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GAUSSIAN BOUNDS FOR COMPLEX SUBELLIPTIC OPERATORS
ON LIE GROUPS OF POLYNOMIAL GROWTH

A.F.M. TER ELST AND DEREK W. ROBINSON

We prove large time Gaussian bounds for the semigroup kernels associated with com-
plex, second-order, subelliptic operators on Lie groups of polynomial growth.

1. INTRODUCTION

Let G be a connected Lie group of polynomial growth with Lie algebra g, o i , . . . , a^
an algebraic basis of Q and A\ — dLc{ai),..., A# = dLa{ad') the corresponding repre-
sentatives in the left regular representation LG of G. Consider the complex subelliptic
operator

(1) H = ~
k,l=l

where the matrix C = (cki) of complex constant coefficients satisfies 2~l(C + C") ^ \il
> 0. Then H generates a continuous semigroup 5 with a bounded integrable kernel K
which satisfies local, that is, small t, Gaussian bounds [7, 8] in terms of the subelliptic
modulus |-|' and the volume V'(r) of the Haar measure of the ball Br = {g € G : |<7|' < r } .
In fact one can establish global Gaussian bounds.

THEOREM 1 . 1 . There are a, 6 > 0 such that

(2) | # t ($ ) | ^aV ' ( i ) - 1 / V t ( l s l ' ) 2 t ~ l

for all g eG and t > 0.

The bounds (2) are well known for real symmetric operators (see, for example, [19,
Theorem VIII.2.9], or [16, Chapter IV]) and are relatively easy to deduce with the aid of
Nash-Sobolev inequalities and Davies perturbation theory. In the real case Alexopoulos
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202 A.F.M. ter Elst and D.W. Robinson [2]

[1, 2] combined the bounds with ideas of homogenisation theory to analyze the asymptotic
behaviour of the kernel and to prove boundedness of Riesz transforms.

The derivation of (2) for complex operators is more complicated and partly based
on homogenisation theory. It uses a number of distinct ideas. First, one may assume the
group G is simply connected since bounds in the general case follow by transference, as
in [11, p. 201], from bounds for the simply connected covering group. Secondly, one may
assume that the local dimension D' and the dimension at infinity D are equal because
one can always arrange equality by tensoring with copies of the Heisenberg group, if
D' > D, or the Euclidean motions group, if D' < D, as in the proof of [10, Theorem
3.1]. Thirdly, one may deduce local Gaussian bounds, that is, bounds for small t, from
De Giorgi estimates, as in [3, 9]. Fourthly, and this is the contents of the next two
sections, global bounds follow from local bounds if the De Giorgi estimates are uniform
in a suitable scaling parameter, as in [4]. Homogenisation theory is used to control the
scaling.

Throughout the rest of the paper we assume G is simply connected and D' — D ^ 2.

2. STRUCTURE THEORY

Let 0 = (fl, [•,•]) be the Lie algebra of the connected, simply connected, Lie group
G and q, n and m the radical, the nil-radical and a Levi-subalgebra of g. Then g is the
semidirect product m t* q where

[(mi, qi), (m2,92)]mKq = ( K , m 2 ] , [qu q2] + [mu q2] - [m2, qi})

for all mi,m2 € m and qi, q2. Let Q and M be the connected subgroups of G which have
Lie algebras q and m. We assume that G has polynomial growth or, equivalently, M is
compact and Q has polynomial growth. Then g is of type R, that is, the operators ada
have purely imaginary eigenvalues for all a € fl (see [13]).

Next for all a G q let S(a) and K(a) be the semisimple and nilpotent part of the
Jordan decomposition of the derivation ada. Note that 5(n) = {0}. It follows from [1],
Sections 2 and 3, that there exists a subspace o C q such that q = x> ® n, [o,m] = {0},
5(o)tj = {0} and [ S ( D ) , S ( D ) ] = {0}. Then the nilshadow of q is defined as the nilpotent
Lie algebra qw = (q, [ •, • ]N) where

[a,b]N = [a,b] - S{ao)b + S(bo)a

with aB,b0 the D-components of a, b € q. The lower central series qN-k of qN is given by

<\N-,i — <\N and qN-,k+i = [i , QN;k] for k ^ 1. Hence q/v-.r+i = {0} with r the nilpotency

rank of qN. Now one can choose vector subspaces h^ . . . , hr, 6 of q and an inner product

on g with the following properties.

I qw;/t = I)* © • • • © f)r for all A; G { 1 , . . . , r } , fji = o © 6 and n-t® qN;2.
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[3] Gaussian bounds 203

II S(t))h* C f)fc and [m, t)k] C rjfc for all k € { 1 , . . . , r } .

I l l There exists a (real) inner product (• , •) on g such that ado and S(v) are

skew-symmetric, for all a 6 m and v € o, and the spaces m, o, 6, fo, • • •, f)r

are mutually orthogonal.

The first two statements are contained in [1]. The third follows because g is type R

and [tn, o] = {0}. First one chooses an arbitrary inner product (• , •) on g for which

the subspaces m, 0,6, h 2 , . . . , hr are mutually orthogonal. Secondly, one defines (• , •) by

averaging. Explicitly,

{a,b) = lim V(R)-1 [ dx f dm{U{x)Ad(m)a,U(x)Ad{m)b)
R-*°° J{xeKdo :\x\<R] JM

where V(R) is the volume (Lebesgue measure) of a ball of radius R in R*", dm is the
normalised Haar measure on M and U(x) is defined by

U(x) = eXlS(bl'>+~+Xdos(bdo')

with bi,..., bdg a basis of t>. The average exists because M is compact and the S(v) have

purely imaginary eigenvalues, since JJ is type R. Note that U(x) commutes with Ad(m).

It follows automatically tha t Ad(m) is unitary, with respect to ( • , • ) , for all m 6 M.

Hence the operators ada are skew-symmetric for all a e m. Moreover, each « e t J has a

unique decomposition v — X\b\ + ... + xjj)^. Hence S(v) = XiS(bi) + ... + a^do'̂ C'do)

and it follows from the averaging that the S(v) are also skew-symmetric. Since the

subspaces m, o, 6, fo, • • •, f)r are invariant under 5(t>) and ad(m) it follows that they remain

orthogonal with respect to the averaged inner product.

For all u > 0 let 7U: Q —> g be the linear map such that ju{bi) = uWib{ for all i

€ {—dm,.- • •, d}, where Wi = 0 if bi € m and Wi — k if bi £ h*. Next define [ • , • ]„ : j x g

-> g by [a,b]u - 7u1([T«(a)>7«(&)])- T h e n flu - (fl, [•, •]„) is a Lie algebra and

7u: 0u —̂  0 a Li e algebra isomorphism. Define similarly the nilpotent Lie algebra q#u

= (i- [•, -]JVU) with [a,b]Nv = 7u1([7u(a)>7u(&)]^)- Then q ^ is the nilshadow of gu. If

a*Nub denotes the Campbell-Baker-Hausdorff formula in a and b with respect to [ •, • ]JVU

on qwu then QNU = (q, *NU) 1S the connected simply connected nilpotent Lie group with

Lie algebra q^u. Set GNu = M x QNU. We denote by *NU the multiplication on GNU and

by t^"1)"" the inverse of g. Define r u : QNU -¥ C(QNU) by ru(a)b = (adam + 5(7u(a0))6q ,

where am and av are the components of a in m and o and bq is the component of 6 in

q. If Tu: gNu -> Aut (g^ u ) is the homomorphism such that Tu(expG w u a) = eT"(a) and

Tu: GNU —> Au t (G^ u ) is the Lie group homomorphism such that

T ( e x P c * u «) exPGWu
 b = e x Pc W u ( ^ ( e x P c W u

 a ) 6 )

for all a,b € g^u then (ff,/i) >->• g T»* h — {Tu{h.(~l'>N")g) *NU h defines a Lie group

multiplication on the set GNU of which the Lie algebra is isomorphic to gu (see [18,
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204 A.F.M. ter Elst and D.W. Robinson [4]

p. 229]). Here expGwu denotes the usual exponential map on GNu. We set Gu = (GNU,TU*)

and T = 7\. Then with u = 1 the Lie group G is isomorphic to (G/VU,T*) and from now
on we identify G with (GrAri,r*)- We also delete the u in a symbol if u = 1. As a
consequence

(3) {dLGa (a)<p) (g) = (dLG^ (Tfo("1 ) w" )a)v>) (5)

for all a € g, 5 € Gu and <p G C%°(GU). But it follows from Statement 2 that 7^ is
a unitary representation of Gu on g equipped with the inner product (-, •). Fix an
orthonormal basis &_<*„,..., bd of g passing through m, 0,1, h 2 , . . . , hr with b-dm, • • •, b0

a basis of m, 6 1 , . . . , 6̂ 0 a basis of 0 and 6^+1, • • •, bd a basis of n. If ai,..., a^ is the
algebraic basis of g then U7~1(oi),.. . ,wy~l(ad,) is an algebraic basis for gu. Now set
4 u l = dLGu {u%l("k)) for all k e {1, . • •, d'}. Then

where BJU = dLcNu{bj) and F u : Gu —» G is the lifting of the isomorphism j u .

Next, define the subelliptic operator H[u] on Gu by

d' d

fc,l=l i,j=-dm

where the q"' are multiplication operators, q" (</) = u2"'"*""'^^" with

and for any function ip: G - > C w e write i^u' = V1 ° Fu. One calculates that

d d1

In particular JZ ^j^ij = 0 if j ^ d0- Therefore the equations
t=-dm

can be solved for the correctors Xj- If J ^ ^0 then Xj = 0 and if j > rf0 then Xj(5)
_ <e

— (T(g)bj,x) with x € n any solution of //T:r = Cr, where HT = - J2 cfc;r(afc)r(ai) and
d' *,'=!

(V = - 5

https://doi.org/10.1017/S0004972700033670 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033670
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Using the parametrisation v = xibi + .. •+x,iob(io the coefficients cy and the correctors
are functions over M x R*> of the form

where the sum is over a finite subset of R^0 and the VA € C°°(Af). The mean value of
functions of this type can be defined by

= lim V(R)-1 [ dx [ dm^(m,x) = f dmtpo(m) .
R-*°° J{x€Kd0:\x\<R} JM JM

Before we can define the homogenisation H of H we have to introduce one more Lie
group. Define [•, -)H: q x q -»• q by [a,b]H = Jimja.&jjv,,. Then qH = (q, [-, -]H)
is a homogeneous (nilpotent) Lie algebra (see [14].) If a *H b denotes the Campbell-
Baker-Hausdorff formula in a and b with respect to [ - , - ]# on q# then QH — (q,*n)
is the connected simply connected homogeneous (nilpotent) Lie group with Lie algebra
<\H- Then set Gu — M x QH- The homogenisation H of H is defined, in analogy with
standard homogenisation theory [5] [20], as the operator with constant coefficients Cij on
QH given by

where dx is the dimension of fh, B \ H ' = dLQH(bi) and

k=-dm

Then H is subelliptic on QH for the following reason. First, &i , . . . , 6^ is an algebraic
basis for q^, and hence q#, by [12, Lemma 3.5]. Secondly, one can reexpress the c^ as

where &: Gjv —̂  R is defined by &(m,expgN a) = - ( a , 6j) for all i € { 1 , . . . , d}. Next, if
i

, . . . , rdl € C and <pT = ^2 T^ - Xi) then
t=i

Hence AjtyT = 0 for all A; € { 1 , . . . , d'}. Since a i , . . . , a^ is an algebraic basis for g this
di

implies that dLG(a)<pT = 0 for all a € g and (pT must be constant. Therefore £ ) r;^ is
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206 A.F.M. ter Elst and D.W. Robinson [6]

bounded which implies TX = . . . = rdl = 0 . Hence C = (%) is strictly positive-definite,

that is, H is a subelliptic operator on QH-

It also follows by a calculation analogous to [5, pp. 27-28], that C* = C*.

The important point is that the homogenisation is obtained from H by a scaling

limit. This is established by an elaboration of the arguments of [5, 20].

We choose and fix a Lebesgue measure on the vector space q. Then we fix the Haar

measure on QNu and QH such that / „ ip = J <p o expQN^ and fQ ip — Jt' ip o expQll for

all tp € CC(QNU) and ip € CC(QH)- Then the Haar measure on G^u or Gu is the product

measure of the normalised Haar measure on the compact group M and the Haar measure

on QNU or QH, respectively. Finally since |detTu(#)| = 1 for all g it follows that we can

choose the Haar measure on Gu such that fG^ <p = JGN ip for all ip £ CC{GU). Note that

this fixes the Haar measure on G = G\.

If K\U^ is the semigroup kernel associated with the scaled subelliptic operator H^

then

(4) Kt(g) = u

for all g € G and u, t> 0.

Let | • |u be the modulus on Gu with respect to the algebraic basis U7~1(ai), . . . ,
uy^iad') and let B'^(r) be the corresponding balls. Then B'(ru) = rv(B'M(r)) and
|_B'(«)(r)| - u~D\B'{ur)\ for all u,r > 0. But there exists a c > 0 such that c~lrD

^ |B '(r) | ^ crD for all r > 0, since D = D' by assumption. Hence

(5) c-'^^lB'^ir^^cr13

for all r > 0 uniformly for u > 0.

Note that Gu = M x q as manifold for all u > 0. If ft is an open subset of

M x q introduce the Sobolev subspace H^ffi) = f] D(A^') of L2(fi) with the usual
/t=i

Sobolev norm. Then (pu € H'^'(Cl) is denned to satisfy H^ipu = 0 weakly on Q if
d! . . . .

5Z °ki (Ak: V>. ^ j V u ) = 0 for all V e <?~(fi). Similarly, if ft' is an open subset of q then
k,l=l d

H'l"\Q!) = p i ? ^ ^ ) C L2(ft') and y> € H$"\Q!) satisfies ^ = 0 weakly on ft' if

E ^ V . B J ' V ) = 0 for all V € C

If ft = M x ft' and ip e Lp(ft) define ^ € Lp(ft') by ^ (g ) = fMdm<p(m,q). Thus

I ® <p* = Pip with P = fM dm.

PROPOSITION 2 . 1 . Let u,, ^ 1 be a sequence tending to infinity, ft' an open
subset of q and ft = M x ft'. Assume v?n € H'2^

n)(fl) satisfy H[Un](pn — 0 weakly on ft,

(6) sup ^ | | 4 u "W| | i 2 ( n ) <oo ,
Nn e N *=i

https://doi.org/10.1017/S0004972700033670 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033670


[7] Gaussian bounds 207

and (pn -» tfoo weakly in

Then PVoo = Veo, ^ € H'2
{"\n') and H^ = 0 weakly on ft'.

The first step in the proof is a strong convergence result.

LEMMA 2 . 2 . Suppose (fn satisfy (6) and <pn —¥ ip^, weakly in 1*2(0)- Then
ipoo = Pfoo and ipn —> foo strongly in L2(M x Cl") for any open subset Cl" ofq such that

P R O O F : Let </><"> € C^>(SV) and set tp = I ® ^ ( H ) . Then lim s j " ^ = 5|H )T/>

uniformly on M x q for a lH € { 1 , . . . , d}, where Bt- = dLGH(bi), since

(7) lim (B,WV)(m, g) = lim ^H\-tbi *Nu q)(
u->oo

It follows from (3) that

p | ( 4 V ) ( p ) | ^ p p ^ Z i g ^ \ { f ^)(g)\ oo
sen ^ I I

for all A; € { l , . . . , d ' } . Next ||<Pn||t2(n) is bounded uniformly in n and ^ n = <pni[>
€ H'2

{Xn){GUn) for all n G N . Moreover,

/ d' \ 1 / 2

(8) C = sup EH4U n l^l lL(GO <<*>•n€N \ fc=1

Then

1/2

< C |m|;n = C«n-' |rUn(m)|' = Cu'1 \m\'

for all m G M and n G N. Therefore (/ - LGH(m))ipn converges strongly to zero in
L2(n) and so (poo1^ = LGH (m) (̂ oo ip) for all m G M. This implies that v'ooV' — PVoo1^-
Hence ¥><„ = P^oo-

Next we argue that the set {ipn : n G N} is relatively compact in L2{GH) by checking
the Frechet-Kolmogorov conditions of [16, Appendix D.I.3]. Then the second statement
of the lemma follows by choosing ip^H^ such that ip^(q) = e for all q G fi".
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The set {<pn : n 6 N} is uniformly bounded in L2(GH) and the <pn have a support
in a common compact set. Hence it suffices to prove that

(9) l imsup| | (J -LG*(»))v» | | = 0
9-+e II >IL(G)

and a similar statement with respect to right translations.

First, bi,.. .,bdl is an algebraic basis for q, by [12, Lemma 3.4]. Hence b-dm,..., bdl

is an algebraic basis for g. Let | • |I}6) be the modulus on Gu with respect to the scaled
algebraic basis U7t7

1(6_dm),..., wy~l(bdl) and s the rank of the algebraic basis a i , . . . , ad<
in g. Then there is a c > 0 such that

Inl' < ii~lr (iM*(\n\'W\ll' 4-11 \n\'(b)\ < Or (t ̂ '(bft1/'
\9\u ^t u ciu ' \\g\u ) + u\g\u i ^ z c ^

for all u ^ 1 and g € Gu with \g\u ^ 1, where the first inequality follows from [15,

Proposition 1.1], for u = 1, and then by scaling. Secondly, if L2;i(^u) 1S the Sobolev

space defined with respect to the algebraic basis wy~l(a{),..., wy~l(adi) then one has ( /

— £G,,(ff))v ^ d' \\<P\\L'2 !(GU) Iffiu- Combining these estimates one deduces L'2.i(Gu)

is continuously embedded in ̂ 2i/s(Gu), where £2;7(GU) is the Lipschitz space defined

with respect to left translations on L2(GU) and the modulus | • |u • Moreover, the em-

bedding is continuous uniformly for all u ̂  1.

Next by standard reasoning (see, for example, the proof of [6, Theorem 3.2]) one

establishes a chain of uniform embeddings of a similar nature. First, one proves that

C2y,{Gu) is continuously embedded in the Lipschitz space L2^2 associated with the semi-

group 5'"' generated by the sublaplacian - £ (£-"!)2 where B\U] = dLGu(wy-l(bi)).

The proof uses both the upper and lower Gaussian bounds on the kernel of 5'"' which

follow from (4) and [19, Theorem VIII.2.9], or [16, Chapter IV], since the sublaplacian is a

real symmetric, subelliptic, operator. Secondly, one argues that L2'\2 is continuously em-

bedded in the real interpolation space (L2(Gu), L2\i {Gu)) ^ ^ defined by the K-method

of Peetre, where L'2.{{GU) is the Sobolev space defined with respect to the algebraic

basis wy~l(b-dm),... ,wy~l(bdi). Thirdly, one establishes that (L2(GU), L2y/(GU)) ^ ^

is continuously embedded in the interpolation space (i2(GWu),L'2y1
)(GAru)) TO.K, where

^ ' ( G f f u ) is defined with respect to the algebraic basis wy~l(b_dm),..., u^~l{bdl)- This

embedding, and its uniformity for u > 1, follow by another use of (3). Fourthly, the

interpolation space (L2(GNu), L^}{GNU)) K is continuously embedded in the interpo-

lation space (L2(GNu), •t'2;t)(£'Vu))7/roo.K, uniformly for all u > 0. This follows for u - 1
from [6, Theorem 2.1.II], and for general u by application of the scaling Fu after replacing
the norms on L'$(GNU) and L'2^(GNU) by their seminorms. Note that these seminorms
satisfy a scaling relation. Fifthly, the space (L2(GWu),L2V(G;vu)) /roo-K *s continuously

https://doi.org/10.1017/S0004972700033670 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033670


[9] Gaussian bounds 209

embedded in the interpolation space ( ^ ( G M I ) , ^2T(^JVU)) / roOK' u n i f ° r m ly for all u ^ 1,
where L'2.T(GNu) is defined with respect to the algebraic basis 6 - ^ , . . . , bdl. Sixthly, fix
foH) e c«>(q) s u c h that &H){q) = 1 for all q 6 suppt/i '^ and set ip = 1 <g> $ w >. Define
the multiplication operator £ : L2(GH) -> L2(Gu) by £y> = tp<p. Then i? maps the space
(L2(GWu),L'2.r(GiVu)).y/r,oo.K continuously into the space (L2(Gf f ) ,L2 l i (G/ f ) ) 7 / r o o .K , uni-
formly for all u ^ 1, where the Sobolev space L2-I(GH) is denned with respect to the basis

d
6-dm, • • •, bd. The proof requires some work that we next describe. For all q = £ & bt € q

t=i

and 0 = (i!, . . . , in) € J(q) define / = ^ , • . . . • &„. For all i € {1 , . . . , d} let A de-

note the partial derivative (£>i<p)(m,q) = —<p(m,q + tbi)\t=o- Then it follows from the

Campbell-Baker-Hausdorff formula that there are c\jp € R such that

(10) (B!"V)(m,?) = - ( % ) ( m , ? ) +

for all <p € Cf[GH) and (m,g) € GH- Similarly,

(Bi<p)(m,q) = -{Di<p)(m, q) + ^ c'ij0q? {Djlp){m,q)

for a l i i € { 1 , . . . ,d}. The transition matrix from Bt to Dt is triangular, with - 1 on the
diagonal. Then it can be inverted and there are c ^ e R such that

, q) + ^ c ^ / (BjV>){m, q) .

Since f)i generates q̂ v for a lH e { 1 , . . . , d}, a e J(di) and /3 € J(d) there are Ciap 6 R
such that

(m, g) = ^ 2 ° i ^ 1P (B[a]<p) (m, g) ,

where fig = [ ^ , [.. .[B^B^]...}] for all u > 0 and a = (ii xn) e
Then by scaling

(11) (Di<p)(m,q)= Yl

Hence S is continuous from L'2.T{GNU)
 in^° L2-,\{GH), uniformly for all u ^ 1, by (10) and

(11). Then by interpolation the claim follows. Seventhly, by [6] the interpolation space
(L2(Gtf),L2;1(G/f)) ,roo.K is continuously embedded in the Lipschitz space £2;7/r(G//)
on GH denned with respect to the basis &_<*„,,..., bd. Since all the foregoing embeddings
are uniform for u ^ 1 there exists a c > 0 such that

(12) ||( ) \ L 2 ( C H ) ^ ( ( )
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210 A.F.M. ter Elst and D.W. Robinson [10]

uniform for all u ^ 1, ip e L'$(GU) and g € GN with \g\GN ^ 1 where \\GH is the modulus
on GH with respect to the basis 6-d™, • • • >&</• Therefore (9) is proved using (8) and (12).

d

A similar conclusion follows for right translations since dRGH{a) = JZ ci^GH(bj)
j=-dm

with Cj(g) — (bj, AdcH(g'^a) and the Cj are uniformly bounded on M x Q". D

P R O O F OF PROPOSITION 2.1: First, ?„, = Pip^ by Lemma 2.2. The remainder of
the proof is similar to the derivation of the analogous result in the Rd-homogenisation
theory (see, for example, [5, pp. 24-28]). Care is needed, however, since the operators
are subelliptic and their form domains if^i (fi) vary with the scaling parameter u.

Introduce
d'

Vn-,i = ] T ul
n-Wi (TZ(-)bi, ak) ckl 4 « V

for all i € { 1 , . . . , d}. Then ||7/n;i||£,2(n) is bounded uniformly in n by (6). Hence one may
assume the rjn]i, or a subsequence, converge weakly to a limit rjj in Z,2(Q). Clearly ^ = 0
if i > di. But if x' € Cc°°(ft') with supp x' C Cl' and \ = 1 ® x' then by (8) one has

(13) 53(B|"]
X, Vi) = ̂ m JTiB^x, Vn.}i) = 0

since H[un]cpn = 0 weakly on ft and B\Un)x = 0 if i ^ 0, where B\H) = dLGll(bi).

Now set £n;i = ^i — u^xx! for z e { 1 , . . . , dx} where ^ is again given by &(m, a)
= —(a, bi) and the x] are the correctors of the adjoint H*. It follows that #r*ujfn;i = 0 as
a distribution on Cl by the corrector equation for H*. Therefore by a density argument

But since #[„„]<£„ = 0 weakly one then has

Now the commutator [HLu x] 1S linear in the yl^1',

k,l=l

and one may use this to evaluate the limit of (14) as n -+ oo. The calculation is very
similar to the standard argument of [5, pp. 24-27]. The term with the Ay acting on (pn

d\ ~(f{)

can be rewritten in terms of r)n-i and it converges to J2((B) x)€i,Vj)- The term with

.d[u' acting on £n;i is more complicated. It gives a contribution
d d.
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Since the inner product is uniformly bounded in n all terms with Wj > 1 vanish as n —> oo.
Also <pn converges strongly to v>oo on the support of x, by Lemma 2.2. In addition

Urn ((</> o Tu) (BfX),

BJu)x) = 0 =since (/ - P)(.BJu)x) = 0 = (J - P)<Ax>- Therefore one deduces from (14) and C* = C*
that

> f >X, ¥>») = 0 .

But E ^ f ^ X ^ ) , ^ ) = 0 by (13)> w i t h X replaced by XZu and Bf^i = Sy. Therefore

(15) (x,r?i) = -
fc=i

Since C is strictly positive-definite equations (15) can be solved to give

for all x = 1 ® X' with x' € Cc°°(fi')- One immediately concludes that tp^ G iJ^-f'(

Then (13) and (15) imply that ((J® H)*x,>Poo) = E(^ j H ) X,%) = 0. Hence H ^ = 0

weakly and the proof of Proposition 2.1 is complete. D

3. GAUSSIAN BOUNDS

In order to establish the Gaussian bounds (1) on Kt it suffices to prove that Kf1'
satisfies Gaussian bounds for all t £ (0,1] uniformly for u ^ 1 by taking u = t1^2 in
(4). • Local bounds on K\ can be deduced either by a parametrix argument [8] or,
following Auscher [3], by De Giorgi estimates [9]. But the first method is ill suited to the
deduction of uniformity. One can, however, obtain uniform local estimates by adaptation
of the homogenisation arguments of Avellaneda and Lin [4]. These require uniform De
Giorgi estimates together with the uniform growth properties (5) and a uniform Poincare
inequality.

Let |Mku,r denote the norm of tp e L2(B'^(r)) and for ip e H'$(B'W(r)) set

(16) l |V>| |2 .« , r (
k=\

Further let (<p)Uir denote the average of <p € Ia,ioC(M x q) over (B'(u)(r)). Then the
required Poincare inequality states that there is a c^ > 0 such that

(17) llv-<V>«.r
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uniformly for all u > 0, r > 0 and <p 6 H$(B'W{2r)). This follows from [17, p. 1],
which establishes that there exists a CN > 0 such that

(18) \\<f-('PhAli,r^cNr2\\Vltp\\li,r

uniformly for all r > 0 and tp € C f (G). Then (18) is valid for all r > 0 and tp

e H^.^B'(2r)) by approximation and (17) follows by scaling.

The key De Giorgi estimates are the following.

PROPOSITION 3 . 1 . For all v € (0,1) there exists a cDG > 0 such that for all

u > 0, R € (0,1] and tp € H'$(B'M(R)) satisfying H[u]tp = 0 weakly on B'^(R) one

has

(19) | |V^ | | t , r < CDG (r/R)D-2+2l/\\VM\l,,R

forallO<r^ R.

P R O O F : The De Giorgi estimates (19) are valid for each u ^ 1 by [9, Proposition
3.3]. The problem is to prove uniformity. This requires several lemmas.

Let |M|2,ff,r denote the norm of <p 6 L2(B'W(r)) and if y € H'^(B'W(r)) define
||V'(HVl|2,H,r similarly to (16), where Bl(-H1(r) is the ball on QH with respect to the
algebraic basis bi,...,bdl. Then for tp € Llt\0C(QH) let (<P)H,T denote the average over
B'(H\r). We begin with two Caccioppoli inequalities.

LEMMA 3 . 2 . There exist cx ^ 1 and a € (0,1) such that

uniformly for all u > 0, r € (0,1] and tp e i^-i (B1^ (r)) satisfying H^tp
= 0 weakly on B'^(r), and,

for all T € (0,1] and tp € H1^ {B1^{r)) satisfying Htp = 0 weakly on

PROOF: Statement 3.2 has been proved in [9, Lemma 2.7], using cut-off functions.
The proof of Statement 3.2 is more delicate, since it requires the constant to be uniform
in u.

By [12, p. 30], there exist c,a > 0 and for all R > 0 a function r]R 6 C™(B'{R))
such that r}R(g) = 1 for all g e B'(aR), 0 5% TJR ^ 1 and H^HIIOO ^ cR'1 uniformly
for all R > 0 and k e { 1 , . . . ,d'}. For u > 0 and R > 0 define ?4u) = T?RU O r u . If
u > 0 then 77̂ u) e C? {B'M (R)), rfe]{g) = 1 for all g € B'^{aR), 0 ^ ^ < 1 and
IÎ Lul7?kU)lloo ^ cR~l uniformly for all R > 0 and k 6 { 1 , . . . , d'}, by scaling. But then it
follows from the proof of [9, Lemma 2.7] that Statement 3.2 is valid. D
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The B'(u)(r) have the following uniform geometric property. Let B^M^{p) be the ball
of radius p on M with respect to the vector space basis 6-dm,..., 6<j-

LEMMA 3 . 3 . There exist c € (0,1] and d > 1 such that B(M>(cru) x Bl{-H\cr)
C Bl{-U\r) c B(M\dru) x B'W(dr) uniformly for aJJ r,u > 0 with ru > 1.

PROOF: Since the T(g) with g € GN are orthogonal with respect to the inner
product (•, •) on JJ the balls B(r) and BcN{r) of radius r on G and Gyv with respect to
the vector space basis &_<!„,.. -, bd are equal, by (3). Hence by [19, Proposition III.4.2],
there exists a cx > 0 such that B'(c[lr) c BGN(T) C B'{CXT) for all r ^ 1. Next for

all r > 0 define 7?,. = | £ 6 & i : l&l ^ r™" for alH € { l , . . . , d } | . Then it follows

from the proofs of [19, Proposition IV.5.6 and IV.5.7], that there exists a c2 > 0 such
that expQN Rc-ir C BQN(T) C expQN RC2r for all r ^ 1, where BQN{r) is the ball on
QN with respect to the basis 6 1 , . . . , bd. But obviously there exists a c3 > 0 such that
e x p ^ Rc-\ C B'(H\r) C expOw RC3T for all r > 0. Hence the inclusions of the lemma
are valid for u = 1. But then the general case follows by scaling. D

Let CN ^ 1 be the constant in (17). We may assume that

(20) | |^ -WH, r |m r

uniformly for all r > 0 and ip € H'2
{"] (B'W (2r)). Further, let c,^ be as in Lemma 3.3

and Ci and CT as in Lemma 3.2.

LEMMA 3 . 4 . For all u0 e (0,1) there is an r0 e (0, ca(d)~l) such that

uniformly for all tjj e i?2;f)(-B'(H)(2c)) satisfying F ^ = 0 weaily on B'

PROOF: Let vx e (^0,1). By [9, Proposition 3.3], there exists a COG > 0 such that
for all R e (0,1] and ip € H'2

{"] (B'W(R)) which satisfy Hi/> = 0 weakly on B'W(R) one
has

for all 0 < r ^ i?. Hence in combination with (20) and Lemma 3.2.3.2 it follows that

Cl

2"' (r/JR)D+2"> ||^ -

whenever 0 < r ^ (CT A 2-J).R < fi ^ 1 and ip € H1^ (B'(H\R)) satisfying Hip = 0

weakly on B ' ^ f l ) . But

So take R — c and r small enough.
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PROPOSITION 3 . 5 . For all v e (0,1) there exist r0 6 (0,1) and uQ ^ 1 such
that for all u > u0 and <p € # 2 ^ (.B'(u) (2)) satisfying- H[u]<p = 0 weakly on B'W(l) one
has

PROOF: Let uQ e (^,1). Let r0 be as in Lemma 3.4. Suppose there is no such u0-

Then for all n e N there exist un > ar^"1 V p V n and ipn G H2|in)(B'(un)(2)) such that
H[Un]cpn = 0 weakly on B'(U">(1) and

where p > 0 is such that B^M\cp) = M. We may assume that (ipn)un,i — 0 an<l
||V'Un^n||2,Un,i = 1 for all n e N. Then ||<pn||2,un,i ^ cN for all n e N by the Poincare
inequality (17). But M x B'(ff'(c) C S'("")(l) for all n 6 N since un > p, by Lemma 3.3.
Applying Proposition 2.1 to the set M x B'(H)(c) and the restrictions of the functions
ipn to the set M x B'^H^(c) it follows that there exists a subsequence of <Pi,tp2> • • •, also
denoted by <pi, fi,..., such that ipn converges weakly on M x B'^H\c) to a <p satisfying
y> = Pip and HT/> = 0 weakly on JB'(H'(C), where ip = yb. Moreover, since dcr~lr0 < c one
may assume by Lemma 2.2 that <pn converges to 1®I/I strongly in L 2 ( ^ x j
Then

D-2+2i/ _ i: ; r D-2+2vllryi ||2
r0 — iiminrr0 || v Un

(Pn\\2,un,i

by the Caccioppoli inequality of Lemma 3.2.

Next note that v v-» Jn |(p — v\2 has its minimum for v = (ip)n, the average of </? over
0. Moreover, B'^ia'ho) C B^^da^rau) x B'Wfc'CT"1^) = M x B ' ^ ^ ^ " 1 ^ ) by
Lemma 3.3 whenever <7-1rou ^ 1 and do'Wau ^ cp. Therefore with n = da^To one
has

- (<£„)„-„-!,-„IL ._, ^ liminf
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It follows from Lemma 3.4 and again the normalisation \M\ = 1 that

_ _D-2+2i/0

iminf f \Vn
"-*0 0 JMxB'(H1(c)

2 _ rD-2+2i/0

Then one has a contradiction since v < v$, D ^ 2 and To < 1. D

These local estimates extend to global estimates by various applications of scaling.
If 0 < r sC R, s,u > 0, ip e H'$(B'M(R)) satisfying HHtp = 0 weakly on B'M(r)
and ip = ip o r , then t/> € ^ " ^ ( ^ ' ^ ( i J s - 1 ) ) and H[us]ip = 0 weakly on £'<•">(rs'1).
Moreover,

for all p g (0, i?s x].

LEMMA 3 . 6 . For all v 6 (0,1) there exist r0 6 (0,1) and u0 ^ 1 such that for
all r € (0,r0], u ^ r " 1 ^ and <p € H'$(B'M(2)) satisfying H[u]ip = 0 weakly on S'(u'(l)
one has

PROOF: Let r0 E (0,1) and u0 ^ 1 be as in Proposition 3.5. The proof is by
induction. By Proposition 3.5 one has

for all u > u0 and <p € H'^ (B'W(2)) satisfying H[uyp = 0 weakly on £'(">(1). Let fc € N
and suppose that

for all u > r^^uo and y; € H'${B'M{2)) satisfying H[u]<p = 0 weakly on B'^(l). Let
u ^ r^(*+1)uo and <p € H'$(B'M(2)) satisfying H[u]<p = 0 weakly on B'M(1). Set s = r£
and ip — <poTs. Then Proposition 3.5 implies that

Hence

where the induction hypothesis (21) is used in the last step.

This proves the lemma if r £ rj1. The general case is an easy consequence. D
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LEMMA 3 . 7 . For all u e (0,1) there exist r0 € (0,1) and c> 0 such that for all
u > 0 and <p € H1^ (B'^u) (2)) satisfying H^yp = 0 weakly on B'(u)(l) one has

(22) H^'uVH^r < crD~2+2"HV'uVll2u,l

for all r G <0,r0].

PROOF: Let r0, u0 be as in Lemma 3.6. Let u > 0, r € (0, r0] and <p € ff̂ "5 (-^'(u) (2))
satisfying H[u]<p = 0 weakly on B'^(l). Itu^ r " 1 ^ then (22) is valid with c = TQ D+2~2l/

by Lemma 3.6. So we may assume that u < r~lu0. Let cDG be the De Giorgi constant for
the operator H[uo] associated to the order v (see [9, Proposition 3.3]). Set ip = ipoTu-iU0.
Then /?(„<,]?/> = 0 weakly on B'^U^{UUQ1) and

for all 0 < p ^ R ^ (uu^1 A 1). Therefore

llv^HU-w < ̂
for all 0 < p ^ i? ^ (UUQ1 A 1).

Now if u ^ uo choose p = uu^'r and ii = uu^1. Then

as desired.

But if u > Wo and since u ^ T~1UQ one can choose p = uu^r and i? = 1. Then

If, however, U~1UQ < r0 then, by Lemma 3.6, one has

(23) l|V>||^,u,u-Iuo < r^-^{u-\0)
D

Alternatively, if u~1u0 ^ r0 then (23) is valid since u~lu0 ^ 1. Hence

IIV>||l,u,r < cDG

as required. D
PROOF OF PROPOSITION 3.1: The De Giorgi estimates of the proposition follow

from those of Lemma 3.7 by scaling. D

Although the estimates (5), (17) and (19) have been expressed in terms of balls
centred at the identity the same bounds are true for balls centred at an arbitrary g e G
by right invariance of the differential operators and unimodularity of G. Therefore one
obtains the desired Gaussian bounds on K\u' for t 6 (0,1], uniformly for u ^ 1, by [9,
Theorem 4.1], since all the estimates are uniform in u. Then the bounds of Theorem 1.1
follow from (4).
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