a significant rate even when there are many
(x 104) individuals. Therefore, simulations only
tracked allele frequencies at the n loci. Selection and
mutation were represented by the discrete time version
of eqn (3 a). For intermediate allele frequencies,
sampling drift was approximated by a Gaussian white
noise with variance pq/2N. Where fewer than 10
copies of the rarer allele were present, a Poisson
distribution was used.

Runs were begun from some particular deterministic
equilibrium: results were not recorded for the first
3/a2s generations, to allow time for random
fluctuations to build up. Each run was continued until
a shift to some other state occurred: the time before a
shift gives an estimate of T"1. Whilst the population
remained near the initial state, the distribution of the
phenotypic mean and variance, and the allele fre-
quency, were recorded. In most cases, 50 replicates
were run from each set of parameters.

Determining when a shift has occurred is delicate.
The criterion used was that at least one allele frequency
should pass beyond the threshold set by the unstable
deterministic equilibrium, for at least \/3a2s
generations. This is unambiguous when Nsa2 is large;
however, when Nsa2 is very small, the distribution
does not cluster around distinct attractors. The rate of
shifts, measured by the above criterion, does not tend
to the neutral substitution rate as N tends to zero: this
is because a shift is deemed to occur when an allele
frequency passes some intermediate threshold, rather
than when a substitution is completed.

5. Results

Choice of parameters

The key parameters are n, the number of loci, Nsa2, a
measure of the strength of drift relative to selection on

(a) (b)

u

lnW

-20 <

v . . • • '

m 17
v 0
M 83

26
0

74

U

- 1 0 H.

- 2 0 H

45
0

55

55
0

45

Fig. 1. The log mean fitness (log(HO) and potential (U)
associated with alternative equilibria, for the case n = 100,
y = 001. (a) z0 = 5; (b) z0 = 0. The leftmost point in each
series corresponds to the most extreme stable equilibrium
(a) [17,0,83]; (b) [45,0,55]. The next point corresponds to
the adjacent unstable equilibrium (a) [17,1,82]; (b) [45, 1,
54]. Stable and unstable equilibria then alternate until the
rightmost stable equilibrium is reached.

each locus, and y = /i/stx2, the ratio between mutation
and selection. The position of the optimum, relative to
the point which would be reached under recurrent
mutation alone, has rather little effect (Barton, 1986;
compare Tables 1 a, b). This is because the
deterministic equations eqn (3) depend only on 8: a
shift in the optimum can be compensated for by a
change in [m, 0, M\. The remaining parameters can be
scaled out: sa2 sets a characteristic timescale, whilst a
sets a scale of measurement for the character. We will
therefore concentrate on the effects of Nsa2, n, and y.

Even with this restriction, there is still a wide range
of possibilities. Unfortunately, there is little firm
evidence on the mutation rates, population sizes,
selection pressures, and numbers of loci which might
be found in nature. The problem is exacerbated by the
fact that per locus mutation rates seem too low to
account for observed levels of quantitative variation
(Turelli, 1984). However, some rough guesses can be
made. A selection pressure .? x 005/Ve is typical of
values measured in nature and in the laboratory
(Turelli, 1984; though measures are obscured by
fluctuations in natural selection (Endler, 1986)). The
variance introduced by mutation is n/ioc2 x \0~3Ve per
generation. In order to account for high heritabilities
(h2 x §, say) by a mutation/selection balance involving
rare alleles, one must have VJ2 = Vg = {An/i/s). The
total mutation rate n/i must thus be x 000625. This
is consistent with the few measurements of the rate
of production of mutations affecting quantitative
characters, but is hard to reconcile with estimates
of the numbers of loci involved in polygenic variation
(n x 20 upwards; Turelli, 1984, Shrimpton & Rob-
ertson, 1988), and per locus mutation rates {/i x
10~5-10~6). The problem increases when one realizes
that alleles will tend to be selected against not only
because of their effects on the character of interest, but
also because of their pleiotropic effects on other
characters (Turelli, 1986). However, since the aim
of this paper is to investigate the effects of drift
on polygenic systems with multiple equilibria, this
problem will not be discussed further. Most results
will be for the case n = 100 loci; the above empirical
values then imply that y x 001. Lower mutation rates
(y = 00025) and fewer loci (n = 25) will also be
considered. These parameter ranges complement those
of Burger et al. (1988), who considered much smaller
population sizes (mostly Nsa2 < 2), and Hastings
(1987), who considered many fewer loci (n = 8— 16).

Distribution across equilibria

The chance that a population will be near to some
particular deterministic equilibrium depends primarily
on the potential, U = log (W) + 2/t log (V). This
combines the effects of selection (which tends to
increase mean fitness) with the effects of mutation
(which tends to increase genetic variance). U is plotted
against the possible classes of equilibria in Fig. 1, for
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Table 2. Comparison of exact integration, and the full and partial Gaussian approximations, for different
classes of stable equilibria [m, 0, M]

67

m M Exact integration Partial Gaussian Full Gaussian

(a)
45

46

47

48

49

50

51

52

53

54

55

(b)
45

46

47

48

49

50

51

52

53

54

55

to
48

49

50

51

52

(d)
12

13

Nsa* = 10, n = 100, y
55

54

53 000000

52 000000

51 005998

50 0-88004

49 005998

48 000000

47 000000

46

45

Nsoc2 = 20, n = 100, y
55

54

53

52

51 000462

50 0-99077

49 000462

48

47

46

45

Nsa2 = 10, 77 = 100, y
52

51 000011

50 0-99988

49 000011

48

Nsa? = 10, 7j = 25, y --
13 0-5000

12 0-5000

= 001,70

000010

000299

009651

0-80081

009651

000299

0-00010

= 001,z0

000978

0-98045

000978

= 00025,

008289

0-83422

008289

= 001, zo =
0-5000

0-5000

= 0

-9113

-9-227

-9-222

-8093

-8093

-9-222

-9-227

-9113

= 0

-11-824

-12-544

-14-627

-12-424

-12-424

-14-627

-12-544

-11-824

zo = 0

-10-795

-10-362

-10-362

-10-795

= 0

-6138

-5-754

-5-805

-5-805

-5-982

-5-982

-5-805

-5-805

-5-754

-9-639

-9-440

-8-334

-7-817

-7-817

-8-334

-9-440

-9-639

-8053

-8053

-6138

000012

000156

009546

0-80572

009546

000156

000012

000357

0-99285

000357

000305

0-99390

000305

0-5000

0-5000

-1-704

-7-654

-9192

-7-946

-7-946

-9192

-7-654

-1-704

-13131

-18-222

-17-796

-12-717

-12-717

-17-796

-18-222

-13131

-6004

-5-633

-5-633

-6004

-6068

-7-589

-5-652

-5180

-5132

-5-832

-5-832

-5132

-5180

-5-652

— 7-589

-7-589

-5-657

-5-230

-5-403

-7109

-7109

- 5-403

-5-230

-5-657

-7-589

-4-148

-11 -400

- 11 -400

-4148

-6068

The third column gives the probability that the population will be in some equilibrium of a class: this includes the factor
[n\/m\M\], which is the number of equilibria in the class, and is calculated by exact integration. The fourth column gives this
probability, calculated using the partial Gaussian approximation. The fifth and sixth columns give the log transition rates
(log(F)) either away from the optimal equilibrium, or towards it (fifth and sixth columns, respectively); these rates are scaled
relative to the characteristic time 2/sa2. These values are calculated using the partial Gaussian approximation. The last three
columns give corresponding predictions from the full Gaussian approximation.

5-2
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001
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0-9 -

01
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001

0-99 -

01
I

0-9 J

Fig. 2. (a) The logarithm of the equilibrium probability
distribution of two particular allele frequencies, one
chosen from the set of m loci at low frequency (/?,), and
one from high frequency (/̂ .). All other loci are held at
the deterministic equilibrium. The distribution is plotted
on an arc-sin transformed geodesic scale. z0 = 0,
Nsa} = 10, y = ///5a2 = 0-01, « = 100; hence, 4N/i = 0-4 is
small enough that the distribution rises to a singularity at
p = 0, P = 1. Contours are spaced at 01 units of log
probability, {b) The distribution of average allele
frequencies, (p, P), for the same case. Here, contours are
spaced 10 units of log probability apart: the distribution
is tightly clustered around the peak (A). The deterministic
equilibrium {X) is slightly displaced from the peak.

the standard parameter set (n = 100, y = 001). Values
of U, and of log mean fitness, are also given in
Table 1. Note that the pattern of log mean fitness
parallels the potential: thus, the most likely state also
has highest mean fitness.

The graph of U against possible equilibria consists
of a series of rectangular steps; the drop in potential
which impedes transitions away from the optimal
equilibrium is much greater than the drop which
impedes shifts in the opposite direction. Indeed, the

latter barrier is barely visible in Fig. 1. We therefore
expect that over a wide range of population sizes, drift
will be strong enough to knock the population away
from suboptimal states, but not strong enough to
knock it away from the optimal state. The population
size at which drift allows shifts at an appreciable rate
across a barrier At/ is Nx2/AU. When z0 = 0
(Fig. \b), escape from equilibria [50,0,50], [49,0,51],
[48,0, 52], ...becomes likely when Nsa2 < S-4, 31-3,
1560, 784-3, ...If, as is likely, selection on each locus
is weak, these figures correspond to large numbers of
individuals: taking the rough estimates of the previous
section, if set2 x 4 x 10~\ then the criterion for stability
is that N< 21,000; 78,000; 369,000; 1,961,000....

The chance that the population lies near the optimal
state depends on the shape of the distribution
(exp (2NU)) near that state, as well as on the height of
the peak in U. It can be calculated by integrating
around the peak, using either the exact method, or the
Gaussian approximation (eqn 23). Both give similar
results (Table 2), confirming that provided Nsa2 > 2,
the population is most likely to be found near the
deterministic equilibrium in which the mean is closest
to the selective optimum. Calculations of transition
rates (see below) also show that shifts towards the
optimum are (for Nsa2 > 2) more frequent than those
away from it, and that these shifts can be frequent
enough, even in a large population, for the optimum to
be reached quickly (Fig. 6).

Distribution of allele frequencies

Calculations of transition rates, and of phenotypic
distributions, depend on averaging over irrelevant
variables. This procedure is illustrated in Fig. 2. Here,
population size is small enough that the distribution
of individual allele frequencies is strongly skewed: it
rises to a singularity at fixation. The distribution
illustrated in Fig. 2a is a cross-section through an
H-dimensional hypercube, with peaks at every corner.
This /;-dimensional distribution of average allele
frequencies is reduced to a two-dimensional distri-
bution of average allele frequencies (ijro(p,P); eqns
16, 18). Figure 2b shows that this latter is tightly
clustered around the deterministic equilibrium and
has an approximately Gaussian form near the peak.
Simulations confirm that although individual allele
frequencies vary widely, their averages follow the
distribution of Fig. 2b.

By integrating over all but one allele frequency, the
marginal distribution at each locus can be found. The
distributions at loci almost fixed for ' + ' alleles, and
for loci almost fixed for ' — ' alleles, are shown on the
same graph in Fig. 3. The theoretical distribution
(whether calculated by exact integration, by the partial
Gaussian approximation, or by the full Gaussian
approximation) is indistinguishable from simulation
results on this scale.
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\/2Nyo6\ 01 0-9 0 - 9 9 ^ 1 -1/2/V

Fig. 3. The distribution of allele frequency (t/r(l(p)), given
that the population is near [49,0,51]. n = 100, y = 001,
Nsa' = 10. r0 = 0. p is plotted on an arc-sin transformed
scale. The left-hand curve shows the marginal distribution
for the 49 loci nearly fixed for ' — '; the right-hand curve
is for the 51 loci nearly fixed for ' + '. The two arrows
show the deterministic equilibria. Simulation results (from
64,000 generations) are drawn on the same graph, and are
indistinguishable from the theoretical prediction, except at
extreme frequencies: when p < ]/2N or p > 1 — \/2N, the
diffusion approximation breaks down. (Here and in Fig. 2,
the distribution is calculated using the full Gaussian
approximation. Results from the partial Gaussian
approximation and from exact integration are
indistinguishable.)

Transition rates

Theoretical calculations of transition rates are
compared in Fig. 4, for the standard case of n = 100,
7 = 0-01, z(l = 0. Even though the disf ribution of allele
frequencies is strongly skewed when Nsu? < 20 (Figs.
2a, 3), the full Gaussian approximation (straight solid
line in Fig. 4) is close to the partial Gaussian
approximation for Nsa2 > 5 (dotted solid line in
Fig. 4). Results from exact integration are not
given, because they require calculation of a three-
dimensional integral. However, they should be close
to the partial Gaussian approximation: the distri-

Nsa2 •20 (b) 0 Nsa2 20

5=0
5=0

Fig. 4. Comparison of various approximations to the
.transition rate, F. This is the chance per generation of a
shift from the vicinity of one particular state to the
vicinity of another particular state. (Since there are many
neighbouring states, the total transition rate is much
higher.) In both graphs, za = 0, n = 100, y = 001. (a) [49,
0,51] to [50,0,50]. (/>) [50,0,50] to [49,0,51]. Results from
exact integration are shown by the solid curve; the
Gaussian approximation is shown by the solid straight
line, and coincides with exact integration for Nsa2 > 8.
The dotted lines show two single locus approximations.
The line S = 0 is obtained by ignoring deviations from the
optimum; it is the same in (a, b). The other dotted line is
obtained by linear interpolation of the deviation, <5.

2000

Fig. 5. A typical segment of a simulated path. Nsa- = 10,
y = 001, n = 100, .? = 1, a = 0 1 , r,, = 0. The population
begins at a deterministic equilibrium of class [49,0,51],
and runs until a shift to [50,0,50] occurs (downward line
on right). The graph shows allele frequencies at the 100
loci, plotted on an arc-sin transformed scale.

bution across equilibria, and the marginal distribution
of allele frequencies, from these two methods are
similar (Table 2).

Two single-locus approximations are also shown,
by dotted lines. Ignoring deviations from the optimum
altogether (i.e., 8 = 0) gives a model of symmetric
underdominance. This gives poor results: it predicts
equal rates for all classes of equilibria, when in fact the
optimal equilibrium [50,0,50] is much stabler. Linear
interpolation of S between the deterministic equilibria
gives better results; however, there is still a substantial
discrepancy, which is due to the failure to account for
fluctuations at the (n— 1) loci which are not directly
involved in the shift.

These various predictions can be checked against
simulations. Figure 5 shows a typical run. Allele
frequencies fluctuate near fixation. Occasionally, one
allele frequency drops to hover near the unstable
threshold (dotted line), and then either returns to its
original state or drops further. The average time
before a shift from [m, 0, M] to [m— 1,0, M + 1] gives
an estimate of (1/MT); the factor M is introduced
because M loci are liable to shift from ' + ' to ' — '.

For the standard case, with 7 = 001 , the partial
Gaussian approximation gives results in good agr-
eement with the simulations over the whole range of
Nsa2 for shifts from [49,0,51] to [50,0,50] (Fig. 6a).
For jumps in the opposite direction, agreement is less
good (Fig. 6/>). This is to be expected, since the
analytic predictions are based on a formula derived
for large Nsa2 (eqn (12)). When populations are small,
some disagreement is to be expected: allele frequencies
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(a)

0

(b)

Nsa2
20

70

Nsa2 20

In (D

-10

Fig. 6. Comparison between exact integration (solid
curve), the Gaussian approximation (solid straight line),
and simulation results. Parameters are as for Fig. 4,
except that N is varied. For each value of N, simulations
were run until 50 shifts had occurred (excepting the

rightmost points in Fig. 5 b, where only 7 shifts were
seen). The bars show log (F)± 2 standard errors. The
arrow on the left of each graph shows the neutral
substitution rate (//).

fluctuate so much that it is not clear when the
population is 'near' one or other deterministic
equilibrium, and the simulation results become sen-
sitive to the criteria used to define a shift.

The full Gaussian approximation (straight lines in
Figs. 6a, b). is good for Nsa2 > 5, and performs
almost a*s well as the results from exact integration.
This is surprising, since the distribution of allele
frequencies. is strongly skewed (Fig. 3). The un-

reasonable accuracy of the full Gaussian approxi-
mation is a common, and as yet unexplained
phenomenon; it arises, for example, in quantum
mechanics and in optics (Schulman, 1981, Ch. 5).

The arrows in Fig. 6 show the neutral substitution
rate (F = //), which is expected when Nsa2 is small
enough that selection is negligible. Simulations at
small TV give rather higher rates. There are two
reasons for this. First, the definition of a shift is that

(a) (h)

10 10

Nsa2

Fig. 7. The variance of the phenotypic mean, plotted as
2/Vs.var(r), against Nsa.2.z0 = 0, n = 100, y = 001, s = 1,
a = 001. (a) [49,0,51]; (b) [50,0,50]. Crosses show
simulation results. The naive phenotypic prediction
(eqn Sa) is that this quantity is always equal to 1 (dotted

line on right). The full Gaussian approximation predicts a
somewhat lower constant value (solid line on right, from
eqn A 2.2b). The solid curve shows the prediction from
exact integration, which is very close to the partial
Gaussian approximation.
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(a) (b)

005

71

I
£(V)

10

Nsa2

Fig. 8. The expected phenotypic variance, plotted against
Nscc2. Parameter values are as for Fig. 7. Crosses show
simulation results (a) [49,0,51]; (b) [50,0,50]. The right-
hand horizontal dotted line gives the deterministic
equilibrium, which is slightly higher for the asymmetric
equilibrium (a). The left-hand dotted line gives the neutral
prediction (v = ANnfi). The heavy solid curve shows the
prediction from exact integration. The light dotted curve

shows the prediction obtained by neglecting variations
about the optimum (which is close to Bulmer's (1972)
formula). The light solid curve in (a) shows the prediction
from the partial Gaussian approximation. For the
symmetric equilibrium (b), this is indistinguishable from
exact integration, and so is not shown: there, the light
solid curve shows the Gaussian approximation (eqn
A 2.2a).

allele frequency should pass some intermediate
threshold, rather than that a substitution should
occur. When Nsa.2 is large, a locus that passes the
threshold will almost certainly go on to near fixation
for the new allele (cf. Fig. 5). However, when Nsa2 is
small, frequencies may often return to their original
values. Second, though selection opposes the initial
increase of a rare allele, it assists the shift once the
threshold is passed. This may increase the rate of
shifts above the neutral rate when the initial equi-
librium is asymmetric (compare Figs. 6 a, b).

Distribution of the phenotype

The variance of the mean around the deterministic
equilibrium is shown in Fig. 7, as a function of
population size. The product 2Ns.var(z) is plotted;
naive phenotypic arguments predict that this should
have a constant value of 1 (eqn 8a). The variance is
indeed close to this prediction (upper dotted line)
provided that the population is not too small (Nsa2 >
1). If allele frequencies follow a multivariate Gaussian

distribution, 2Af?.var(z) should have i. somewhat
smaller value (lower solid line; eqn A 2.2b). The more
sophisticated prediction, from exact integration, is
shown by the solid curve: this converges to the full
Gaussian prediction as Nsa2 becomes large, and the
underlying distributions approach normality. The
main conclusion is that the mean is never likely to
deviate from the optimum by more than » y/2/ Ns for
Nsa2 > 1. Since Nsa.2 var(z) decreases for small N, this
limit may always hold: it implies that the 'drift load'

which arises from deviations from the optimum is
^ \/4N.

The relation between the genetic variance and
population size is shown in Fig. 8. The variance is
somewhat higher when the population is near an
asymmetric equilibrium in the class [49,0,51] (Fig.
8a). Since drift is likely to keep the population near to
the optimal state [50, 0, 50], we should concentrate on
Fig. 8h. The variance is close to the deterministic
value (right hand dotted line) for Nsoc2 > 2. It decreases
to zero as the population becomes very small;
however, selection holds the variance well below the
neutral prediction (v = 2nNs/i; left hand dotted line),
even for small N. Surprisingly, the variance increases
slightly for intermediate A^a2 before decreasing in
very small populations. This effect was predicted by
Bulmer (1972), by integration of the single-locus
distribution on the assumption that the mean
coincided with the optimum (dotted curve). Exact
integration of the multilocus distribution, or use of
the partial Gaussian approximation, gives results
similar to Bulmer's, showing that fluctuations in the
mean have little effect on the variance. However, the
full Gaussian prediction (shown in Fig. 86 by
the lower solid curve) does not predict this increase.
Simulations do show an increase at intermediate Nsa2.
However, it is smaller than predicted for the symmetric
equilibrium (Fig. 8/>). The reason for this discrepancy
is obscure: it may be an artefact of the criterion used
to decide when the population has shifted to a new
equilibrium.
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Accumulation of reproductive isolation

Suppose that two isolated populations each remain in
a balance between mutation and stabilizing selection.
Even though both are subject to the same selection
pressures, and the mean in both may remain close to
the same optimum, drift will occasionally change the
underlying combination of alleles. Eventually, the
combination may become different enough that when
the populations cross, extreme and unfit recombinants
will be produced. To find the rate at which re-
productive isolation will evolve, we must know first,
the level of isolation produced when populations
differ at k/n loci, and second, the rate at which they
become different.

In a large population at equilibrium, in which the
mean coincides with the optimum, the genetic variance
is v = 4n/i/s. This reduces mean fitness by sv/2 = 2n/i.
We can compare levels of isolation with this basic
mutation load. In the extreme case, suppose that two
populations differ in the common allele at all n loci.
Then, the Fl population will have intermediate
phenotype, and will be slightly fitter than either
parent. However, in the F2 population, all loci will
have equal allele frequencies; this gives a variance
(2na2pq) = {no} 17). The log mean fitness is therefore
reduced by sna2/4. In fact, even. after indefinite
divergence, only half the loci will differ on average;
the maximum load in the F2 population is therefore
(sna2/8). When k loci differ, the load is {ska2/A). For
example, with the standard values sa2/2 = 1/250, y =
001, /< = 8x 10"5, and n = 100, the equilibrium load
is 0-016, and the maximum reduction in fitness in the
F2 is 010. This is hardly enough to cause a significant
barrier to gene exchange; however, if similar processes
were to occur for many characters, substantial
isolation could evolve. A limit is placed by the total
mutation load, which cannot be very large (<0-5,
say). With y = 001, the maximum isolation cannot be
greater than (0-1 /0016) as 6 times this load (< 3, say).
In general, the ratio is (l/16y). Thus, if the alleles
responsible for polygenic variation are usually rare
(y <? 1), substantial isolation could eventually develop.

How rapidly would isolation evolve under
stabilizing selection? Shifts away from the optimal
equilibrium become most unlikely when Nsa2 > 10;
when Nsa2 < 2, the frequency of shifts approaches the
neutral rate, /<, per locus. The neutral value sets a
rough upper limit on the rate of divergence. This limit
is low: for the above values, the maximum isolation of
as 0-1 per character develops over a time as 1 //< =
12,500 generations. Mutation rates are in fact likely to
be lower than the value of 8 x 10"5 used here.

One might imagine that occasional founder events
could accelerate speciation. This would be so if the
standing populations were so large that stochastic
shifts were essentially impossible (Nsa2 > 10, say).
However, consider the consequences of the most
drastic founder event, in which one haploid genome

founds a new population. Then, the chance that the
rarer allele at a locus is fixed is equal to its initial
frequency, p as 2y. Therefore, only a small fraction 2y
of the maximum isolation is likely to evolve; this
fraction is j of the equilibrium mutation load (Barton,
1989). With the above values, a founder event gives
isolation of 0002 per character. Changes during a
founder event depend on initial polymorphism: here,
levels of polymorphism at each locus are low.

The most plausible cause of reproductive isolation
under this model of polygenic variation seems to be a
combination of a fluctuating optimum and weak
sampling drift. First, consider slow changes in the
optimum in an infinite population. Because a wide
range of equilibria are stable, shifts between different
combinations of common alleles would not occur: the
mean would instead be adjusted to the optimum by
slight changes in allele frequency, at the cost of
an increase in genetic variance. For example, with
n = 100, y = 001, changes in optimum of as much as
±10a do not cause instability: this corresponds to
±3-3 phenotypic standard deviations. However, drift
will knock even a fairly large population away from
suboptimal states. So, suppose that the optimum
shifts by 2a, or 066 standard deviations, in a finite
population. If Nsa2 < 20, a shift to the new optimal
equilibrium is likely to occur within as 1/mf gener-
ations (3,000 generations; Fig. 6a). Rapid fluctu-
ations would have the same effect as sampling drift,
and would promote rather slower isolation (see
Maynard Smith, 1979).

6. Discussion

We can now return to the general questions raised in
the introduction. First, can the evolution of polygenic
variation be understood from gross phenotypic
measures, without detailed knowledge of processes at
individual loci? In an infinite population, many
different equilibria with different properties may
coexist. Thus, the state of the population cannot be
predicted without knowing which of these equilibria it
has reached. Sampling drift provides one mechanism
for crossing between equilibria: over a wide range of
population sizes, drift is likely to bring the population
close to the optimal state, in which the mean coincides
with the selective optimum. Furthermore, provided
the population is not extremely small (N < sa2 as 100,
say), the mean and variance will have a distribution
close to that predicted from phenotypic arguments
(eqn 8). This is consistent with the simulation results
of Burger et al. (1988). These conclusions can be
phrased in terms of the general results of Barton &
Turelli (1987), who showed that changes in the mean
and variance depend on the third moment of the
distribution of breeding values. Different stable
equilibria correspond to different values of the third
moment: sampling drift acts to keep the third moment
near to zero.
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So, given this model of a set of identical biallelic
loci, the existence of multiple equilibria does not cause
difficulties in any but very large populations. However,
we may still ask whether this conclusion holds for
more realistic models of polygenic variation. Obvious
extensions are to allow for dominance (Charlesworth
et al. 1987), for different effects (a,) across loci, for
multiple alleles, and for selection on a vector of
quantitative characters. Although a full analysis is
needed, one can use dimensional arguments to show
that drift will be able to bring the population near to
the optimal equilibrium if TV > \/sa2. However, it is
the step-like pattern of log mean fitness and potential
across equilibria (Fig. 1) which allows the optimal
state to be reached across a very wide range of N; it
is not clear whether more general models would also
show this behaviour, or whether it is an artefact of the
extreme symmetry in this model. Numerical results
allowing different effects (a,) across loci show that the
mean fitness of different classes of equilibria become
more similar to each other.

Of course, polygenic variation may not be
maintained by a balance between mutation and
stabilizing selection. Other possibilities are that del-
eterious alleles are maintained by mutation, and have
pleiotropic effects on quantitative characters; that
polymorphisms maintained by balancing selection
have pleiotropic side-effects (Gillespie, 1984a); or,
that frequency-dependent selection acts directly on
the character of interest, so as to maintain variation
(Slatkin, 1979). One should note, though, that the
main objection to a balance between mutation and
stabilizing selection is that an unreasonably high net
mutation rate («//) is needed to offset the strong
stabilizing selection which seem:* prevalent. Strong
stabilizing selection on many characters is hard to
reconcile with any model since it implies a high genetic
load, and a high variance in fitness.

Clearly, the above calculations of the relation
between phenotypic distribution and population size
may only apply under the specific model used here.
However, conclusions about the way optima are
reached, and the rate of peak shifts, may apply under
more general schemes. As Wright (1932, 1980) has
stressed, the prevalence of pleiotropy and epistasis
makes multiple equilibria inevitable. This is confirmed
by a range of models of multilocus selection (Karlin,
1979). Kaufmann & Levin (1987) have discussed the
geometry of systems with multiple local optima,
stressing the point that only a tiny fraction of possible
gene combinations can be reached from any one
genotype (c.f. Gillespie, 1984 ft). In the model discussed
here, this fraction is n/2", which is 8 x 10~29 for n =
100. Kaufmann & Levin find that the maximum
advance in fitness, from some arbitrary starting point
up to the nearest local peak, increases substantially
with the correlation in fitness values between adjacent
points. The model here is set in a rather different
framework from that considered by Kaufmann &

Levin: one must consider the surface of U, plotted
against all the allele frequencies pt, rather than
considering the fitnesses of individual genotypes
(see Provine, 1986, for discussion of this distinction).
However, because the population clusters around one
genotype, the same considerations apply. It may be
that advance towards the global optimum is relatively
easy, because the model of additive gene effects leads
to a strong correlation between adjacent fitness values.
Important areas for future work are to find how far
Kaufmann & Levin's arguments apply at the level of
populations as well as genotypes, and how far the
relative ease with which the global optimum is reached
can be related to general features of the model.

How does strong selection on a polygenic character
affect individual loci? The rate of shifts approaches
that for a neutral locus when A' < \/sar; it is in this
range that drift begins to reduce the phenotypic
variance appreciably (compare Figs. 6, 8). It is
therefore not possible to reconcile effectively neutral
evolution at each locus with strong stabilizing selec-
tion, as argued by Kimura (1981, 1983), unless drift
has a noticeable effect at the phenotypic level.
However, the distribution of allele frequencies is
indistinguishable from that for mildly deleterious
alleles, for all population sizes. It is therefore not
possible to use allele frequencies to distinguish the
present model from a version of the neutral theory
that incorporates weak purifying selection. One might
imagine that the pattern of substitutions would be
more helpful. When a single class of equilibria
coincides with the selective optimum (Fig. 1 b rather
than Fig. 1 a), then a shift from an optimal to a
suboptimal equilibrium will be quickly followed by a
compensating shift in the opposite direction. However,
the compensation will be at a different locus, and so
will not be reflected by an increased variance of
substitution rates (cf. Gillespie, 1986). It is hard to see
how observations of individual loci can distinguish
stabilizing selection on a polygenic system from simple
purifying selection.

Given sufficient time, significant reproductive iso-
lation can evolve between isolated populations subject
to the same regime of stabilizing selection. However,
the maximum isolation that can evolve can only
greatly exceed the mutation load in a standing
population when the alleles responsible for variation
are extremely rare. Moreover, divergence is extremely
slow, at best occurring over a timescale set by the
mutation rate. Founder events do not help much,
because the alleles responsible for variation are rare,
and are likely to be lost rather than fixed. Divergence
would be possible in a geographically structured
population if the number of individuals exchanged
between demes, or the neighbourhood size, were small
in at least some times and places (Nm < 1, or
4npa-2 < 10; Rouhani & Barton, 1987). However,
divergence would still be slow. The most favourable
conditions for the evolution of isolation under this
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model may be when a fluctuating optimum is
combined with weak sampling drift.

These conclusions in fact apply to a wide range of
models (Barton & Charlesworth, 1984, Rouhani &
Barton, 1987, Barton, 1989). Substantial reproductive
isolation is unlikely to evolve rapidly as a result of
drift; founder events are only likely to lead to strong
isolation through shifts at highly polymorphic loci,
and is limited by the standing genetic load; and
processes other than pure drift may cause faster
speciation. Of course, speciation is a slow process: for
example, Coyne & Orr (1989) estimate that sibling
species of Drosophila diverged, on average, 5 million
years ago. Gradual divergence under stabilizing
selection may therefore be a major cause of re-
productive isolation: as a hypothesis, it has the
advantage that the rate of divergence can be calculated
from observable features of present-day populations.

This discussion of adaptation and speciation has
rested on a simple, symmetrical, and probably
unrealistic model. However, the methods used can
readily be generalized to other cases. Even using the
Gaussian approximation, integration over fluctu-
ations around the equilibria gives accurate predictions,
even where the underlying distribution is strongly
skewed. It would be interesting to apply these methods
to other models to find whether the conclusions of this
paper are generally valid.
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Appendix 1. Details of exact integration, and the
partial Gaussian approximation

Distribution across equilibria

The chance that the population is near some equi-
librium m is proportional to Zm = / WlsFJj, ;>)dzdr
(from eqn 13). Substituting for If'from eqn (2) and for
Fm from eqn (14e) we see that the integral over z gives
the Fourier transform of a Gaussian (another
Gaussian), and the integral over v gives the Fourier
transform of an exponential (a delta function). Thus:

x (H+(ccz, iNsx2))" dz. (A 1.1)

A close approximation to this expression can be
obtained by noting that:

/_(ar, iNsoc
2) = \"

Jo
l'-1 e'«<""«» x e-2-v"' '" dp.

(A 1.2)

This is the Fourier transform of the allele frequency
distribution which would obtain at each locus if the
mean always coincided with the optimum: this
distribution is given by eqn (26) of Bulmer (1972).
(Strictly, H_ is the Fourier transform of the dis-
tribution of a.{p — q).) Now the product of the Fourier
transforms of a set of distributions is the Fourier
transform of the convolution of those distributions.
The product H"'Hl' is therefore the Fourier transform
of the distribution of the phenotypic mean (z =
Ia{p — q)) which would obtain if fluctuations from the
optimum had no effect; this distribution will be
denoted by a tilde, ~. (It would be found if stabilizing
selection were centred on the actual mean in each
generation, and so tended to reduce the variance
without introducing any directional component.)

With a large number of loci, we expect this
distribution to be approximately Gaussian, and so
characterized by its mean and variance (£(z), vaf (z)).
In other words, its Fourier transform FfUH'l' should
be approximated by a Taylor series expansion around
z = 0. Since 6 log (H^H?)/3£ = iE(z), and S2 log(//?
//f)/3z2 = -var (z ) (from eqn \4d, e), we have:

( # _ ( « , iNsa2))^H+{az, iNsa.2))M

x (//.(0, iNsa2))m(H+(0, iNsa2))M

x exp (izE(z)) exp ( - z2 vaf (z)/2). (A 1.3)

Substituting into eqn (A 1), and integrating

_ (//.(0, iNsa2))m(H+(0, iNsa2))M

x exp —
(E(z)-zo)

2Ns

across z:

(A 1.4)

The 'partial Gaussian' approximation used here, that
H'"H+ is roughly Gaussian in 5, is much weaker than
the full 'Gaussian approximation' discussed above
and in Appendix 2, that allele frequencies at individual
loci are normally distributed. For the parameter
values used in this paper, eqn (A 1.4) is usually close
to the exact result, eqn (A 1) (Figs. 7, 8).

The marginal distribution, and transition rates

Consider one locus, with allele frequencies u, v. If
(m — 1) of the other loci are near fixation for the ' — '
allele, and M are near fixation for the ' + ' allele, then
the population will be close to an equilibrium in the
class [m, 0, M] when u is small, and will move towards
[m—1,0, A/+1] as u increases. For given w, the
distribution of the remaining (n— 1) allele frequencies
will be as if the optimum were at (z0 — a(u — v)).
Hence, the integral over these (n— 1) variables will be
given by eqn (A 1.4) evaluated for this shifted
optimum, and for an equilibrium in the class [m— 1,
0,M]:

yj
[H_(0, iNscc2)Y(H+(0, iNs<x2)Y

ZmX/\+2Nsvar(z)

x exp — (l+2Mvar(z))
(A 1.5)

H_, H+, E(z) and var(z) are evaluated using the
threshold frequencies appropriate for the shifted
optimum, and so depend on u. However, this
dependence is weak, because the population is unlikely
to lie near the threshold. (As noted above, there is a
slight approximation here, because the domain of
attraction of the different equilibria does not have the
rectangular shape implied by dividing the allele
frequency space at fixed thresholds. This approxi-
mation is needed, however, to make the integrals
separable.)

The chance per generation of a shift from [m,
0,M] to [m— 1,0,M+\] is given by eqn (12) where
jsi/r0dS = ^0(w), and e = u; the integral over u is
taken between the two stable equilibria, u = p and
M = P.

The distribution of the phenotypic mean and
variance

The expected variance is (from eqn 14c):

x (H_(az, a2v))m(H+(az, a2t!))'M dzdv dz dv.
(A 1.6)

This is similar to the integral used to derive Z ^ (eqn
A 1.1); it differs in that the integral over v gives the
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Fourier transform of v.exp(-Nsv), which is the
differential of a delta function (i£8(v — iNs)/c!v). If this
is integrated by parts:

n.2Ns)

. 9
'ffi

, ia2Ns))m(H+(*z, /a2N(r))A'} dz

(A 1.7)

(where the differential d/dv is evaluated at v = iNs).
Next, apply the 'partial Gaussian' approximation,

and expand the term 9(//"'//+')/9i5 as a Taylor series in
z, as for Zm. This gives (as before) terms involving
E(pq), E(z), and vaf (z), these moments being taken
across the distribution (/?tf/2)4V/'~'exp( — 2Nsa2pq)
which obtains if fluctuations from the optimum are
ignored. There are now also terms E(p — q), and var
(p — q), these moments being taken across the dis-
tribution (pq/2)iy>'exp(-2Nsa2pq). A little algebra
gives:

E(v) = 2c

V *\ V [2i; 2\>+

where v = 1 +2jV.vvar(z) A = E(z)-zu

A_ = A + oc(E_(p-q)-E,(p-q))

v+ = v + 2Nsa2 (vaf+(p-q)- vaf+(/>-<?))

A+ = A + a(E+(p-q)-E+(p-q)).

The mean and variance of z can be found in a
similar way:

var(z) =

(1+2A^J. vaf (z))

vaf(z)
(l+2My.vaf(z))'

(A 1.9)

(A 1.10)

When 2Ns.vai(z) is large, the expected mean
approaches the optimum, and the variance of
fluctuations in the mean approaches \/2Ns. These are
just the values expected from naive phenotypic
arguments (eqn 8). At the other extreme, when
2Ns. var(z) is small, the mean and variance of z
approach the values E(z), vaf(z) which are expected
when there is no directional force pushing z towards
the optimum.

It is not easy to guess the size of the crucial
parameter 27Vs.vaf(z): as population size increases,
var(z) decreases. If allele frequencies are usually close
to fixation, the integral

J *'-* exp ( - 2Nsx2pq) dp

is approximately

\(p/2)*x'-1 exp ( - 2Nscrp) dp,

and so vaf (p) x /i/(Nsoc2)2, and 2Afa.vaf (z) » 8w/«/
sot2. We have assumed that n is large and that /i/sa2 is
small; however, Sn/i/sa2 could be large or small.
These arguments suggest that the phenotypic
arguments used to derive eqn (8) will only be valid if
there are very large number of loci, and if allele
frequencies at each locus are not too low. We can see
these conditions from a different angle by noting that
2Ns.var(z) = %n/.i/sa2 = 2K*/a2, the ratio between
V*, the equilibrium variance under the rare alleles
approximation, and the variance of a single sub-
stitution : the phenotypic arguments will hold when a2

is much smaller than the total standing genetic
variance.

Appendix 2. Details of the full Gaussian
approximation

The distribution of the mean and variance

The distribution of the mean and variance, for
populations near to some equilibrium w, is ij/Q{z,v) =
W(z,v)2XF!IL(z,v)/Z!1 (eqn 13), where is given
by eqn (14). For Gaussian stabilizing selection on a
large number of loci, this distribution is itself almost
exactly Gaussian, and so can be summarized by its
mean and variance.

Exact integration cannot give explicit analytic
results. By making the strong assumption that the
allele frequencies are normally distributed (the
'Gaussian approximation'), some analytic results can
be obtained from the distribution of average allele
frequencies, <Jro(p, P) (eqn 18). Since i/ru{p, P) is sharply
peaked, it can be approximated by a Gaussian with
the same curvature (Fig. 2b). Hence, the variance of p
and P is given by the inverse of the matrix of second
differentials of ij/0. This curvature matrix is pro-
portional to the matrix of second derivatives of U (eqn
4a). The phenotypic mean and variance are related to
the average allele frequencies; from eqn (2):

z = a[m(p-q) + M(P-Q)] (A 2.1a)

v = 2a2
ZiPi-p)2- 2 {P-PYV
/-I i-m + l J

(A 2.1 b)

We see that the expectation of z is equal to its value at
the peak of \j/n. However, the expected phenotypic
variance is reduced first, by fluctuations around the
averages at individual loci, and second, by fluctuations
in the averages themselves.

These considerations lead to complicated and
obscure expressions. However, if the mean of the
deterministic equilibrium coincides with the optimum,
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we can write pq = PQ = ft/sot.2 = y, and these
expressions simplify considerably:

E(v) = (4nft/s) 1 -

var(z) =

var(t') =

2Nsa\\-Sy)(\+Sy(n-\)))
(A 2.2 a)

(4n/i/s)
Nsa2(\+8y(n-\))

(A 2.2 b)

-8y + \6mMy/n)
(Ns{\+8y(n-\)))

where y = p./sa2.
These values can be compared with the phenotypic

approximations of eqn (8). Suppose that n is large,
and y = /i/sa2 is small. Then, eqn (A 2.2a) predicts
that sampling drift will decrease the phenotypic
variance, v, by a factor (l/2Nsa2). This conflicts with
the prediction of a factor (l/Nsa2), from eqn (8).
Simulations show that in fact, neither method is
particularly accurate (Fig. 8, and below).

The predicted variances of z and v differ from the
phenotypic predictions by factors involving ny. For
the range of parameters considered here, this could be
large or small: the variance of z agrees with eqn (8)
when ny is large, whilst the variance of v agrees when
ny is small. The discrepancy arises through the
accumulation of small deviations (of order y) from
the assumptions of eqn (8) at many (n) loci.

The distribution across equilibria

The probability that a population will be found near
some particular equilibrium in the class [m, 0, M] can
be found by integrating \j/a(p,P). Since this dis-
tribution is approximately Gaussian, the integral
introduces a factor \/det(27r/log(^0)"), where log
(^n)" is the curvature matrix. This curvature matrix
can be found directly by exact integration. With the
Gaussian approximation, an explicit formula can be
found: multiplying eqn (18) by this factor:

Zm_cxp(2NU)
z z

2n 1 (A 2.3)

D is the product of eigenvalues of the deterministic
equations (eqn 4 a); this expression could of course be
obtained directly from that determinant, without
passing through the intermediate calculation of
ftoiP' P)- The probability of being near a particular
equilibrium depends mainly on the potential U, but
also decreases with D: equilibria which are extremely
stable, in the sense of having large D, are surrounded
by a more compact cloud of populations.

(A 2.2 c) Transitions between equilibria

Consider a shift from somewhere near one equilibrium
in the class [m,0, M], via the unstable state [m,\,
M—l], towards a new state, [m+1,0, M]. Label the
initial stable state S, and the unstable intermediate U.
The probability that such a shift will occur is F per
unit time; conversely, the expected time before a shift
is F"1. The transition rate is given by eqn (12). We
must make the slight approximation that the ridge of
probability which connects the two stable states
represents change of allele frequency at one locus (/>,.,
say). Integration across transverse surfaces S then
requires that i/r0 be integrated over the other n—\
allele frequencies, keeping pt fixed. This gives the
marginal distribution ofpt, which will have a minimum
at the unstable threshold, p. The integral of the inverse
of this marginal distribution gives the inverse of the
transition rate (eqn 12). Note that fluctuations at all
the loci will affect the marginal distribution of p(, and
so this method gives different (and better) results than
the simple single-locus approximations discussed
above.

If we assume that the allele frequency distribution
\j/u is Gaussian, transition rates are simply given by
eqn (15) of Barton & Rouhani (1987):

exp(-2WAt/) (A 2.4)

Ds, Dv are the determinants which give the stability of
the system near the stable and unstable points
(eqn 4), and VH, Vu are the products of the genetic
variances (eqn 5) at these points. A is the leading eigen-
value at the unstable point.
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