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EXTINCTION TIMES IN MULTITYPE
MARKOV BRANCHING PROCESSES
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Abstract

In this paper, a distributional approximation to the time to extinction in a subcritical
continuous-time Markov branching process is derived. A limit theorem for this
distribution is established and the error in the approximation is quantified. The accuracy of
the approximation is illustrated in an epidemiological example. Since Markov branching
processes serve as approximations to nonlinear epidemic processes in the initial and final
stages, our results can also be used to describe the time to extinction for such processes.
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1. Introduction

This paper is concerned with approximating the time to extinction in a subcritical multitype
Markov branching process, starting with many individuals. The argument is based on the
classical exponential approximation to the extinction probabilities [1], [11]–[13], [17]. These
approximations are then combined with the branching property to derive a Gumbel approxi-
mation. The bound on the error in the total variation distance is inversely proportional to a
positive power of a weighted sum of the number of individuals of the different types. The
power depends on the means and higher moments of the offspring distribution.

In infectious disease modeling, the initial and final stages of epidemic processes can often
be approximated by suitable branching processes; see [18]. More recently, in [2]–[5], different
constructions have been used to quantify the path accuracy of such approximations. These
results can be combined with ours to derive corresponding statements about the extinction time
in epidemic processes.

2. Equations for extinction probabilities

The notation is chosen with [1, p. 200], [11, p. 113], and [17, p. 77] as basic references. For
k < ∞, set Z(t) = (Z1(t), . . . , Zk(t)), where Zi(t) is the number of individuals of type i at
time t . A type i individual has exponential lifetime with parameter ai and rises at death ji type
i individuals, 1 ≤ i ≤ k, with probability pj

i , where j = (j1, . . . , jk) ∈ Z
k+, independent of

everything that has happened up to this time. Assume that

Ril :=
∑
j∈Nk

p
j
i jl < ∞ for i ≥ 1 and l ≤ k. (2.1)
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Let ‖·‖ be the supremum norm, and let PI be a conditional distribution of the process at time
t given Z(0) = I for I = (I1, . . . , Ik) ∈ Z

k+. In particular, let Pi correspond to the case
when Zi(0) = 1 and Zm(0) = 0, m �= i. Let T be the extinction time of the process, and
define the survival probability of the process when starting with a single type i individual as
qi(t) := 1 − Pi (T ≤ t) = 1 − Pi (Z(t) = 0).

Then Equation (15.2) of [11, p. 114] implies that

1

ai

d

dt
(1 − qi(t)) = qi(t)−

∑
j∈Nk

p
j
i

(
1 −

k∏
l=1

(1 − ql(t))
jl

)
for 1 ≤ i ≤ k. (2.2)

Now the relation (1 − x)l ≥ 1 − xl for 0 ≤ x ≤ 1, together with the Bonferroni inequalities [7,
p. 27], implies that

∑
j∈Nk

p
j
i

(
1 −

k∏
l=1

(1 − ql(t))
jl

)
≤

∑
j∈Nk

p
j
i (j

�q(t)) (2.3)

and ∑
j∈Nk

p
j
i

(
1 −

k∏
l=1

(1 − ql(t))
jl

)
≥

∑
j∈Nk

p
j
i max{j�q(t)− F j (q(t)), 0}, (2.4)

where q(t) = (q1(t), . . . , qk(t)) and

F j (q(t)) := 1

2

k∑
l,l′=1
l �=l′

jljl′ql(t)ql′(t)+ 1

2

k∑
l=1

jl(jl − 1)q2
l (t) ≤ 1

2
(j�q(t))2.

Using (2.3) and (2.4) in (2.2) and recalling (2.1) gives

1

ai

dqi(t)

dt
≤ {(R − I )q(t)}i (2.5)

and
1

ai

dqi(t)

dt
= {(R − I )q(t)}i − vi(t), (2.6)

where vi(t) summarizes all the nonlinear terms in q(t) (see Section 5 for an example) and
satisfies

0 ≤ vi(t)

=
∑
j∈Nk

p
j
i

( k∑
l=1

jlql(t)− 1 +
k∏
l=1

(1 − ql(t))
jl

)

≤
∑
j∈Nk

p
j
i min{F j (q(t)), j�q(t)}. (2.7)

Since (2.2) is nonlinear in q(t), it cannot in general be solved analytically. However, we will
see, using Theorem 3.1, below, that the behavior of the solution q(t) can be approximated by
that of

dq(t)

dt
= {A(R − I )}q(t) =: Bq(t),
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so long as ‖q(t)‖ is small and A := diag{a1, . . . , ak}. The matrix B = A(R − I ) has
nonnegative elements off the diagonal, and is thus a Metzler–Leontief matrix [16, p. 40]. If B

is irreducible [16, p. 15], the process Z(t) is irreducible [17, p. 99] and the following Perron–
Fröbenius result [16, Theorem 2.5] applies.

Theorem 2.1. Assume that B is a k × k irreducible matrix with nonnegative off-diagonal
elements. Then there exists an eigenvalue ω such that

(i) ω is real;

(ii) there exists a unique (up to a constant factor) strictly positive left eigenvector f1 and a
unique strictly positive right eigenvector b1 associated with ω;

(iii) ω > Re(ωi) for any eigenvalue ωi �= ω of B;

(iv) ω is a simple root of the characteristic equation of B.

In what follows, it is assumed that the process is subcritical, i.e. ω < 0. Define r := −ω.
The left eigenvector f1 can be used to derive an upper bound for q(t) (t > 0).

Lemma 2.1. Assume that f �
1 = (f11, . . . , f1k) is such that ‖f1‖ = 1. Then

qi(t) ≤ e−rt
(

f �
1 1
f1i

)
for 1 ≤ i ≤ k,

where 111 denotes a column vector of 1s.

Proof. Theorem 2.1 implies that f1 has only positive entries and, hence, inequality (2.5)
implies that

d

dt
{f �

1 q(t)} ≤ f �
1 Bq(t) = ωf �

1 q(t) = −rf �
1 q(t).

Using Grönwall’s lemma [10] yields

f �
1 q(t) ≤ e−rtf �

1 q(0) = e−rtf �
1 1.

The result follows immediately, since f1 and q(t) are both positive vectors.

The following useful lemma is proved by a standard argument.

Lemma 2.2. Let X be a nonnegative random variable with E(X) < ∞, and let d > 1. Then,
for δ → 0, E(Xδ ∧ (Xδ)d) = o(δ). If, in addition, E(Xψ) < ∞ for some 1 ≤ ψ ≤ d then
E(Xδ ∧ (Xδ)d) ≤ 2 E(Xδ)ψ = O(δψ).

Let Ji denote a random variable with P(Ji = j) = p
j
i .

Theorem 2.2. If E(‖Ji‖) < ∞ for 1 ≤ i ≤ k then vi(t) = o(‖q(t)‖) as t → ∞.

Proof. From (2.7), it follows that

0 ≤ vi(t) ≤
∑
j∈Nk

p
j
i

(
1

2
(j�q(t))2 ∧ (j�q(t))

)
= E

(
1

2
(J�q(t))2 ∧ (J�q(t))

)
, (2.8)

where J� = (J1, . . . , Jk). Since ‖q(t)‖ ≤ ∑k
i=1 |qi(t)|, Lemma 2.1 indicates that ‖q(t)‖ → 0

as t → ∞, and, thus, Lemma 2.2 can be applied.

The following corollary gives a more specific asymptotic upper bound on vi(t), if the
offspring distributions have a finite moment higher than the first.
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Corollary 2.1. Suppose that E(‖Ji‖1+α) < ∞ for some 0 < α ≤ 1 and all 1 ≤ i ≤ k. Then
there exist constants c∗i < ∞ such that 0 ≤ vi(t) ≤ c∗i ‖q(t)‖1+α, 1 ≤ i ≤ k.

Proof. The proof follows immediately from (2.8) and Lemma 2.2.

3. Exponential limit behavior

The following result is the basis for approximating the survival time of the process, bounding
the error in the exponential approximation to the extinction probabilities.

Theorem 3.1. Assume that E(‖Ji‖1+α) < ∞ for some 0 < α ≤ 1 and all 1 ≤ i ≤ k. If B

is irreducible with largest eigenvalue −r < 0, the probability of survival qi(t) when starting
with a single individual of type i satisfies

qi(t) = cie
−rt (1 + o(e−γ t )),

where 0 < γ < r is given below and ci/cl = b1i/b1l , where b1 is the right eigenvector of B

corresponding to the eigenvalue −r .
Proof. Let v(t) := (v1(t), . . . , vk(t)), and define u(t) := ert q(t). It follows from (2.6) that

d

dt
u(t) = Cu(t)− ertAv(t), (3.1)

where the largest eigenvalue of C := (B + rI ) is 0. Let 0 and {ωj ; 2 ≤ j ≤ k∗} denote the
eigenvalues corresponding to the k∗ ≤ k Jordan blocks of C, and denote by kj , 2 ≤ j ≤ k∗,
their dimensions. The left eigenvector of C corresponding to the eigenvalue 0 is f �

1 ; for
1 ≤ m ≤ kj and 2 ≤ j ≤ k∗, let f �

i,m denote the corresponding Jordan basis vectors, with
‖fj,m‖ = 1; set −βj = Re(ωj ), so that, for 2 ≤ m ≤ kj and 2 ≤ j ≤ k∗, f �

j,1C = ωjf
�
j,1

and f �
j,mC = ωjf

�
j,m + f �

j,m−1.

Define w(t) := f �
1 Av(t)/(f �

1 q(t)). From Lemma 2.1 and Corollary 2.1, it is immediate
that ‖w(t)‖ = O(e−rαt ) and, hence, that

∫ ∞
s

‖w(t)‖ dt < ∞.
Now, from (3.1),

d

dt
log(f �

1 u(t)) = −w(t),

and, hence,

log(f �
1 q(t))+ rt = log(f �

1 q(s))+ rs −
∫ t

s

w(z) dz.

By the Cauchy criterion and the integrability of ‖w(z)‖, it follows that

lim
t→∞{log(f �

1 q(t))+ rt} =: logh∗

exists and is finite, and, thus, using ‖w(t)‖ = O(e−rαt ),

f �
1 q(t) = h∗e−rt (1 +O(e−rαt ))

with h∗ > 0.
For the remaining part of the argument, we refer to the theory of perturbed linear systems.

Rewrite (3.1) as
d

dt
u(t) = [C + D(t)]u(t), (3.2)
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where

D(t) = −Av(t)q(t)�

‖q(t)‖2 ,

so that ‖D(t)‖ ≤ K∗e−rαt with K∗ < ∞. System (3.2) is a special case of the system in
Theorem 2 of [14], from which it follows that, for any γ < min{rα, β[2]}, where −β[2] is the
second largest real part of any eigenvalue of C, we have |f �

j,mu(t)| = o(e−γ t ), 1 ≤ m ≤ kj
and 2 ≤ j ≤ k∗.

Now the set of vectors {f �
1 ,f

�
j,m; 1 ≤ m ≤ kj , 2 ≤ j ≤ k∗} constitutes a basis of R

d . Let
x ∈ R

d have coefficients (x1, xj,m; 1 ≤ m ≤ kj , 2 ≤ j ≤ k∗) with respect to this basis. Then

x�(ertq(t)) =
(
x1f

�
1 +

k∗∑
j=2

kj∑
n=1

xj,nf
�
j,n

)
u(t) = x1h

∗ + o(‖x‖e−γ t ). (3.3)

In particular, for 1 ≤ i ≤ k, it follows that qi(t) = cie−rt (1 + o(e−γ t )), where

ci = (e�
i b1)h

∗ = b1ih
∗ > 0, (3.4)

ei is a column vector with 1 in the ith position and 0s elsewhere, and b1 is the right eigenvector
of B corresponding to the eigenvalue −r such that f �

1 b1 = 1.

Remark 3.1. The order of convergence is simplified for clarity in the statement of Theorem 3.1.
For the case where B is diagonalizable, the exact formulation is as follows. If −β2 is the second
largest real part of an eigenvalue of C and if rα �= β2, then qi(t) = cie−rt (1+O(e−γ t )), where
γ = min{rα, β2}. Otherwise, if rα = β2 then qi(t) = cie−rt (1 +O(te−rαt )).

4. Time to extinction

If E(‖Ji‖1+α) < ∞ for some 0 < α ≤ 1 and all 1 ≤ i ≤ k, Theorem 3.1 implies that, as
t → ∞,

PI (T > t) = 1 −
k∏
i=1

(Pi (T ≤ t))Ii = 1 −
k∏
i=1

(1 − qi(t))
Ii ∼ 1 −

k∏
i=1

(1 − cie
−rt )Ii , (4.1)

where ci > 0 (1 ≤ i ≤ k) and I = (I1, . . . , Ik) with Ii the initial number of type i individuals.
Define CI := ∑k

j=1 Ij cj . The approximation error in (4.1) is controlled by the following
result.

Lemma 4.1. Suppose that E(‖Ji‖1+α) < ∞ for some 0 < α ≤ 1 and all 1 ≤ i ≤ k. Then, for
any γ as in Theorem 3.1, there exist t0, ν1 < ∞, not depending on I , such that

∣∣∣∣
k∏
i=1

(1 − qi(t))
Ii −

k∏
i=1

(1 − cie
−rt )Ii

∣∣∣∣ ≤ ν1CI exp

(
−1

2
CI e−rt

)
e−(r+γ )t , t ≥ t0.

Proof. Denote the approximation error in (4.1) as ε(1)(t). Choose

t1 ≥ 1

r
max

1≤i≤k(log ci)+

such that qi(t) ≥ 1
2cie

−rt for all i and t ≥ t1. Using
∣∣∣∣
k∏
i=1

Ai −
k∏
i=1

Bi

∣∣∣∣ ≤
k∑
l=1

|Al − Bl |
(l−1∏
i=1

|Ai |
)( k∏

i=l+1

|Bi |
)
,
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where Ai = (1 − qi(t))
Ii and Bi = (1 − cie−rt )Ii , it follows that

ε(1)(t) ≤ exp

(
−1

2
CI e−rt

) k∑
i=1

Ii

{ |1 − qi(t)− (1 − cie−rt )|
min{1 − qi(t), 1 − ci e−rt }

}
, t ≥ t1.

Determine t2 such that min1≤i≤k{min{1 − qi(t), 1 − cie−rt }} ≥ 1
2 for t ≥ t2. From Theo-

rem 3.1, we have |qi(t)− ci e−rt | ≤ K∗cie−(r+γ )t , 1 ≤ i ≤ k, for someK∗ < ∞. Hence, for
all t ≥ t0 := max{t1, t2},

ε(1)(t) ≤ 2CI exp
(− 1

2CI e−rt)K∗e−(r+γ )t

for γ as in Theorem 3.1. This completes the proof.

A further approximation to the last term in (4.1) is

1 −
k∏
i=1

(1 − cie
−rt )Ii ∼ 1 − exp(−CI e−rt ). (4.2)

The approximation error in (4.2) can be bounded as follows (the proof is omitted).

Lemma 4.2. We have

∣∣∣∣
k∏
i=1

(1 − ci e−rt )Ii − exp(−CI e−rt )
∣∣∣∣ ≤ ν2CI exp(−CI e−rt ) e−2rt , t ≥ t2,

where t2 is as for Lemma 4.1 and ν2 = max1≤i≤k ci < ∞.

Remark 4.1. Lemmas 4.1 and 4.2 imply that

ε(1)(t) ≤ ν1

C
γ/r

I

max
x>0

{e−x/2x1+γ /r} = ν3

C
γ/r

I

, t ≥ t0,

ε(2)(t) ≤ 4ν2e−2

CI
= ν4

CI
, t ≥ t2,

with t0, t2, ν1, ν2, and γ as before.

Definition 4.1. Define the random variable T̃I such that P(T̃I > t) = 1 − exp(−CI e−rt ),
where CI = ∑k

i=1 Iici . The random variable T̃I satisfies

T̃I = logCI

r
+ 1

r
V ,

where V has a Gumbel distribution.

Theorem 4.1. Suppose that E(‖Ji‖1+α) < ∞ for some 0 < α ≤ 1 and all 1 ≤ i ≤ k. Then,
for t ≥ 0 and with γ < rα as in Theorem 3.1, there exists a constant ν∗ < ∞ such that

|PI (T > t)− P(T̃I > t)| ≤ ν∗

C
γ/r

I

.
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Proof. Remark 4.1 implies that

|PI (T > t)− P(T̃I > t)| ≤ ν3

C
γ/r

I

+ ν4

CI
, t ≥ t0.

For t ≤ t0, we have

0 ≤ PI (T ≤ t) ≤ PI (T ≤ t0) ≤ P(T̃I ≤ t0)+ ν3

C
γ/r

I

+ ν4

CI

and 0 ≤ P(T̃I ≤ t) ≤ P(T̃I ≤ t0) = exp(−CI e−rt0), completing the proof.

Theorem 4.1 thus shows that

dK

(
L

(
T − logCI

r

∣∣∣∣ Z(0) = I

)
,L

(
V

r

))
= O(C

−γ /r
I ) as ‖I‖ → ∞,

where dK denotes the Kolmogorov distance between the two distributions indicated by L and
γ is as in Theorem 3.1.

We now strengthen the mode of convergence. Let f̃I be the probability density function of
T̃I , and let fI be the probability density function of T under PI .

Lemma 4.3. Suppose that E(‖Ji‖1+α) < ∞ for some 0 < α ≤ 1 and all 1 ≤ i ≤ k. For all
t ≥ t0, there exists a constant K < ∞ such that

|fI (t)− f̃I (t)| ≤ KCI e−(r+γ )t (1 + CI e−rt ) exp
(− 1

2CI e−rt),
where γ is as in Theorem 3.1 and t0 is as in Lemma 4.1.

Proof. From (4.1) we know that PI (T ≤ t) = ∏k
i=1(1 − qi(t))

Ii , and, thus,

fI (t) = d

dt
PI (T ≤ t) = PI (T ≤ t)

k∑
i=1

(
− Ii

1 − qi(t)

dqi(t)

dt

)
. (4.3)

Furthermore,

f̃I (t) = d

dt
P(T̃I ≤ t) = P(T̃I ≤ t)rCI e−rt . (4.4)

Lemmas 4.1 and 4.2 imply that, for t ≥ t0,

| PI (T ≤ t)− P(T̃I ≤ t)| ≤ K1CI exp
(− 1

2CI e−rt)e−(r+γ )t for some K1 < ∞. (4.5)

Then, also, for t ≥ t0,

∣∣∣∣I� dq(t)

dt
−

k∑
i=1

Ii

1 − qi(t)

dqi(t)

dt

∣∣∣∣ ≤
k∑
i=1

Ii

∣∣∣∣dqi(t)

dt

∣∣∣∣
∣∣∣∣ 1

1 − qi(t)
− 1

∣∣∣∣
≤ K2CI e−2rt (4.6)

withK2 < ∞, since Lemma 2.1 and Corollary 2.1 imply that |I�dq(t)/dt | ≤ K3CI e−rt with
K3 < ∞, and, for t ≥ t0, 1 − qi(t) ≥ 1

2 for 1 ≤ i ≤ k, implying that∣∣∣∣ 1

1 − qi(t)
− 1

∣∣∣∣ ≤ 2qi(t) = O(e−rt ).
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Now, since dq(t)/dt = Bq(t)− Av(t) as in (2.6), we have∣∣∣∣I� dq(t)

dt
+ rCI e−rt

∣∣∣∣ = |I�Bq(t)− I�Av(t)+ rCI e−rt | ≤ K4CI e−(r+γ )t . (4.7)

The final inequality in (4.7) with K4 < ∞ follows because

(a) Equation (3.3) implies that

|I�Bq(t)− I�Bb1h
∗e−rt | ≤ K5CI e−(r+γ )t for t ≥ 0 and K5 < ∞;

(b) Equation (3.4) and the definition of b1 give I�Bb1h
∗ = −CI r; and

(c) Corollary 2.1 shows that

|I�Av(t)| ≤ K6CI e−r(1+α)t for t ≥ 0 and K6 < ∞.

Combining (4.6) and (4.7) thus gives
∣∣∣∣rCI e−rt +

k∑
i=1

Ii

1 − qi(t)

dqi(t)

dt

∣∣∣∣ ≤ K7e−(r+γ )t . (4.8)

Using (4.5) and (4.8), together with the triangle inequality now applied to the difference of
(4.3) and (4.4) in the form

|A1A2 − B1B2| ≤ |A1 − B1||A2 − B2| + |B2||A1 − B1| + |B1||A2 − B2|,
we obtain the lemma.

Using Lemma 4.3, we can show that the distribution of T under PI can be well approximated
by that of T̃I in terms of probability densities and the total variation distance dTV.

Theorem 4.2. Suppose that E(‖Ji‖1+α) < ∞ for some 0 < α ≤ 1 and all 1 ≤ i ≤ k. Then
there exist constants Ka,Kb < ∞ such that

(i) |fI (t)− f̃I (t)| ≤ KaC
−γ /r
I , t ≥ 0;

(ii) dTV(L(T | Z(0) = I ),L(T̃I )) = 1
2

∫ ∞
0 |fI (t)− f̃I (t)| dt ≤ KbC

−γ /r
I .

Proof. For t ≥ t0, part (i) follows from Lemma 4.3, since x1+γ /r (1 + x)e−x/2 is uniformly
bounded in x ≥ 0. For t ≤ t0, we have

f̃I (t) ≤ CI r exp(−CI exp(−rt0)) = O(C−s
I ) for all s > 0;

similarly, from (4.1) and (4.3), it can be shown that

fI (t) ≤ KCI exp

(
−

k∑
i=1

diIi

)

with di = −log(1 − qi(t0)) > 0 (1 ≤ i ≤ k) and K < ∞, which is also of order O(C−s
I ) for

all s, completing the proof of part (i).
For part (ii), by Lemma 4.3,∫ ∞

t0

|fI (t)− f̃I (t)| dt ≤ KcC
−γ /r
I

for Kc < ∞ a constant. The remaining part is bounded using part (i).
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5. Application

Theorem 4.1 is illustrated by a two-type model for parasitic resistance, in which the parasite
can enter a resting phase during which it does not reproduce, but can be transmitted easily
to a new host. An example is the transmission cycle of the parasitic protozoa Toxoplasma
gondii [6] in the intermediate hosts, which are warm-blooded. One third of the world’s human
population is estimated to carry a Toxoplasma infection [15]. The growth rate of a parasite
population within the intermediate host can be modeled by a two-type continuous-time Markov
branching process. A parasite is of type 1 if it is in the active state and of type 2 if it is in
the resting state. A type 1 parasite can either die at rate d1, enter the resting state at rate r1,
or reproduce itself by binary splitting at rate ρ. A type 2 parasite can either die at rate d2 or
become active within the host by changing to the active state at rate r2. The transmission of the
parasite to another host is incorporated in the death event. All interevent times are exponentially
distributed.

Let Zi = Zi(t) (i = 1, 2) be the number of type i parasites in a host at time t ≥ 0. The
transition scheme of the process is given in Table 1.

Let a1 := d1 + r1 + ρ and a2 := d2 + r2 be the total rates of transition for type 1 and type 2
individuals, respectively. For qi(t) (i = 1, 2), system (2.2) yields

dq(t)

dt
=

(
(−a1 + 2ρ) r1

r2 −a2

)
q(t)−

(
ρq1(t)

2

0

)
= Bq(t)− v(t). (5.1)

Since ‖J‖ ≤ 2 for Z(0) = (1, 0)� and Z(0) = (0, 1)�, we can take α = 1.
Theorem 2.1 implies that B has a unique real largest eigenvalue −r , with corresponding

positive left, f �
1 , and right, b1, eigenvectors, which are given by

−r = −(a1 − 2ρ + a2)+ √
D

2
,

f �
1 = 1

N1

(
a2 + 2ρ − a1 + √

D

2r1
, 1

)
,

and b�
1 = 1

N2

(
a2 + 2ρ − a1 + √

D

2r2
, 1

)
,

where
D = ((a1 − 2ρ + a2)

2 − 4(a2(a1 − 2ρ)− r1r2)),

N1 and N2 are appropriate constants such that |f1| = 1 and f �
1 b1 = 1.

The process (Z(t))t≥0 is subcritical if and only if (i) a2(a1 − 2ρ) > r1r2 and (ii) a1 − 2ρ
+ a2 > 0. Let the model parameters be fixed as in Table 2 such that the process is subcritical.

Table 1.

Transition Rate

Z1 → Z1 − 1, Z2 → Z2 d1Z1
Z1 → Z1 − 1, Z2 → Z2 + 1 r1Z1
Z1 → Z1 + 1, Z2 → Z2 ρZ1
Z1 → Z1, Z2 → Z2 − 1 d2Z2

Z1 → Z1 + 1, Z2 → Z2 − 1 r2Z2
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Table 2: Accuracy of the extinction time approximation of the two-type Markov branching process
(Table 1). For given I = (I1, I2), the approximation T̃I is compared to T (500 000 simulations) by
computing the proportion of simulated values of T larger than or equal to the median m̃ of T̃I , and by
calculating the proportion of simulated values of T falling into the interquartile range (IQR) defined as
the interval (q̃1, q̃3), where q̃1 and q̃3 are the first and third quartiles of the approximating distribution of
T̃I . The results are displayed for I1 : I2 = 5 : 1 and 2 : 1 and different values of I1. The corresponding
CI = c1I1 + c2I2 are also represented. The model parameters are set to (d1, r1, ρ) = (1, 1, 0.5) and

(d2, r2) = (1.2, 0.8) such that −r < 0.

I1 = 5I2 10 50 100 500 1000 5000

CI 9.618 48.090 96.179 480.897 961.793 4808.966

P(≥ m̃) 0.516 0.503 0.501 0.501 0.498 0.500
IQR 0.529 0.506 0.504 0.501 0.500 0.500

I1 = 2I2 10 50 100 500 1000 5000

CI 11.342 56.711 113.422 567.111 1134.221 5671.105

P(≥ m̃) 0.514 0.503 0.502 0.499 0.500 0.500
IQR 0.525 0.504 0.503 0.501 0.499 0.500

Thus, r = 0.821, β2 = 1.857, and α = 1, and Remark 3.1 implies that

qi(t) = cie
−rt (1 +O(e−rt )).

Furthermore, the Kolmogorov and the total variation distances between the distributions of T
given Z(0) = I and of T̃I are both of orderO(C−1

I ). To compute ci = (e�
i b1)h

∗ (i = 1, 2), it
is necessary to determine h∗, given by

logh∗ := lim
t→∞{log(f �

1 q(t))+ rt}.

This entails the numerical solution of system (5.1) up to a sufficient large t . To increase
the numerical stability, it is advisable to solve for ertq(t) instead of q(t) by appropriately
reformulating (5.1). To determine an appropriate t , the reformulated system is successively
solved for t ∈ {10, 11, 12, . . .}, and the corresponding c1 and c2 are evaluated until the absolute
differences of successive values of c1 and c2 are both smaller than some predefined level, 10−10

in our example, resulting in c1 = 0.847 and c2 = 0.575 at t = 16.
Given Z(0) = I = (I1, I2), the distribution of T̃I given in Definition 4.1 can be compared

with the distribution of the true extinction time T , which has to be computed by simulation,
since the exact result is inaccessible. For the simulation, the Markov chain (see Table 1) can
be simulated by the classical Gillespie algorithm [8] or an improved version thereof [9].

Table 2 indicates a location and a scale measure for evaluating the approximation per-
formance. The closeness of the probabilities PI (T > m̃) and PI (q̃1 < T < q̃3) to their
limiting values 0.5, where m̃, q̃1, and q̃3 are the median, the first, and the third quartiles of the
approximating distribution of T̃I , increases with higher values of CI , which is in line with the
previous results. Figure 1 represents the density function of the approximated extinction time
versus the true extinction time for different initial configurations I = (I1, I2). The density of the
approximated distribution closely matches the distribution of the simulated times, supporting
the results in this paper.
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Figure 1: The density distribution of T̃I (solid line) versus the simulated distribution of T (histogram of
10 000 simulations) for ratios I1 : I2 = 5 : 1 ((a)–(d)) and 2 : 1 ((e)–(h)) with I1 equal to 10 ((a) and (e)),
100 ((b) and (f)), 500 ((c) and (g)), and 5000 ((d) and (h)). The model parameters are fixed as in Table 2.
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