
J. Appl. Prob. 52, 1–17 (2015)
Printed in England

© Applied Probability Trust 2015
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Abstract

We study the convergence of centered and normalized sums of independent and
identically distributed random elements of the space D of càdlàg functions endowed
with Skorokhod’s J1 topology, to stable distributions in D . Our results are based on
the concept of regular variation on metric spaces and on point process convergence.
We provide some applications; in particular, to the empirical process of the renewal–
reward process.
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1. Introduction and main results

The main aim of this paper is to study the relation between regular variation in the space DI

and convergence to stable processes in DI . Let us first describe the framework of regular
variation on metric spaces introduced by [8] and [9]. Let I be a nonempty closed subinterval
of R. We denote by DI the set of real-valued càdlàg functions defined on I , endowed with
the J1 topology. Let SI be the unit ball of DI with respect to the uniform metric, i.e. the subset
of DI of functions x such that ‖x‖I = supt∈I |x(t)| = 1. A random element X in DI is
said to be regularly varying if there exists α > 0, an increasing sequence an, and a probability
measure ν on SI , called the spectral measure, such that

lim
n→∞ nP

(
‖X‖I > anx,

X

‖X‖I ∈ A
)
= x−αν(A) (1.1)

for any Borel setA of SI such that ν(∂A) = 0 where ∂A is the topological boundary ofA. Then
‖X‖I has a regularly varying right-tail and the sequence an is regularly varying at infinity with
index 1/α and satisfies P(‖X‖I > an) ∼ 1/n. [9, Theorem 10] states that (1.1) is equivalent to
the regular variation of the finite dimensional marginal distributions of the process X together
with a certain tightness criterion.

In the finite dimensional case, it is well known that if {Xn} is an independent and iden-
tically distributed (i.i.d.) sequence of finite dimensional vectors whose common distribution
is multivariate regularly varying, then the sum

∑n
i=1Xi , suitably centered and normalized,

converges to an α-stable distribution. In statistical applications, such sums appear to evaluate
the asymptotic behavior of an empirical estimator around its mean. Therefore, we will consider
centered sums and we shall always assume that 1 < α < 2. The case α ∈ (0, 1) is actually
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2 F. ROUEFF AND P. SOULIER

much simpler. Very general results in the case α ∈ (0, 1) can be found in [6]. In this case
no centering is needed to ensure the absolute convergence of the series representation of the
limiting process. In contrast, if α ∈ (1, 2), the centering raises additional difficulties. This
can be seen in [13], where the point process of exceedances was first introduced for deriving
the asymptotic behavior of the sum Sn =∑n

i=1Xi,n, for Xi,n = Yi1[i/n,1], with the Yis i.i.d.
regularly varying in a finite dimensional space. A thinning of the point process has to be
introduced to deal with the centering. In this paper, we also rely on the point process of
exceedances for more general random elementsXi,n valued in DI . Our results include the case
treated in [13, Proposition 3.4]; see Section 3.1. However, they do not require the centered
sum Sn − E[Sn] to be a martingale and the limit process that we obtain is not a Lévy process
in general, see the other two examples treated in Section 3. Hence, martingale-type arguments
as in [10] cannot be used. We now present our main result.

Theorem 1.1. Let {Xi} be a sequence of i.i.d. random elements of DI with the same distribution
as X and assume that (1.1) holds with 1 < α < 2. For x ∈ DI , let the sets of discontinuity
points of x be denoted by Disc(x). Assume that the following conditions hold.

(i) For all t ∈ I , ν({x ∈ SI , t ∈ Disc(x)}) = 0.

(ii) For all η > 0, we have

lim
ε↓0

lim sup
n→∞

P

(∥∥∥∥∥
n∑
i=1

(Xi1{‖Xi‖I≤anε} − E[X1{‖X‖I≤anε}])
∥∥∥∥∥
I

> anη

)
= 0. (1.2)

Then a−1
n

∑n
i=1{Xi − E[X]} converges weakly in (DI , J1) to anα-stable processℵ, that admits

the integral representation

ℵ(t) = cα
∫

SI

w(t) dM(w), (1.3)

whereM is an α-stable independently scattered random measure on SI with control measure ν
and skewness intensity β ≡ 1 (totally skewed to the right) and cαα = �(1− α) cos(πα/2).

Remark 1.1. If x and y are two functions in DI , then, for the J1 topology, addition may not
be continuous at (x, y) if Disc(x) ∩ Disc(y) 
= ∅. Condition (i) of Theorem 1.1 means that
if W is a random element of SI with distribution ν then, for any t ∈ I , P(t ∈ Disc(W)) = 0,
i.e. W has no fixed jumps; see [11, p. 286]. Condition (i) of Theorem 1.1 also implies that
ν ⊗ ν-almost all (x, y) ∈ SI × SI , i.e. x and y have no common jumps. Equivalently, if W
andW ′ are i.i.d. random elements of SI with distribution ν, then, almost surely,W andW ′ have
no common jump. This implies that if W1, . . . ,Wn are i.i.d. with distribution ν, then, almost
surely, addition is continuous at the point (W1, . . . ,Wn) in (DI , J1)

n; cf. [16, Theorem 4.1].

It will be useful to slightly extend Theorem 1.1 by considering triangular arrays of inde-
pendent multivariate càdlàg processes. To deal with 
-dimensional càdlàg functions, for some
positive integer 
, we endow D


I with J 
1 , the product J1 topology, sometimes referred to
as the weak product topology (see [17]). We then let SI,
 be the subset of D


I of functions
x = (x1, . . . , x
) such that

‖x‖I,
 = max
i=1,...,


sup
t∈I
|xi(t)| = 1.

Note that, in the multivariate setting, we have Disc(x) = ∪i=1,...,
Disc(xi). We will prove the
following slightly more general result.
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Convergence to stable laws in the space D 3

Theorem 1.2. Let (mn) be a nondecreasing sequence of integers tending to infinity. Let
{Xi,n, 1 ≤ i ≤ mn} be an array of independent random elements of D


I . Assume that there
exists α ∈ (1, 2) and a probability measure ν on the Borel sets of (SI,
, J 
1 ) such that ν satisfies
condition (i) of Theorem 1.1 and, for all x > 0 and Borel sets A such that ν(∂A) = 0,

lim
n→∞

mn∑
i=1

P

(∥∥Xi,n∥∥I,
 > x,
Xi,n∥∥Xi,n∥∥I,
 ∈ A

)
= x−αν(A), (1.4)

lim
n→∞ max

i=1,...,mn
P(

∥∥Xi,n∥∥I,
 > x) = 0, (1.5)

lim
x→∞ lim sup

n→∞

mn∑
i=1

E[∥∥Xi,n∥∥I,
 1‖Xi,n‖I,
>x] = 0. (1.6)

Moreover, suppose that, for all η > 0, we have

lim
ε↓0

lim sup
n→∞

P

(∥∥∥∥∥
mn∑
i=1

(Xi,n1{‖Xi,n‖I,
≤ε} − E[Xi,n1{‖Xi,n‖I,
≤ε}])
∥∥∥∥∥
I,


> η

)
= 0. (1.7)

Then
∑mn
i=1{Xi,n − E[Xi,n]} converges weakly in (D


I , J


1 ) to an 
-dimensional α-stable pro-

cess ℵ, that admits the integral representation given by (1.3) with SI replaced by SI,
.

Remark 1.2. If mn = n and
∥∥Xi,n∥∥I,
 = Yi/an where {Yi, i ≥ 1} is an i.i.d. sequence and

(1.4) holds, then the common distribution of the random variables Yi has a regularly varying
right-tail with index α. It follows that (1.5) trivially holds and (1.6) holds by Karamata’s
theorem. Note also that, obviously, ifXi,n = Xi/an with {Xi, i ≥ 1} an i.i.d. sequence valued
in D


I , then (1.4) is equivalent to the regular variation of the common distribution of the Xis.

From Remark 1.2 we see that Theorem 1.1 is a special case of Theorem 1.2, which we will
prove in Section 2.6. We conclude this section with some comments about the α-stable limit
appearing in Theorem 1.1 (or Theorem 1.2). Its finite dimensional distributions are defined by
the integral representation (1.3) and only depend on the probability measure ν. If X/ ‖X‖I
is distributed according to ν and is independent of ‖X‖I , as in Section 3.2, then (1.1) holds
straightforwardly and, provided that the negligibility condition (ii) of Theorem 1.1 holds, a
byproduct of Theorem 1.1 is that the integral representation (1.3) admits a version in DI .
The existence of càdlàg versions of α-stable processes is also a byproduct of the convergence
in DI of series representations as recently investigated in [5] and [1]. We will come back to
this question in Section 3.2. For now, let us state an interesting consequence of the It–Nisio
theorem proved in [1].

Lemma 1.1. Let α ∈ (1, 2), ν be a probability measure on SI , and ℵ be a process in DI which
admits the integral representation (1.3). Let {�i, i ≥ 1}be the points of a unit rate homogeneous
Poisson point process on [0,∞) and {W,Wi, i ≥ 1} be a sequence of i.i.d. random elements
of SI with common distribution ν, independent of {�i}. Then E[W ], defined by E[W ](t) =
E[W(t)] for all t ∈ I , is in DI and the series

∑∞
i=1{�−1/α

i Wi − E[�−1/α
i ]E[W ]} converges

uniformly almost surely in DI to a limit having the same finite dimensional distribution as ℵ.

Proof. The fact that E[W ] is in DI follows from dominated convergence and ‖w‖I = 1
almost surely (a.s.). The finite dimensional distributions of

Sn =
n∑
i=1

{�−1/α
i Wi − E[�−1/α

i ]E[Wi]}

https://doi.org/10.1239/jap/1429282603 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1429282603


4 F. ROUEFF AND P. SOULIER

converge to those of ℵ as a consequence of [14, Theorem 3.9]. Hence, to obtain the result, it
suffices to show that the series

∑∞
i=1{�−1/α

i Wi − E[�−1/α
i ]E[Wi]} converges uniformly a.s.

Note that the series
∑∞
i=1{�−1/α

i − E[�−1/α
i ]} converges a.s.; thus, writing

∞∑
i=1

{�−1/α
i Wi − E[�−1/α

i ]E[W ]}

=
∞∑
i=1

�
−1/α
i {Wi − E[W ]} + E[W ]

∞∑
i=1

{�−1/α
i − E[�−1/α

i ]},

we can assume without loss of generality that E[W ] ≡ 0. Define Tn =∑n
i=1 i

−1/αWi . By
Kolmogorov’s three series theorem (see [11, Theorem 4.18]), since

∑∞
i=1 i

−2/α <∞ and
var(Wi(t)) ≤ 1, for all t ∈ I , Tn(t) converges a.s. to a limit, say T∞(t).

Arguing as in [5], we apply [14, Lemma 1.5.1] to obtain that the series
∑∞
i=1 |�−1/α

i −
i−1/α| is summable. This implies that the series � = ∑∞

i=1(�
−1/α
i − i−1/α)Wi is uniformly

convergent. Hence, Sn − Tn converges uniformly a.s. to � and � ∈ DI . Thus, for all t ∈ I ,
Sn(t) converges a.s. to �(t) + T∞(t). Since the finite distributions of Sn converge weakly to
those of ℵ which belongs to DI by assumption, we conclude that�+ T∞ has a version in DI .
Hence, T∞ also has a version in DI .

We can now apply [1, Theorem 2.1(ii)] and obtain that, suitably centered, Tn converges
uniformly a.s. Moreover, for each t , we have E[Tn(t)] = E[T (t)] = 0 and E[|T (t)|2] =
E[|W(t)|2]∑∞i=1 i

−2/α ≤ ∑∞
i=1 i

−2/α . Hence, {T (t), t ∈ I } is uniformly integrable. Then
[1, Theorem 2.1(iii)] shows that Tn converges uniformly a.s. without centering. Thus, Sn also
converges almost surely uniformly.

Corollary 1.1. The process ℵ defined in Theorem 1.1 also admits the series representation

ℵ(t) =
∞∑
i=1

{�−1/α
i Wi − E[�−1/α

i ]E[W1]}, (1.8)

where {�i,Wi, i ≥ 1} are as in Lemma 1.1. This series is a.s. uniformly convergent.

It seems natural to conjecture that the limit process in Theorem 1.1 or the sum of the series
in Lemma 1.1 is regularly varying with spectral measure ν (the distribution of the process W ).
However, such a result is not known to hold generally. It was proved in [4, Section 4] under
the assumption that W has a.s. continuous paths. Under an additional tightness condition, we
obtain the following result.

Lemma 1.2. Let α ∈ (1, 2), ν be a probability measure on SI , and W be a random element
of SI with distribution ν. Assume that E[W ] is continuous on I and that there exist p ∈ (α, 2],
γ > 1

2 , and a continuous increasing function F such that, for all s < t < u,

E[|W̄ (s, t)|p] ≤ {F(t)− F(s)}γ , (1.9)

E[|W̄ (s, t)W̄ (t, u)|p] ≤ {F(u)− F(s)}2γ , (1.10)

where W̄ (s, t) = W(t)−W(s)− E[W(t)−W(s)]. Then the stable process ℵ defined by the
integral representation (1.3) admits a version in DI which is regularly varying in the sense
of (1.1), with spectral measure ν.
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Remark 1.3. Our assumptions on W are similar to those of [1, Theorem 4.3] and [5, The-
orem 1], with a few minor differences. For instance, (1.9) and (1.10) are expressed on a
noncentered W in these references. Here, we only require E[W ] to be continuous, which,
under (1.9), is equivalent to condition (i) of Theorem 1.1. Indeed, take a random element W
in SI . Then, by dominated convergence, E[W ] is in DI . Condition (1.9) implies thatW−E[W ]
has no pure jump. Thus, under (1.9), the process W has no pure jump if and only if E[W ] is
continuous on I .

Proof of Lemma 1.2. Proposition 3.1, below, implies that the stable process ℵ defined
by (1.3) admits a version in DI . Let us prove that this version is regularly varying in the
sense of (1.1), with spectral measure ν. By Corollary 1.1, ℵ can be represented as the a.s.
uniformly convergent series

∞∑
i=1

{�−1/α
i Wi − E[�−1/α

i Wi]} =
∞∑
i=1

�
−1/α
i W̄i + E[W ]

∞∑
i=1

{�−1/α
i − E[�−1/α

i ]},

where W̄i = Wi − E[W ]. For k ≥ 1, define 
k = ∑∞
i=k �

−1/α
i W̄i . We proceed as in the

proof of Corollary 2.2, below. Conditioning on the Poisson process and applying Burkholder’s
inequality, we have, for a constant Cp depending only on p, for all t ∈ I , since ‖W‖I = 1,

E[|
4(t)|p] ≤ Cp
∞∑
i=4

E[�−p/αi ] <∞. (1.11)

Similarly, using (1.9) and (1.10), we obtain that there exist constants C and C′ depending only
on α and p such that, for s < t < u ∈ I ,

E
[∣∣
4(t)−
4(s)

∣∣p∣∣
4(u)−
4(t)
∣∣p]

≤ CE

[( ∞∑
i=4

�
−2/α
i

)p]
E

[∣∣W̄ (s, t)W̄ (t, u)∣∣p]

+ CE

[( ∞∑
i=4

�
−p/α
i

)2]
E

[∣∣W̄ (s, t)|p]E[∣∣W̄ (t, u)∣∣p]
≤ C′{F(u)− F(s)}2γ .

This bound and (1.11) imply that E[‖
4‖pI ] < ∞; see [2, Chapter 15]. Moreover, since

p/α < 2 we have, for i = 2, 3, E[�−p/αi ] < ∞. Using ‖Wi‖I ≤ 1 for i = 2, 3, we finally
obtain E[‖
2‖pI ] <∞ and Z can be represented as

�
−1/α
1 W̄1 +
2 + E[W ]

∞∑
i=1

{�−1/α
i − E[�−1/α

i ]} = �−1/α
1 W1 + T ,

where T = 
2 + E[W ]∑∞i=2{�−1/α
i − E[�−1/α

i ]} − E[�−1/α
1 W1] satisfies E[‖T ‖pI ] < ∞.

Observe thatp > α. Since�−1/α
1 has a Frechet distribution with index α, it holds that�−1/α

1 W1
is regularly varying with spectral measure ν, which concludes the proof.

In the next section, we prove some intermediate results needed to prove Theorems 1.1 and 1.2.
In particular, we give a condition for the convergence in DI of the sequence of expectations.
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6 F. ROUEFF AND P. SOULIER

This is not obvious, since the expectation functional is not continuous in DI . We provide a
criterion for the negligibility condition (1.7) and, for the sake of completeness, we recall the
main tools of random measure theory we need. In Section 3, we give some applications of
Theorem 1.1.

2. Some results on convergence in DI and proof of the main results

2.1. Convergence of the expectation in DI

It may happen that a uniformly bounded sequence (Xn) converges weakly to X in (DI , J1)

but E[Xn] does not converge to E[X] in (DI , J1). Therefore, to deal with the centering, we
will need the following lemma.

Lemma 2.1. Suppose that Xn converges weakly to X in (DI , J1). Suppose moreover that
there exists m > 0 such that supn ‖Xn‖I ≤ m a.s. and X has no fixed jump, i.e. for all t ∈ I ,
P(t ∈ Disc(X)) = 0. Then the maps E[Xn] : t → E[Xn(t)] and E[X] : t → E[X(t)] are in
DI , E[X] is continuous on I , and E[Xn] converges to E[X] in (DI , J1).

Proof. Since we have assumed that supn≥0 ‖Xn‖I ≤ m, almost surely, it also holds that
‖X‖I ≤ m almost surely. The fact that E[Xn] and E[X] are in DI follows by bounded
convergence. Because X has no fixed jump, we also find that E[X] is continuous on I .

By Skorokhod’s representation theorem, we can assume thatXn converges toX almost surely
in DI . By the definition of Skorokhod’s metric (see e.g. [2]), there exists a sequence (λn) of
random continuous strictly increasing functions mapping I onto itself such that ‖λn − idI‖I
and ‖Xn −X ◦ λn‖I converge almost surely to 0. By bounded convergence, it also holds that
limn→∞ E[‖Xn −X ◦ λn‖I ] = 0. Now write

‖E[Xn] − E[X]‖I ≤ ‖E[Xn −X ◦ λn]‖I + ‖E[X ◦ λn −X]‖I .
The first term on the right-hand side converges to zero so we only consider the second one.
Denote the oscillation of a function x on a set A by

osc(x;A) = sup
t∈A

x(t)− inf
t∈A x(t). (2.1)

Let the open ball centered at t with radius r be denoted byB(t, r). SinceX is continuous at t with
probability one, it holds that limr→0 osc(X;B(r, t)) = 0 a.s. Since ‖X‖I ≤ m a.s. by domi-
nated convergence, for each t ∈ I , we have limr→0 E[osc(X;B(t, r))] = 0. Let η > 0 be arbi-
trary. For each t ∈ I , there exists r(t, η) ∈ (0, η) > 0 such that E[osc(X;B(t, r(t, η)))] ≤ η.
Since I is compact, it admits a finite covering by balls B(ti, εi), i = 1, . . . , p, with εi =
r(ti , η)/2. Fix some ζ ∈ (0,min1≤i≤p εi). Then, for s ∈ B(ti, εi) and by our choice of ζ ,
we have

|E[X ◦ λn(s)] − E[X(s)]| ≤ E[|X ◦ λn(s)−X(s)|1{‖λn−idI ‖I≤ζ }] + 2mP(‖λn − idI‖I > ζ )

≤ E[osc(X;B(ti, r(ti , η)))] + 2mP(‖λn − idI‖I > ζ )

≤ η + 2mP(‖λn − idI‖I > ζ ).

The last term does not depend on s; thus, ‖E[X ◦ λn] − E[X]‖I ≤ η+2mP(‖λn − idI‖I > ζ ).
Since‖λn − idI‖I converges a.s. to 0, we obtain lim supn→∞ ‖E[X ◦ λn] − E[X]‖I ≤ η. Since
η is arbitrary, this concludes the proof.
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Remark 2.1. Under the stronger assumption that Xn converges uniformly to X, Lemma 2.1
trivially holds since ‖E[Xn −X]‖I ≤ E[‖Xn −X‖I ], and the result then follows from dom-
inated convergence. If X is a.s. continuous then the uniform convergence follows from the
convergence in the J1 topology. If Xn is a sum of independent variables converging weakly in
the J1 topology toX with no pure jumps then the convergence in the J1 topology again implies
the uniform convergence; see [1, Corollary 2.2]. However, under our assumptions, the uniform
convergence does not always hold, as illustrated in the following example.

Example 2.1. For I = [0, 1], setXn = 1[U(n−1)/n,1] andX = 1[U,1] withU uniform on [0, 1].
Then the assumptions of Lemma 2.1 hold. However, Xn converges a.s. toX in the J1 topology
but not uniformly.

Let us now provide counterexamples in the case where the assumption of Lemma 2.1 on the
limit X is not satisfied.

Example 2.2. Let I = [0, 1], X = 1[1/2,1], andXn = 1[Un,1] where Un is drawn uniformly on
[ 12 − 1/n, 1

2 ]. Then Xn → X a.s. in DI but E[Xn] does not converge to E[X] = X in the J1
topology, though it does converge in the M1 topology.

Example 2.3. Set Xn = 1[un,1] for all n with probability 1
2 and Xn = −1[vn,1] for all n with

probability 1
2 , where un = 1

2 − 1/n and vn = 1
2 − 1/2n. In the first case Xn→ 1[1/2,1] in DI

with I = [0, 1] and in the second case Xn → −1[1/2,1] in DI . Hence, Xn → X a.s. in DI

forX well chosen. On the other hand, we have E[Xn] = 1[un,vn) which converges uniformly to
the null function on [0, u] ∪ [ 12 , 1] for all u ∈ (0, 1

2 ), but whose supremum on I = [0, 1] does
not converge to 0; hence, E[Xn] cannot converge in DI endowed with J1, nor with the other
usual distances on DI such as the M1 distance.

The assumption that supn ‖Xn‖I ≤ m a.s. can be replaced by a uniform integrability
assumption. Using a truncation argument, the following corollary is easily proved. The
extension of the univariate case to the multivariate one is obvious in the product topology
so we state the result in a multivariate setting.

Corollary 2.1. Suppose thatXn converges weakly toX in (D

I , J



1 ). Suppose moreover that X

has no fixed jump and {‖Xn‖I,
 , n ≥ 1} is uniformly integrable, that is

lim
M→∞ lim sup

n→∞
E[‖Xn‖I,
 1{‖Xn‖I,
>M}] = 0.

Then the maps E[Xn] : t → E[Xn(t)] and E[X] : t → E[X(t)] are in D

I , E[X] is continuous

on I , and E[Xn] converges to E[X] in (D

I , J



1 ).

2.2. Weak convergence of random measures

Let X be a complete separable metric space (CSMS). Let M(X) denote the set of boundedly
finite nonnegative Borel measures μ on X, i.e. such that μ(A) < ∞ for all bounded Borel
sets A. A sequence (μn) of elements of M(X) is said to converge weakly to μ, denoted by
μn →w# μ, if limn→∞ μn(f ) = μ(f ) for all continuous functions f with bounded support
in X. The weak convergence in M(X) is metrizable in such a way that M(X) is a CSMS.
We denote by B(M(X)) the corresponding Borel sigma-field. Let (Mn) be a sequence of
random elements of (M(X),B(M(X))). Then, by [3, Proposition 11.1.VIII], Mn converges
weakly to M , denoted by Mn ⇒ M , if and only if limn→∞ E[e−Mn(f )] = E[e−M(f )] for
all bounded continuous functions f with bounded support. A point measure in M(X) is a
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8 F. ROUEFF AND P. SOULIER

measure which takes integer values on the bounded Borel sets of X. A point process in M(X)
is a random point measure in M(X). In particular, a Poisson point process has an intensity
measure in M(X). In the following, we shall denote by N (X) the set of point measures
in M(X) and by Mf (X) the set of finite measures in M(X).

Consider now the space DI endowed with the J1 topology. Let δ be a bounded metric
generating the J1 topology on DI and which makes it a CSMS; see [2, Section 14]. From now
on we denote by XI = (DI , δ ∧ 1) this CSMS, all the Borel sets of which are bounded, since
we chose δ bounded. We further let N ∗(XI ) be the subset of point measures m such that, for
all distinct x and y in DI such that Disc(x) ∩Disc(y) 
= ∅, m({x, y}) < 2. In other words, m
is simple (the measure of all singletons is at most 1) and the elements of the (finite) support ofm
have disjoint sets of discontinuity points. To deal with multivariate functions, we endow X


I

with the metric

δ
((x1, . . . , x
), (x
′
1, . . . , x

′

)) =


∑
i=1

δ(xi, x
′
i ),

so that the corresponding topology is the product topology denoted by J 
1 . Finally, we de-
fine the space YI,
 = (0,∞] × SI,
, which is a CSMS when endowed with the metric
d((r, x), (r ′, x′)) = |1/r − 1/r ′| + δ
(x, x′).
Proposition 2.1. Let μ ∈M(YI,
) and ε > 0 be such that

(i) for all t ∈ I , μ({(y, x) ∈ YI,
, t ∈ Disc(x)}) = 0,

(ii) μ({ε,∞} × SI,
) = 0.

Let M be a Poisson point process on YI,
 with control measure μ. Let {Mn} be a sequence
of point processes in M(YI,
) which converges weakly to M in M(YI,
). Then the weak
convergence ∫

(ε,∞)

∫
SI,


ywMn(dy, dw)⇒
∫
(ε,∞)

∫
SI,


ywM(dy, dw) (2.2)

holds in (D

I , J



1 ) and the limit has no pure jump.

Proof. Let us define the mapping ψ : YI,
→ X

I by

ψ(y,w) =
{
yw if y <∞,
0 otherwise.

Also, let � :M(YI,
)→M(X

I ) be the mapping defined by

[�(m)](A) = m(ψ−1(A) ∩ ((ε,∞)× SI,
)),

for all Borel subsets A in M(X

I ). Since ∂(A ∩ ((ε,∞) × SI,
)) ⊂ ∂A ∩ ({ε,∞} × SI,
)),

we have that m �→ m(· ∩ ((ε,∞)× SI,
)) is continuous from M(YI,
) to M(YI,
) on the set
A1 = {μ ∈M(YI,
) : μ({ε,∞} × SI,
) = 0}. Using the continuity of ψ on (0,∞)× SI,
, it
is easy to show that m �→ m ◦ ψ−1 is continuous on A2 = {μ ∈M(YI,
) : there exists M >

0, μ([M,∞] × SI,
) = 0}. Hence, � is continuous on A = A1 ∩ A2. We note now that
the map

m �→
∫
(ε,∞)

∫
SI,


ywm(dy, dw) =
∫
w�(m)(dw)
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is continuous as a mapping from�−1(N (XI )) endowed with the→w# topology to (D

I , J



1 ) on

the set�−1(N ∗(XI )) ∩A. This fact is a straightforward adaptation to the setting of finite point
measures endowed with thew# topology of [16, Theorem 4.1], which establishes the continuity
of the summation on the subset of all (x, y) ∈ DI×DI (endowed with the product J1 topology)
such that Disc(x)∩Disc(y) = ∅. Thus, the weak convergence (2.2) follows from the continuous
mapping theorem, and by observing that the sequence (Mn) belongs to �−1(N (XI )) for all n
and that, by (i) and (ii), M belongs to �−1(N ∗(XI )) ∩A a.s. (see Remark 1.1). The fact that
the limit has no pure jump also follows from (i).

2.3. Convergence in D�
I based on point process convergence

The truncation approach is usual in the context of regular variation to exhibit α-stable
approximations of the empirical mean of an infinite variance sequence of random variables.
The proof relies on separating small jumps and big jumps and on point process convergence.
In the following result, we have gathered the main steps of this approach. To our knowledge,
such a result is not available in this degree of generality.

Theorem 2.1. Let {Nn, n ≥ 1} be a sequence of finite point processes on X andN be a Poisson
point process on YI,
 with mean measure μ. Define, for all n ≥ 1 and ε > 0,

Sn =
∫
(0,∞)

∫
SI,


ywNn(dy, dw), S<εn =
∫
(0,ε]

∫
SI,


ywNn(dy, dw),

Zε =
∫
(ε,∞)

∫
SI,


ywN(dy, dw),

which are well defined in D

I since N and Nn have finite supports in (ε,∞) × SI,
 and

(0,∞)× SI,
, respectively. Assume that the following assertions hold.

(i) Nn ⇒ N in (M(YI,
),B(M(YI,
))).

(ii) For all t ∈ I , μ({(y, x) ∈ YI,
, t ∈ Disc(x)}) = 0 and μ({∞} × SI,
) = 0.

(iii)
∫
(0,1] y

2μ(dy,SI,
) <∞.

(iv) For each ε > 0, the sequence {∫
(ε,∞) yNn(dy,SI,
), n ≥ 1} is uniformly integrable.

(v) For all η > 0, limε↓0 lim supn→∞ P(
∥∥S<εn − E[S<εn ]

∥∥
I,

> η) = 0.

Then the following assertions hold.

• For each ε > 0, Zε ∈ D

I , E[Zε] ∈ D


I , and Zε − E[Zε] converges weakly in (D

I , J



1 )

to a process Z̄ as ε→ 0.

• Sn − E[Sn] converges weakly in (D

I , J



1 ) to Z̄.

Proof. For ε > 0, we define

S>εn =
∫
(ε,∞)

∫
SI,


ywNn(dy, dw), S̄>εn = S>εn − E[S>εn ], S̄<εn = S<εn − E[S<εn ],

which are random elements of D

I . By Proposition 2.1 and (i) and (ii), we have that S>εn

converges weakly in (D

I , J



1 ) toZε, provided thatμ({ε}×SI,
) = 0, andZε has no pure jump.

Since
∥∥S>εn ∥∥

I,

≤ ∫

(ε,∞) yNn(dy,SI,
), by (iv) we find that {∥∥S>εn ∥∥
I,

, n ≥ 1} is uniformly

integrable. Applying Corollary 2.1, we find that E[S>εn ] converges to E[Zε] in (D

I , J



1 ) and
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10 F. ROUEFF AND P. SOULIER

that E[Zε] is continuous on I . Thus, addition is continuous at (Zε,E[Zε]); see [17, p. 84].
We obtain, for all ε > 0, as n→∞,

S̄>εn ⇒ Zε − E[Zε] in DI . (2.3)

Define S̄n = Sn − E[Sn]. Then S̄n = S̄>εn + S̄<εn and (v) can be rewritten as

lim
ε→0

lim sup
n→∞

P(
∥∥S̄n − S̄>εn ∥∥

I,

> η) = 0. (2.4)

By [2, Theorem 4.2], (a) and (2.4) imply (b). Hence, to conclude the proof, it remains to
prove (a), that is, Z̄ε converges weakly in (D


I , J


1 ) to a process Z̄. For all t ∈ I and 0 < ε < ε′,

we have

Zε(t)− Zε′(t) =
∫
(ε,ε′]

∫
SI,


yw(t)N(dy, dw),

where N is a Poisson process with intensity measure μ. Thus, denoting by |a| the Euclidean
norm of vector a and by Tr(A) the trace of matrix A, we have

E[|Z̄ε(t)− Z̄ε′(t)|2] = Tr(cov(Zε(t)− Zε′(t)))
=

∫
(ε,ε′]

∫
SI,


y2|w(t)|2μ(dy, dw)

≤ 

∫
(ε,ε′]

y2μ(dy,SI,
).

We deduce from (iii) that Z̄ε(t) − Z̄1(t) converges in L2 as ε tends to 0. Thus, there exists a
process Z̄ such that Z̄ε converges to Z̄ pointwise in probability; hence, in the sense of finite
dimensional distributions. To obtain the convergence in (D


I , J


1 ), since we use the product

topology in D

I , it only remains to show the tightness of each component. Thus, hereafter we

assume that 
 = 1. Denote, for x ∈ DI and δ > 0,

w′′(x, δ) = sup{|x(t)− x(s)| ∧ |x(u)− x(t)|; s ≤ t ≤ u ∈ I, |u− s| ≤ δ}. (2.5)

By [2, Theorem 15.3], it is sufficient to prove that, for all η > 0,

lim
A→∞ sup

0<ε≤1
P(

∥∥Z̄ε∥∥I > A) = 0, (2.6)

lim
δ↓0

lim sup
ε↓0

P(w′′(Z̄ε, δ) > η) = 0, (2.7)

lim
δ↓0

lim sup
ε↓0

P(osc(Z̄ε; [a, a + δ)) > η) = 0, (2.8)

lim
δ↓0

lim sup
ε↓0

P(osc(Z̄ε; [b − δ, b)) > η) = 0, (2.9)

where I = [a, b] and osc is defined in (2.1). We start by proving (2.6). For any ε0 ∈ (0, 1] and
ε ∈ [ε0, 1], we have

∥∥Z̄ε∥∥I ≤ ∫
(ε0,∞) yN(dy,SI ); whence,

sup
ε0≤ε≤1

P(
∥∥Z̄ε∥∥I > A) ≤ A−1

E

[∫
(ε0,∞)

yN(dy,SI )

]
,

which is finite by (iv).
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This yields that limA→∞ supε0≤ε≤1 P(‖Wε‖I > A) = 0 and to conclude the proof of (2.6),
we only need to show that, for any η > 0,

lim
ε0↓0

sup
0<ε<ε0

P(
∥∥Z̄ε − Z̄ε0

∥∥
I
> η) = 0. (2.10)

The arguments leading to (2.3) can be used to show that, for all 0 < ε < ε0,

S̄>ε0
n − S̄>εn ⇒ Z̄ε0 − Z̄ε in DI (2.11)

(although the latter is not a consequence of (2.3) because Zε0 and Zε have common jumps).
By definition, we have S̄<ε0

n − S̄<εn = S̄>εn − S̄>ε0
n . By (2.11) and the continuous mapping

theorem, we obtain
∥∥S̄<ε0
n − S̄<εn

∥∥
I
⇒ ∥∥Z̄ε0 − Z̄ε

∥∥
I
. Thus, by the portmanteau theorem, for

all η > 0,

P(
∥∥Z̄ε0 − Z̄ε

∥∥
I
≥ η) = lim sup

n→∞
P(

∥∥S̄<ε0
n − S̄<εn

∥∥
I
≥ η)

≤ lim sup
n→∞

P

(∥∥S̄<ε0
n

∥∥
I
≥ η

2

)
+ lim sup

n→∞
P

(∥∥S̄<εn ∥∥
I
≥ η

2

)
.

We conclude by applying (v) which precisely states that both terms in the right-hand side tend
to zero as ε0 tends to 0, for any η > 0. This yields (2.10) and (2.6) follows.

Now define the modulus of continuity of a function x ∈ DI by

w(x, δ) = sup{|x(t)− x(s)|, s, t ∈ I, |t − s| ≤ δ}.
We shall rely on the fact that, for any x, y ∈ DI , w′′(x + y, δ) ≤ w′′(x, δ)+ w(y, δ). Note
that this inequality is no longer true if w(y, δ) is replaced by w′′(y, δ). We obtain, for any
0 < ε < ε0 and δ > 0,

w′′(Z̄ε, δ) ≤ w′′(Z̄ε0 , δ)+ w(Z̄ε − Z̄ε0 , δ) ≤ w′′(Z̄ε0 , δ)+ 2
∥∥Z̄ε − Z̄ε0

∥∥
I
.

Since Z̄ε0 is in DI , we have, for any fixed ε0 > 0, limδ→0 P(w′′(Z̄ε0 , δ) > η) = 0. Hence,
with (2.10), we conclude that (2.7) holds. Similarly, since, for each subinterval T , we have

osc(Z̄ε; T ) ≤ osc(Z̄ε0; T )+ 2
∥∥Z̄ε − Z̄ε0

∥∥
I
,

so we obtain (2.8) and (2.9). This concludes the proof.

2.4. Regular variation in D and point process convergence

Now let {Xi,n, 1 ≤ i ≤ mn} be an array of independent random elements in DI and define
the point process of exceedances Nn on (0,∞] × SI,
 by

Nn =
mn∑
i=1

δ‖Xi,n‖I,
,Xi,n/‖Xi,n‖I ,

with the convention that δ0,0/0 is the null mass. If the processes Xn,i, 1 ≤ i ≤ mn, are i.i.d.
for each n, then it is shown in [7, Theorem 2.4] that (1.1) implies the convergence of the
sequence of point processes Nn to a Poisson point process on DI . We slightly extend here
this result to triangular arrays of vector-valued processes. Let N be a Poisson point process on
YI,
 = (0,∞] × SI,
 with mean measure μα(dy dw) = αy−α−1 dyν(dw).

Proposition 2.2. Conditions (1.4) and (1.5) in Theorem 1.2 imply the weak convergence ofNn
to N in (M(YI,
),B(M(YI,
))).
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2.5. A criterion for negligibility

Condition (v) of Theorem 2.1 is a negligibility condition in the sup-norm. It can be checked
separately on each component of S<εn − E[S<εn ]. We give here a sufficient condition based on
a tightness criterion. Recall the definition of the modulus of continuity w′′ in (2.5).

Lemma 2.2. Let {Uε,n, ε > 0, n ≥ 1} be a collection of random elements in DI such that, for
all t ∈ I and η > 0,

lim
ε→0

lim sup
n→∞

var(Uε,n(t)) = 0, (2.12)

lim
δ→0

sup
0<ε≤1

lim sup
n→∞

P(w′′(Uε,n, δ) > η) = 0. (2.13)

Then, for all η > 0,

lim
ε→0

lim sup
n→∞

P(
∥∥Uε,n∥∥I > η) = 0.

Proof. By (2.12) and the Bienaim–Chebyshev inequality, we obtain, for all η > 0 and t ∈ I ,

lim
ε→0

lim sup
n→∞

P(|Uε,n(t)| > η) = 0.

It follows that, for any p ≥ 1, t1 < · · · < tp, and η > 0,

lim
ε→0

lim sup
n→∞

P

(
max

k=1,...,p
|Uε,n(tk)| > η

)
= 0. (2.14)

Fix some ζ > 0. By (2.13) we can choose δ > 0 such that lim supn→∞ P(w′′(Uε,n, δ) >
η) ≤ ζ for all ε ∈ (0, 1]. Now note that, for any δ > 0, we may find an integer m ≥ 1
and t1 < t1 < · · · < tm, such that, for all x ∈ D , ‖x‖I ≤ w′′(x, δ)+maxk=1,...,m |x(tk)|;
see [2, Proof of Theorem 15.7, p. 131]. This and (2.14) yield

lim
ε→0

lim sup
n→∞

P(
∥∥Uε,n∥∥I > η)

≤ sup
0<ε≤1

lim sup
n→∞

P(w′′(Uε,n, δ) > η)+ lim
ε→0

lim sup
n→∞

P

(
max

k=1,...,p
|Uε,n(tk)| > η

2

)

≤ ζ,

which concludes the proof since ζ is arbitrary.

It is well known that the stochastic equicontinuity condition (2.13) can be obtained by bounds
on moments of the increments; see [2, Chapter 15]. We therefore obtain the following corollary.

Corollary 2.2. Let X,Xi, i ≥ 1, be i.i.d. random elements in DI such that ‖X‖I is regularly
varying with index α ∈ (1, 2). Let {an} be an increasing sequence such that

lim
n→∞ nP(‖X‖I > an) = 1.

For ε > 0 define X̄ε,n = X1‖X‖I≤anε − E[X1‖X‖I≤anε] and for s, t ∈ I define X̄ε,n(s, t) =
X̄ε,n(t) − X̄ε,n(s). Assume that there exist p ∈ (α, 2], γ > 1

2 , a continuous increasing
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function F on I , and a sequence of increasing functions Fn that converges pointwise (hence
uniformly) to F such that, for all s < t < u ∈ I ,

sup
0<ε≤1

na
−p
n E[|X̄ε,n(s, t)|p] ≤ {Fn(t)− Fn(s)}γ , (2.15)

sup
0<ε≤1

n2a
−2p
n E[|X̄ε,n(s, t)|p|X̄ε,n(t, u)|p] ≤ {Fn(u)− Fn(s)}2γ . (2.16)

Then condition (v) of Theorem 2.1 holds.

2.6. Proof of Theorem 1.2

We apply Theorem 2.1 to the point processes Nn and N defined in Section 2.4 and the
measure μα in lieu of μ. By Proposition 2.2, we have that Nn converges weakly to N in
M(YI,
), i.e. condition (i) of Theorem 2.1 holds. Condition (i) of Theorem 1.1 and the definition
of μα imply condition (ii) of Theorem 2.1. Condition (1.7) corresponds to condition (v) of
Theorem 2.1. Condition (iii) of Theorem 2.1 holds since

∫
(0,1]

y2μα(dy,SI,
) =
∫ 1

0
αy2−α−1 dt = α

2− α .

For 0 < ε < x, define Yn =
∫
(ε,∞) yNn(dy,SI,
) and Y = ∫

(ε,∞) yN(dy,SI,
). The weak
convergence of Nn to N implies that of Nn(· × SI,
) to N(· × SI,
). In turn, by continuity of
the mapm �→ ∫∞

ε
ym(dy) on the set of point measures on (0,∞] without mass on {ε,∞}, the

weak convergence ofNn(·×SI,
) toN(·×SI,
) implies that of Yn to Y . On the other hand, (1.6)
and (1.4) imply that E[Yn] converges to E[Y ] and E[Y ] <∞. Since Yn and Y are nonnegative
random variables, this implies the uniform integrability of {Yn}, which is condition (iv) of
Theorem 2.1. Finally, (1.3) follows from [14, Theorem 3.12.2].

3. Applications

The usual way to prove the weak convergence of a sum of independent regularly varying
functions in DI is to establish the convergence of finite dimensional distributions (which follows
from the finite dimensional regular variation) and a tightness criterion. Here, we consider
another approach, based on functional regular variation. We proved in Section 2.4 that functional
regular variation implies the convergence of the point process of (functional) exceedances. Thus,
in order to apply Theorem 1.1 or Theorem 1.2, an asymptotic negligibility condition (such as
(1.2) or (1.7), respectively) must be proved. Since the functional regular variation condition
takes care of the ‘big jumps’, the negligibility condition concerns only the ‘small jumps’, i.e.
we must only prove the tightness of sum of truncated terms. This can be conveniently done by
computing moments of any order p > α, even though they are infinite for the original series.
In this section, we provide some examples where this new approach can be fully carried out.

3.1. Invariance principle

We start by proving that the classical invariance principle is a particular case of Theorem 2.1.
Let {zi} be a sequence of i.i.d. random variables in the domain of attraction of an α-stable law,
with α ∈ (1, 2). Let an be the (1/n)th quantile of the distribution of |z1| and define as usual
the partial sum process Sn by Sn(t) = a−1

n

∑[nt]
k=1(zk−E[z1]). For u ∈ [0, 1], denote bywu the

indicator function of the interval [u, 1], i.e. wu(t) = 1[u,1](t), and define Xk,n = a−1
n zkwk/n.

Then we can write Sn = ∑n
k=1(Xk,n − E[Xk,n]). We will apply Theorem 1.2 to prove the
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convergence of Sn to a stable process in D(I ) with I = [0, 1]. Note that
∥∥Xk,n∥∥I = zk/an.

Thus, by Remark 1.2, we only need to prove that (1.4) holds with a measure ν that satisfies
condition (i) of Theorem 1.1 and the negligibility condition (1.7). Let ν be the probability
measure defined on SI by ν(·) = ∫ 1

0 δwu(·) du,μα be defined on (0,∞]×SI byμα((r,∞]×·) =
r−αν(·), and μn be the measure in the left-hand side of (1.4). Since

∥∥Xk,n∥∥I = zk/an, the
random variables zk are i.i.d., and wk/n are deterministic, we have, for all r > 0 and Borel
subsets A of SI ,

μn((r,∞] × A) = (nP(z1 > anr))×
(

1

n

n∑
k=1

1{wk/n∈A}
)
.

By the regular variation of z1, the first term of this product converges to r−α . The second
term of this product can be written as Pn ◦ φ−1(A), where Pn = n−1 ∑n

k=1 δk/n is seen as a
probability measure on the Borel sets of [0, 1] and φ : [0, 1] → DI is defined by φ(u) = wu.
Since φ is continuous (with DI endowed by J1) and Pn converges weakly to the Lebesgue
measure on [0, 1], denoted by Leb, by the continuous mapping theorem, we have that Pn ◦φ−1

converges weakly to Leb ◦ φ−1 = ν. This proves that (1.4) holds.
To prove that (1.7) holds, note that

∥∥S<εn ∥∥
I
= a−1

n max
1≤k≤n

∣∣∣∣
k∑
i=1

(zk1{|zk |≤anε} − E[zk1{|zk |≤anε}])
∣∣∣∣,

where S<εn denotes the sum appearing in the left-hand side of (1.7). By Doob’s inequality,
we obtain

E[‖S<εn ‖2∞] ≤ 2var

(
a−1
n

n∑
i=1

zk1{|zk |≤anε}
)
≤ na−2

n E[z2
11{|zk |≤anε}] = O(ε2−α),

by regular variation of z1. This bound and Markov’s inequality yield (1.7).

3.2. Stable processes

Applying Corollary 2.2, we obtain a criterion for the convergence of partial sums of a
sequence of i.i.d. processes that admit the representation RW , where R is a Pareto random
variable and W ∈ SI .

Proposition 3.1. Let {R,Ri} be a sequence of i.i.d. real valued random variables in the domain
of attraction of an α-stable law, with 1 < α < 2. Let {W,Wi, i ≥ 1} be an i.i.d. sequence
in SI with distribution ν satisfying the assumptions of Lemma 1.2, and independent of the
sequence {Ri}. Then, defining an as an increasing sequence such that, by P(R > an) ∼ 1/n,
a−1
n

∑n
i=1{RiWi−E[R]E[W ]} converges weakly in DI to a stable processZ which admits the

representation (1.3).

Remark 3.1. By Lemma 1.1, the stable process Z also admits the series representation (1.8),
which is a.s. convergent in DI and by Lemma 1.2 it is regularly varying in the sense of (1.1),
with spectral measure ν. As mentioned in the proof of Lemma 1.2, the proof we give here of
the existence of a version of Z in DI is different from the proof of [5] or [1].

Proof of Proposition 3.1. We apply Theorem 1.1 to Xi = RiWi . The regular variation
condition (1.1) holds trivially since ‖X‖I = R is independent of X/ ‖X‖I = W . Con-
dition (1.10) implies that W has no fixed jump, i.e. condition (i) of Theorem 1.1 holds.
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Thus, we only need to prove that the negligibility condition (ii) of Theorem 1.1 holds. Write
S<εn = a−1

n

∑n
i=1{Ri1{Ri≤εan}Wi − E[R1{R≤anε}]E[W ]} and rn,i = a−1

n Ri1{Ri≤anε}. Then we
have

S<εn =
n∑
i=1

rn,i{Wi − E[W ]} + E[W ]
n∑
i=1

{rn,i − E[rn,i]}. (3.1)

Since ‖E[W ]‖I ≤ 1, the second term’s infinite norm on I can be bounded using the Bienaym–
Chebyshev inequality and the regular variation ofR which implies, for any p > α, E[|rn,i |p] ∼
(α/(p − α))εp−αn−1. Hence, we only need to deal with the first term on the right-hand side
of (3.1), which is hereafter denoted by S̃<εn . Since R is independent of W , conditions (2.15)
and (2.16) are straightforward consequences of (1.9) and (1.10). Thus, condition (ii) of
Theorem 1.1 holds by Corollary 2.2. The last statement follows from Lemma 1.2

3.3. Renewal–reward process

Consider a renewal process N with i.i.d. interarrivals {Yi, i ≥ 1} with common distribution
functionF , in the domain of attraction of a stable law with indexα ∈ (1, 2). Let an be a norming
sequence defined by an = F←(1 − 1/n). Then, for all x > 0, limn→∞ nF̄ (anx) = x−α .
Consider a sequence of rewards {Wi, i ≥ 1} with distribution function G and define the
renewal–reward process R by R(t) = WN(t). Let φ be a measurable function and define
AT (φ) by

AT (φ) =
∫ T

0
φ(R(s)) ds.

We are concerned with the functional weak convergence of AT . We moreover assume that the
sequence {(Y,W), (Yi,Wi), i ≥ 1} is i.i.d. and that Y and W are asymptotically independent
in the sense of [12], i.e.

lim
n→∞ nP

((
Y

an
,W

)
∈ ·

)
v→ μα ⊗G∗ (3.2)

on ]0,∞]×R, whereG∗ is a probability measure on R. This assumption is obviously satisfied
when Y andW are independent, withG∗ = G in that case. When Y andW are independent and
E[|φ(W)|α] <∞, it has been proved by [15] that a−1

T {AT (φ)− E[AT (φ)]} converges weakly
to a stable law. Define λ = (E[Y ])−1 and F0(w) = λE[Y1{W≤w}]. Then F0 is the steady state
marginal distribution of the renewal–reward process and limt→∞ P(R(t) ≤ w) = F0(w). For
w ∈ R, consider the function 1{·≤w}, which yields the usual one-dimensional empirical process:

ET (w) = a−1
T

∫ T

0
{1{R(s)≤w} − F0(w)} ds.

Theorem 3.1. Assume that (3.2) holds with G∗ continuous. The sequence of processes ET
converges weakly in D(R) endowed with the J1 topology as T tends to infinity to the processE∗
defined by E∗(w) = ∫∞

−∞{1{x≤w} − F0(w)}M(dx), where M is a totally skewed to the right
stable random measure with control measure G∗, i.e.

log E[eit
∫∞
−∞ φ(w)M(dw)] = −|t |αλcαE[|φ(W ∗)|α]

{
1+ isign(t)β(φ) tan

(
πα

2

)}
,

where W ∗ is a random variable with distribution G∗, cαα = �(1− α) cos(πα/2), and β(φ) =
E[φα+(W ∗)]/E[|φ(W ∗)|α].
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Remark 3.2. We can also writeE∗ = Z◦G∗−F0 ·Z(1), whereZ is a totally skewed to the right
Lévy α-stable process. If, moreover, Y and W are independent, then the marginal distribution
of R(0) isG,G∗ = G, and the limiting distribution can be expressed as Z ◦G−GZ(1); thus,
the law of supw∈R E∗(w) is independent of G.

Proof of Theorem 3.1. Write

ET (w) = a−1
T

N(T )∑
i=0

Yi1{Wi≤w} + a−1
T {T − SN(T )}1{WN(T )≤w} − a−1

T λTE[Y1{W≤w}]

= a−1
T

N(T )∑
i=0

{Yi1{Wi≤w} − E[Y1{W≤w}]} − a−1
T {SN(T ) − λ−1N(T )}F0(w) (3.3a)

− a−1
T {SN(T ) − T }{1{WN(T )≤w} − λE[Y1{W≤w}]}. (3.3b)

The term in (3.3b) is oP (1), uniformly with respect to w ∈ R. Define Ui = G∗(Wi) and
U = G∗(W). Define the sequence of bivariate processes Sn on I = [0, 1] by

Sn(t) = a−1
n

n∑
i=1

(Yi[1{Ui≤t}, 1]′ − E[Y [1{Ui≤t}, 1]′]),

where x′ denotes the transpose of a vector x ∈ R
2. Then the term in (3.3a) can be expressed

as the scalar product [1,−F0(w)]SN(T )(G∗(w)). Using thatN(T )/T converges almost surely
to λ, we can relate the asymptotic behavior of SN(T ) to that of Sn. The latter is obtained by
applying Theorem 1.2. The fact that the mapping (y,w) �→ y[1[G∗(w),1], 1[0,1]]′ is continuous
from (0,∞)×R to D2

I and the convergence (3.2) imply that the distribution of Y [1{U≤t}, 1]′ is
regularly varying with indexα in D


I with 
 = 2 and ν defined by ν(·) = P((1[U∗,1], 1[0,1])′ ∈ ·)
where U∗ is uniformly distributed on [0, 1]. Conditions (1.4), (1.5), and (1.6) then follow by
Remark 1.2. Next, we must prove the asymptotic negligibility condition (1.7). It suffices
to prove it for the first marginal X = Y1[U,1]. For ε > 0 and n ≥ 1, define Gn,ε(t) =
na−2
n εαE[Y 21{Y≤anε}1{U≤t}]. It follows that (2.15) and (2.16) hold with p = 2, γ = 1, and

Fn = sup0<ε≤1Gn,ε = Gn,1. By (3.2) and Karamata’s theorem, we have limn→∞Gn,1(t) = t .
Therefore, Corollary 2.2 yields (1.7). By Theorem 1.2, the previous steps imply that Sn
converges weakly in (D, J1) to a bivariate stable process which can be expressed as [Z,Z(1)],
where Z is a totally skewed to the right α-stable Lévy process.
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