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Abstract

The land cover of the Sanjiang Plain has changed dramatically since the 1950s. Although pre-
vious studies have analysed its spatiotemporal dynamics at long time intervals, a near real-
time and accurate representation of the interannual evolution of cropping patterns in this
region is of far-reaching importance for rationally allocating agricultural resources and ensur-
ing food security. Based on the 30 m and 10 m land cover datasets in 2015 and 2017–2019, the
current study used Landsat-8 satellite data in 2014, 2016 and 2020 to identify paddy rice and
dryland crops using a decision tree classification approach and constructed the annual crop-
land datasets of the Sanjiang Plain from 2014 to 2020. The results show that the overall clas-
sification accuracies of crop datasets exceeded 95%, and the Kappa coefficients were higher
than 0.92. The average annual accuracies of users and producers were 93% and 94% for
rice fields and 97% and 95% for dryland crops, respectively. During the 7 years, the total
area of paddy fields and dryland crops decreased by 5% and 8%. However, with minor positive
and negative variation between years. 24.2% of paddy rice and 42% of dryland crops has been
cultivated under 4 years. The centres of gravity for both crops mainly aggregated in the central
counties with the migration direction and magnitude varying interannually. The current study
emphasizes the importance of establishing annual high-resolution crop datasets to track the
detailed spatio-temporal trajectories of cropping patterns that are essential to support sustain-
able cropland management and agricultural development.

Introduction

The Sanjiang Plain is one of the most important commodity grain bases in China (Shi et al.,
2020). The large-scale land reclamations in this region have mainly happened before
21st century; However, the cropping structures have still undergone significant
changes every year recently due to the government’s crop rotation project (Cai et al., 2021)
and soybean rejuvenation programme (e.g. rice-to-soybean conversion) (Lin, 2023).
Quantitative information about present interannual cropping structure changes is still
limited. Despite some efforts in short-period annual crop mapping (You et al., 2021),
yearly-temporal and fine-spatial crop type maps during recent periods of dramatic
planting structure alterations remain absent. Thus, it limits our understanding the
ongoing process of farm trajectories and its related driving factors behind these dynamics
in this region.

Remote sensing technology can provide information on cropping structure and its
dynamics at regional and global scales (Zhang et al., 2021). Satellite data with low spatial
(250 m–1 km) and high temporal (daily to monthly) resolution (i.e., MODIS and AVHRR)
have been widely used for large-scale extraction of crop types (Wardlow et al., 2007; Chen
et al., 2018). However, for smallholder farming, areas or regions with diverse cultivation struc-
tures or complex terrain regions, the ‘mixed pixel’ problems in satellite data with coarse spatial
resolution lead to significant errors in crop mapping and even in production estimation due to
heterogeneous agricultural landscapes (Hu et al., 2021; Luo et al., 2022). Public Free and open
access to long time series of remote sensing data with medium to high spatial and temporal
resolution offers new opportunities for large-scale crop mapping; Meanwhile, standardized
and operational crop-classification platforms have been well established (Song et al., 2021).
In particular, the dense time series of Landsat and Sentinel data (10-30 m) limit the mixed-
pixel problems, and have been applied to map the precise annual spatial distribution of
crops at the national and continental scales. For instance, the U.S. Department of
Agriculture’s (USDA) Cropland Data Layers (CDLs) are 30 m satellite imagery-derived crop-
specific land cover maps across the conterminous United States. The CDLs are produced using
multi-source satellite imagery (i.e., Landsat, Resourcesat, Sentinel, etc.), and have been
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annually updated since 2008. The CDLs include 110 land and
crop classes with an average classification accuracy of over 90%
(Boryan et al., 2011). The Agriculture and Agri-Food Canada
(AAFC) has generated the annual crop type digital maps in
Canada since 2009, a decision tree based methodology was
applied using optical (Landsat-5, AWiFS, DMC) and radar
(Radarsat-2) based satellite images, and the overall accuracy is
at least 85% (Fisette et al., 2013; Amani et al., 2020).
Blickensdörfer et al. (2022) combined the time series of
Sentinel-1, Sentinel-2 and Landsat-8 data to map 24 agricultural
land cover classes in Germany for the 3 consecutive years
(2017, 2018 and 2019). For cross-national scales, under the sup-
port of the European Space Agency (ESA), the Sen2-Agri system
allows for automated agricultural land cover maps derived from
Sentinel-2 and Landsat-8 imagery at 10 m spatial resolution
(Defourny et al., 2019). In addition, Luo et al. (2022) applied
transductive transfer learning to process 130 000 Sentinel-2
images on the Google Earth Engine (GEE) platform, and
generated the 10 m crop maps for four major crops across
10 European Union (EU) countries for 2018 and 2019. So
far, systematic technical classification systems and platforms
based on remote sensing data with medium and high spatial
resolution have been established in Europe and America
for regional crop mapping. These continuously improve
the generation of annual crop data, which provide the
necessary research basis for analysing the evolution of cropping
structure at multi-spatial and temporal scales. However, in
China, systematic, automated and wall-to-wall monitoring of
the cropland mapping system has received less attention (You
et al., 2021); and current available high-resolution cropland
data not only cover a limited number of crop types, but are also
irregularly updated.

The Sanjiang Plain has experienced intensive land reclama-
tions since 1950s. Even though the dynamic evolution of land
cover in the Sanjiang Plain has been well studied, the up-to-date
crop dynamics is unknown due to the unavailability of fine-scale
and annual continuous cropland maps. The current study sum-
marized the literatures on the spatial and temporal dynamics of
cropland in the Sanjiang Plain in terms of remote sensing data,
classification methods and time spans and intervals (Table 1).
As for the data, the studies used remote sensing data with
medium spatial resolution such as Landsat as the main data
source. In terms of classification methods, visual image
interpretation (Song et al., 2008, 2017; Wang et al., 2009; Yan
et al., 2016a, 2016b; Zhang et al., 2022), supervised classification
(Pan et al., 2018), phenology-based methods (Dong et al., 2015)
or object-oriented approaches (Xie et al., 2021) were used to
map cropping patterns for individual years in the study area;
For the study periods, the studies focused on the years before
2015; meanwhile, the time spans for quantifying the spatial and
temporal dynamics of croplands were long (5–12 years). Crop cul-
tivation in the Sanjiang Plain is intensive. Under the influence of
temperature and precipitation, management policies, etc., annual
fluctuation of crop planting structure is relatively significant.
Therefore, it is urgent to establish high-resolution annual crop
distribution datasets to update the continuous interannual crop-
land cultivation evolutions in the Sanjiang Plain in recent years.
For this purpose, the specific objectives of the current study
were to: (1) construct annual 30 m cropland data layers in the
Sanjiang Plain from 2014 to 2020; (2) explore temporally high-
frequency and spatially continuous dynamic change patterns of
paddy rice and dryland crops. Ta
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Materials and methods

Study area

The Sanjiang Plain is located in northeastern Heilongjiang
Province, China (43.834°N–48.411°N, 129.196°E–134.776°E) and
covers a total area of 10.87 × 104 km2 and 23 counties (Fig. 1). It
is formed by the alluviation of Helongjiang, Songhuajiang and
Wusulijiang rivers. The climate of this region varies between tem-
perate humid and subhumid continental monsoon, with average
temperatures below −18 °C in January and 21–22°C in July and
average annual precipitation of 500–650mm. The suitable climate,
flat terrain, fertile soil and sufficient water resources offer the
favourable optimal conditions for agricultural cultivation. Rice,
maize and soybeans are the three major crops, which mainly dis-
tribute in the flatlands of the northeast, central and sourtheast
Sanjiang Plain and present a mosaic spatial landscape (Yin
et al., 2020). Paddy rice is irrigated, but other crops (such as
corn and soybeans) are dryland crops (Fan et al., 2020). From
2003 to 2015, the total cultivation area of crops showed a fluctu-
ating upward trend, and the total grain production increased con-
tinuously. In 2015, the sown area of three crops was about 96% of
the Sanjiang Plain’s total crop cultivation area, with corn account-
ing for 40%, rice 37% and soybeans 19% (Cai et al., 2021).

Data and preprocessing

The datasets for the current study include: (1) Landsat-8 surface
reflectance data were collected from 2014–2021, with a spatial

resolution of 30 m and a temporal resolution of 16 days
(Table 2). The satellite data covered the period from rice field
flooding to rice sowing (late April to June) with a total of 32
image scenes. When the cloud cover of the images in 2014,
2016 and 2020 was more than 5%, cloud-free images from the
same period of adjacent years were selected for cloud-mask
replacement. Since the Landsat-8 surface reflectance data have
been radiometrically and atmospherically corrected, the image
preprocessing in the current study included projection transform-
ation, coordinate matching, clipping and image mosaicing; (2)
The 2015 Northeast China Land Use Data (NCLUD2015) was
derived from Landsat-8 imagery using an object-oriented classifi-
cation approach. The NCLUD2015 croplands include two types
(paddy rice and dryland crops) with an overall accuracy of 94%
(Mao et al., 2018; Mao et al., 2019); (3) Then collected the 10
m crop data layer for northeast China (NCCDL10m) developed
by You et al. (2021). This dataset included 3 years of crop data
layers during 2017–2019, which were produced using time-series
Sentinel-2 imagery and random forest algorithm on the GEE plat-
form. The dataset mapped 3 most popular crop types (corn, soy-
bean and paddy rice) with an overall accuracy of 81%-86% over
three years. To match with land use classification system of
NCLUD2015, corn and soybean were combined as dryland
crops. The NCLUD2015 and NCCDL10m datasets used different
classification systems, which made the comparison difficult. The
current work first aggregated these maps by reclassifying them
using a unified legend system, which includes three land cover
types: paddy rice, dryland crops and non-crop.

Fig. 1. Location of the Sanjiang Plain (a–b); Spatial distribution of validation sample sites in 2014/2016/2020 (c); Gound-reference ROI examples from Landsat-8 (d)
and high-resolution images (e).
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Classification and validation of paddy rice and dryland crops

To construct a 30-m annual-continuous crop dataset of the
Sanjiang Plain during 2014–2020, the current study collected
four years of currently available cropland spatial datasets in
2015 and 2017–2019; the current work proposed a two-step con-
ceptual framework of decision tree classification to generate crop
data layers for the other three years of 2014, 2016 and 2020, based
on the above cropland datasets and Landsat-8 satellite data as fol-
lows (Fig. 2):

Step 1 to generate crop and non-crop layers: the current study
used the Landsat-8 colour composite images in 2014, 2016 and
2020 as ground truth, and manually updated the crop and non-
crop boundaries of neighbouring years of 2015, 2017 and 2019
by visual interpretation methods;
Step 2 to identify paddy rice and dryland crops within crop
layers using the decision rule of the Modified Normalized
Difference Water Index (MNDWI) at the pixel scale: the rice
fields of the Sanjiang Plain are flooded between late April
and early May, and rice seedling transplantation begins in
mid-May. From late April to mid-June, the rice fields show
mixed spectral features of water and seedlings on the
Landsat-8 images. Meanwhile, the dryland crop fields show a
mixed spectrum of dry-bare soil and seedlings. Therefore, the
current study calculated the MNDWI (Xu, 2005) (Eqn (1))
from Landsat-8 image in the early phase of crop growing
season to enhance the spectral differences between vegetation,
water and dry-bare soil in the fields, and established a decision
threshold rule to segment paddy rice and dryland crops
(Eqn (2)).

MNDWI = (rGreen − rSWIR2)/(rGreen + rSWIR2) (1)

MNDWI = −0.1 ≤ MNDWI ≤ 1, paddy rice
MNDWI , −0.1, dry land crops

{
(2)

where ρGreen, ρSWIR2 represent the Landsat-8 reflectance in the
green band (0.53∼0.59 μm) and shortwave infrared band (1.56–
1.66 μm), respectively.

A pixel-wise validation was implemented to assess the accur-
acies of 2014/2016/2020 CDLs (Dong et al., 2016). The current
work used a stratified random sampling method to generate
ground truth sampling sites across. First, the study region was
divided into three zones (paddy rice, dryland crop, non-crop)
based on the 2015/2017/2017 CDLs, and randomly settled 600
sampling sites for each zone (Fig. 1(c)). Then, created one region
of interest (ROI) for each sampling site; with the high-resolution
satellite imagery and Landsat-8 colour composite images as
ground truth references, the current work visually interpreted
the ground-truth land attribute and compared it with the classi-
fied land type on the 2014/2016/2020 CDLs for each ROI.
Figures 1(d) and (e) show the ROI examples. Finally, five classifi-
cation metrics (producer’s accuracy, user’s accuracy, overall accur-
acy and Kappa coefficients) were calculated from the confusion
matrix to quantify the classification accuracies of 2014/2016/
2020 CDLs. The calculation equations of classification metrics
refer to Hao et al. (2020).

Annual spatio-temporal dynamics of paddy rice and dryland
crops

Based on the annual crop layers of the Sanjiang Plain from 2014
to 2020, the current study quantified the changing magnitude and
rate of cultivation area for paddy rice and dryland crops at the
interannual scale. It also measured the spatial evolution of
paddy rice and dryland crops in terms of spatial agglomeration

Table 2. Landsat-8 surface reflectance data

Year Image time Path/Row Cloud fraction/% Year Image time Path/Row Cloud fraction/%

2014 2014-05-25 113/27 11.06 2016 2017-06-16 115/27 0.63

2014-06-01 114/26 17.26 2017-06-16 115/29 3.51

2014-05-30 △ 116/28 15.44 2016-06-04 116/26 18.61

2015-05-10 ▴ 115/28 0.02 2016-06-04 116/27 1.33

2014-06-01 114/28 0.93 2016-05-19 116/28 0.13

2015-05-01 116/29 2.81 2016-05-19 116/29 0.01

2015-05-10 115/26 0.34 2020 2020-06-10 113/27 4.02

2015-05-10 115/27 0 2021-05-03 114/26 7.03

2015-05-17 116/26 19.92 2021-05-03 114/27 5.33

2015-06-01 114/27 2.67 2020-05-07 115/26 0.04

2016 2016-05-14 113/26 23.21 2020-05-07 115/27 0.02

2017-05-01 113/27 22.43 2020-05-07 116/26 0.43

2015-06-14 114/27 3.46 2020-05-07 116/27 0.01

2016-05-21 △ 114/28 8.65 2020-05-07 △ 115/28 4.45

2017-06-16 ▴ 115/28 1.02 2021-05-17 ▴ 116/28 0

2016-05-21 114/29 0.01 2021-05-17 116/29 0.02

Note: △ Images with cloud cover > 5%,▴ images for cloud-covered area replacement. Other unlabelled images with more than 5% clouds will only use the cloud-free
part of the image in the mosaic and clip.
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and directionality by calculating the planted frequencies,
changing trend of cultivated area and gravity migration at the
pixel scale.

Temporal dynamic analysis

Area variation (Δs) and rate of variation (Δs′) were used to quan-
tify interannual fluctuations of total planted area for paddy rice
and dryland crops. Δs is the total area variation, and Δs′ is the
area variation per unit area for paddy rice or dryland crops.

Ds = Sb − Sa, Ds
′ = Sb − Sa

Sa
× 100% (3)

where Sa, Sb denote the total planted area of paddy rice (dryland
crops) for the two adjacent years.

Spatial dynamic analysis

Frequency statistical analysis
The current work overlaid the annual 30 m CDLs during 2014–
2020 at the pixel level, and generated frequency maps of paddy
rice and dryland crops over the Sanjiang Plain. The frequency
value, ranging from 1 to 7, stands for the number of years planted
as paddy rice (dryland crops), and can represent the cropping
intensity for the two crop types within the 7 years for each
pixel. Then designated the pixels with the 6⩽ frequency ⩽7, 4⩽
frequency <6, and 1⩽ frequency <4 as continuous, stable, unstable
cultivation, respectively. Note that unstable cultivated fields refer
to the fields that might be under crop rotation, fallow or aban-
doned. Compared with the analysis of annual CDL maps, the fre-
quency statistic maps can show the spatial distribution of paddy

and dryland cropping landscape patterns and its temporal vari-
ation in an integrated manner.

Trend analysis
The current study calculated the area fraction percentage within 1
km × 1 km grids for the two crops. Area variation trend (slope)
maps of crop planting area were generated at grid scales:

slope =
n
∑n

j=1 j× y − ∑n
j=1 j

( ) ∑n
j=1 y

( )[ ]

n×∑n
j=1 j

2 − ∑n
j=1 j

( )2[ ] (4)

where slope is the linear-fitted slope of n years (n = 7); y is area
fraction for paddy field (or dryland crops) within 1 km × 1 km
grids; slope > 0 indicates that crop area shows increasing trend;
otherwise, declining trend. The area change trend was further
reclassified into five classes based on slope according to the fol-
lowing principles:

slope =

slope , mean− 2× std, Significantly decrease
mean− 2× std , slope , mean− std, Decrease
mean− std , slope , mean+ std, No change
mean+ std , slope , mean+ 2× std, Increase
slope . mean+ 2× std, Significantly increase

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(5)

Gravity centre migration model
The gravity centre refers to a spatial mean centre of the area
composed of paddy rice and dryland crops field patches. In the
current study, the direction and distance of the gravity centre

Fig. 2. The conceptual framework of decision tree clas-
sification of 30 m annual crop data layers (CDLs) in the
Sanjiang plain,during 2014–2020. NCLUD: Northeast
China Land Use Data, NCCDL10 m: Northeast China
Crop Data Layer.
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(Xt, Yt) at different study nodes are obtained by the gravity centre
migration model, in which the direction of gravity deviation indi-
cates the ‘high density’ of the distribution of paddy rice and dry-
land crops, and the distance of deviation indicates the equilibrium
of migration, thus quantitatively describing the directional charac-
teristics of the spatial evolution of paddy rice and dryland crops:

Xt =
∑n

i=1 MitXi∑n
i=1 Mit

, Yt =
∑n

i=1 MitYi∑n
i=1 Mit

(6)

d =
�������������������������������
(xk+m − xk)

2 + (yk+m − ym)
2

√
(7)

where d is the migration distance between years (t + 1 and t, t =
2014–2020); (Xi, Yi) and Mit are the geographical centroid and
area for each crop patch, respectively, n is the number of rice (dry-
land crops) patches.

Results

Remote sensing extraction of paddy rice and dryland crops in
2014, 2016 and 2020

The classification confusion matrix shows that the overall classifi-
cation accuracies of crop data layers in 2014, 2016 and 2020
exceeded 96%, with the Kappa coefficient ranging from 0.96 to
0.98 (Table 3). MNDWI can effectively distinguish paddy rice
from dryland crops, with over 90% accuracy. The average user
and producer accuracy for paddy rice is 95% and 90%, respect-
ively; and for dryland crops is 95% and 90%. The classification
accuracies for non-crop are greater than 95%. Note that in the
current study, satellite imagery from April to June were used to

identify the flooding signal of paddy fields. The availability of
imagery during the early rice growing season would affect classi-
fication results. For instance, if the date of image acquisition is
earlier than the time of field flooding, the spectral signals of
rice transplanting cannot be captured; therefore, the identification
of paddy rice might fail. In addition, pixels along the boundary
between rice fields and dryland crops are affected by the mixed
spectrum problem, which reduces the robustness of the
MNDWI segment threshold and leads to the classification errors
of paddy rice. In Table 3, the omission errors of paddy rice in the
confusion matrices are higher than those of other types: 8.85%
(2014), 3.25% (2016) and 13.47% (2020).

Figure 3 shows the annual spatial distribution of crop area for
the Sanjiang Plain from 2014 to 2020. For 7 years in the Sanjiang
Plain, croplands were the main land cover and consist of paddy
rice and dryland crops fields, which distributed in the plain
areas with low altitude and flat terrain. Paddy rice cultivation
was more intensive, and mostly located in water-rich areas, such
as the north counties including Fuyuan, Tongjiang, Suibin and
Fujin and the south-east region-Hulin County. Note that there
were spatial pattern fluctuations of paddy fields in some local
areas among years. Especially, paddy rice showed significant
expansion in the northeast of Huachuan and the Woken basin.
The planting area of paddy rice in the eastern part of Raohe
County declined slightly. The dryland crops were mainly located
in the north-central counties (Jixian, Jiamusi and Baoqing) and
also in the south-western regions (Huanan, Yilan and Boli).
Compared to paddy rice, the landscape of dryland crops was
more fragmented than paddy rice, and showed circular, striped
distributions around the paddy patches. From 2014 to 2020, dry-
land crops cultivation tended to shrink in Jixian and Muling, and
expand in northeastern Fuyuan and the eastern Raohe.

Table 3. Confusion matrix of cropland dataset of the Sanjiang Plain in 2014, 2016 and 2020. Map categories are rows while reference categories are columns. Map
categories are rows while reference categories are columns

Year Paddy rice Dryland crops Other land Sum User’s accuracy (%)

2014 Paddy rice 32 691 625 131 33 447 91.2

Dryland crops 3150 48 992 736 52 878 98.1

Non-crop 26 319 171 868 172 213 99.5

Sum 35 867 49 936 172 735 258 538

Producer’s accuracy (%) 97.7 92.7 99.8 Overall accuracy = 98.2%

Kappa coefficient = 0.96

2016 Paddy rice 24 561 12 338 24 911 96.8

Dryland crops 644 21 216 503 22 363 99.4

Non-crop 182 122 156 433 156 737 99.5

Sum 25 387 21 350 157 274 204 011

Producer’s accuracy (%) 98.6 94.9 99.8 Overall accuracy = 99.1%

Kappa coefficient = 0.98

2020 Paddy rice 3063 190 42 3295 92.40

Dryland crops 468 19 723 583 20 774 94.49

Non-crop 9 230 67 605 67 844 97.59

Sum 3540 20 143 68 230 91 913

Producer’s accuracy (%) 86.5 97.9 95.0 Overall accuracy = 96.8%

Kappa coefficient = 0.96
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Annual temporal characteristics of paddy rice and dryland
crops from 2014 to 2020

A comparative analysis of the annual area changes of crop layers
during 2014–2020 can accurately demonstrate area variations in
paddy rice and dryland crops on the temporal scale (Fig. 4).
Cropland was the main land cover in the Sanjiang Plain, account-
ing for an annual average area percentage of 52 ± 3.4% (566 ±
36.9 × 104 hm2). The annual average planting area of dryland
crops (305.3 ± 29 × 104 hm2) was higher than that of paddy rice
(260.9 ± 14 × 104 hm2); the area proportions for paddy rice and
dryland crops were 21–25% and 25–32%, respectively (Fig. 4
(b)). The total cropland area reduced from 624.4 × 104 hm2 in
2014 to 580 × 104 hm2 in 2020, with a decrease of 15.3 × 104

hm2, 29.4 × 104 hm2 for paddy rice and dryland crops, respect-
ively (Fig. 4(c)). Area variation between 2014–2017 for two crop-
lands were greater than that between 2017–2020; The average
absolute area changes in 2014–2017 for paddy rice and dryland
crops were 29 × 104 hm2, 27 × 104 hm2, while in 2017–2020 they
were 10 × 104 hm2 and 15 × 104 hm2, respectively. The unit area
change (Δs

′
) in paddy rice was −4.5% (2014–2015), −14.1%

(2015–2016) and 15.7% (2016–2017), and remained relatively
stable (−2.2–5.8%) in other years (Fig. 4(d)). Δs

′
for dryland

crops decreased by 10.8% (2015–2016) and 13.2% (2016–2017)
and increased slightly after 2017. Δs

′
values were of dryland

crops were 2.3% (2017–2018), 3.5% (2018–2019) and 10.6%
(2019–2020).

Annual spatial characteristics of paddy rice and dryland crops
from 2014 to 2020

Figure 5 shows the statistics of planting frequency for two crops at
pixel level. 77.5% of the Sanjiang Plain was once cultivated as
cropland for at least one year in 2014–2020 (frequency⩾1), with
28.9% and 48.5% for paddy rice and dryland crops, respectively.
The landscape pattern of core planting regions of paddy rice
was clustered and kept stable over the years. The pixels planted
more than 6-year paddy rice accounted for 60% of the total
area, which was mainly located in northern counties, such as
(Fuyuan, Tongjiang, Suibin and Fujin) (Fig. 5(a)). 24.2% of
paddy rice was under 4-year planting frequency, mainly in
Huachuan and Raohe. In contrast to paddy rice, the dryland
crops cultivation was less stable with fragmented landscape pat-
terns. 48% of the dryland crops have been cultivated for more
than 6 years, mainly in the north-central (Fujin, Youyi, Jixian
and Baoqing) and southwestern (Yilan, Huanan and Boli) coun-
ties (Fig. 5(b)). Compared to paddy rice, the spatial variation was
greater in dryland crops with 41.8% planted less than 4 years. One
part was scattered in the core area of paddy fields, the other part
was located in Jixi and Muling counties with relatively concen-
trated and spatially coherent patterns.

The current study calculated the trends of area change of two
crops at 1 km × 1 km grids within 7 years. For both crops, the
regions with an unchanged (Figs 6(a) and (b)) coincided with
the areas where cultivation was frequent (Figs 5(a) and (b)). For

Fig. 3. 30m annual crop data layers of the Sanjiang Plain in 2014–2020.
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paddy rice, the regions with significant increase and increase
trends of planted area accounted for 4.2% and 22.3%, respect-
ively; and significant decrease and decrease trends took up to
2.1% and 5.9%, respectively. As for dryland crops, the percen-
tages of significant increase, increase, significant decrease and
decrease were 2.5%, 7.0%, 5.7% and 3.5%, respectively. Note
that the regions where paddy cultivation was increasing have a

concurrent declining trend in dryland crops cultivation. These
regions were mainly located along the water-rich counties,
including Huachuan, west Fujin, north Youyi and the intersec-
tion of Yilan, Boli and Huanan. Meanwhile, the area with
paddy rice cultivation decreasing also corresponded to the area
with increasing tendency for dryland crops, with Fuyuan and
eastern Raohe as typical regions.

Fig. 4. Statistics of annual area variation for paddy rice and dryland crops in the Sanjiang Plain, 2014–2020: Area (a), Area ratio (b), Area variation (Δs) (c) and rate of
variation (Δs′) (d).

Fig. 5. Frequency statistic maps of paddy rice and dryland crops in the Sanjiang Plain, 2014–2020: frequency maps for paddy rice (a) and dryland crops (b); fre-
quency histograms of paddy rice (c) and dryland crops (d).
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In 7 years, the centres of gravity for both crops mainly aggre-
gated in the central counties of the Sanjiang Plain (Baoqing, Youyi
and Fujin); however, the migration direction and magnitude of
the centres of gravity varied from year to year (Fig. 7). Overall,

the centre of gravity for paddy rice has shifted 31.8 km to
the northeast between 2014 and 2020, while the centres of
gravity for dryland crops moved to the opposite by 8.91 km to
the southwest. There were significant differences in the migration

Fig. 6. Slopes of 7-year area percentage within 1 km × 1
km grids for paddy rice (a) and dryland crops (b) in the
Sanjiang Plain, 2014–2020.

Fig. 7. Trajectory of gravity centres for paddy rice and dryland crops in the Sanjiang Plain, 2014–2020.
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trajectories of the two crops. The general trajectory direction of
gravity centres of paddy rice was northeast→southwest→
northeast, with a migration speed of 4.54 km/a. In 2014–2015,
the migration distance of gravity centres for paddy rice was the
largest, around 44.0 km across Youyi to Fujin counties. In
2015–2016, the centre of gravity for paddy rice moved to
Baoqing, and then kept stable. The centres of gravity for dryland
crops, in general, moved in the southwest→northeast direction,
and the average migration speed was 1.27 km/a; Compared to
the migration distances in other years (<10 km), the migration
distance of dryland crops was greater in 2015–2016 and 2019–
2020, 21.0 km toward the southwest and 20.6 km toward the
northeast, respectively.

Discussion

Since reclamation in 1954, the Sanjiang Plain has established large
state-owned farms and has become an important base for food
production in China. Although many studies have artificially
interpreted satellite imagery to extract land cover information,
and then analysed the spatial pattern evolution of croplands in
the Sanjiang Plain, their study period was earlier (1954–2015);
In addition, the time interval for quantifying changes in cropland
was long. Influenced by a combination of natural and human fac-
tors, interannual spatial and temporal variations in cropping pat-
terns of cropland are higher than for non-crop covers (such as
built-ups and forests). High-quality, annually updated crop
cover dataset can help accurately reflect the spatial distribution
of crops, their cultivation structure and intra-annual dynamics.
Meanwhile, it can optimize and improve the parameter inputs
of modelling crop growth, irrigation, terrestrial ecosystem and
improve model prediction accuracies. The visual interpretation
method artificially digitizes cropland boundaries from false-
colour composite satellite images based on differences in hue,
shape, and texture between paddy fields and dryland crops.
This method is laborious and its cost of generating annual crop
data layers is high. Therefore, the frequency of updating the
land cover dataset based on this method is at intervals of 5
years or more. Recent studies have proposed a single phenology-
phase mapping algorithm for paddy rice in the Sanjiang Plain
based on the relationship between Enhanced Vegetation Index
(EVI) and Land Surface Water Index (LSWI) during the
transplanting period of rice seedlings. Compared to the visual
interpretation approach, these automatic computer recognition
algorithms are simpler with less labour and time costs, and higher
classification accuracy of paddy rice in the Sanjiang Plain. The
users’ and producers’ accuracies were about 90–97% and 91–
94%, respectively (Dong et al., 2015; Qin et al., 2015; Jin et al.,
2016). To investigate the recent spatial and temporal changes of
cropland in the Sanjiang Plain, the current study collected the crop-
land datasets of 2015, 2017 and 2019 and updated the cropland
boundaries in 2014, 2016 and 2020 from the cropland data of
2015, 2017 and 2019 using false-colour composite satellite imagery;
Then, the paddy fields were derived from cropland by setting the
thresholds for segmentation of MNDWI in the early cropping sea-
son, and built the annual crop layer datasets from 2014 to 2020,
whose accuracy (90–95%) is comparable to the accuracy of the pre-
vious cropland datasets. Therefore, the current study improves the
classification efficiency of croplands while ensuring the classifica-
tion accuracy of paddy rice and dryland crops.

The early land cover changes of the Sanjiang Plain and the
associated environmental effects have received widespread

attention, which mainly focused on 1954–2015 (Zhou et al.,
2009; Song et al., 2014; Yan and Zhang, 2019). Studies show
that since 1949, with the increase in food demand and population
growth, the Sanjiang Plain has experienced the reclamation of
natural vegetation (wetlands and grasslands) to cropland and
the large-scale conversion of dryland crops to paddy fields,
which is called the rapid agricultural development period
(Wang et al., 2011); Until the beginning of the 21st century, the
ecological environment was severely threatened by the rapid
expansion of cultivated land. Wetland protection policies such
as wetland restoration, have slowed the expansion of cropland
to some degree (Wang et al., 2006; Liu et al., 2015). A highly
intensive pattern of agricultural land use emerged in the 2005–
2015 period. For instance, paddy rice was large-scale mechanized
cultivated, while the landscape patterns of dryland crops were
fragmented. The cropland unsuitable for cultivation was restored
as wetland (grassland or forest), and wetlands showed a marked
decline in reclamation rates (Wang et al., 2019; Xiang et al.,
2020). To follow up on previous studies, it was found that despite
the cultivation structure and spatial pattern of croplands were
relatively stable during 2014–2020, the cultivated area of paddy
rice and dryland crops showed a slight overall declining trend
with positive and negative interannual fluctuations. Natural envir-
onmental and socioeconomic factors are the main drivers causing
the changes in cropping patterns in the Sanjiang Plain. Natural
factors such as climate, topography and hydrologic conditions
directly determine the overall spatial suitability of regional crop
planting, with little short-term variation; Unlike natural factors,
socioeconomic backgrounds, including market demand, eco-
nomic efficiency, agricultural macro-control and resource and
environmental protection policies, are highly volatile and have
rapid and significant effects on short-term changes in agricultural
cropping patterns (Chen et al., 2022), and are the main factors
contributing to the interannual variation in cropping patterns of
two croplands in the current study. Under market economy,
farmers’ production decisions are driven by market efficiency
(i.e., planting production costs and returns are related), which
in turn determine the agricultural planting structure. The pur-
chase price of rice in Heilongjiang Province was reduced from
RMB 3.0/kg in 2017 to RMB 2.6/kg in 2018, and this price
remained until 2021. Meanwhile, the cost of agricultural inputs
has been considerable, the cost of planting and harvesting rice
has increased by years, and the land rent for rice cultivation has
also increased. According to the law of diminishing land returns,
paddy rice cultivation with less economic benefits is reduced, and
some rice planting areas are replaced by dryland crops with better
economic returns. Strengthened by the policy guidance in recent
years, Heilongjiang Province optimized the regional agricultural
cultivation structure and proposed to appropriately reduce the
cultivation of paddy rice in the areas of the Sanjiang Plain with
inferior and inefficient soils and in the areas with excessive
groundwater exploitation, and advocated corn-soybean rotation,
and appropriately expanded soybean cultivation. The interannual
variation in the gravity centre of paddy rice and dryland crops in
the Sanjiang Plain is mainly driven by human-led land use behav-
iour. From 2014 to 2015, the gravity centre of paddy rice and dry-
land crops migrated to the northeast, mainly due to the expansion
of paddy rice in Fuyuan and Tongjiang in the north during this
period. During the period 2015–2018, the gravity centre of
paddy rice moved southwards, mainly because some counties in
the southwestern of the Sanjiang Plain (e.g. Huachuan) were
affected by the low efficiency of paddy rice and government
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regulation, and vigorously promoted the ‘dryland crops convert to
paddy rice’ in order to adjust the cropland cultivation pattern. In
addition, benefiting from the vigorous development of water
conservancy projects during this period, the increase in the culti-
vation of paddy fields in the southern Muling and Umken river
basins contributed to the southward migration of the gravity
centre of paddy field cultivation. Since 2018, in order to curb
groundwater over-exploitation in the Sanjiang Plain to ensure
the sustainable development of agriculture (Li et al., 2021),
Heilongjiang Province has focused on the pilot work of fallowing
paddy fields in the southern part of the Sanjiang Plain (Chong
et al., 2020), of which the fallowed paddy fields in Hulin and
Baoqing have contributed to the northward migration of the grav-
ity centre of paddy field cultivation. The gravity centre of dryland
crops showed a continuous southward migration from 2014 to
2019, which was also influenced by the policy of vigorously pro-
moting the ‘dryland crops convert to paddy rice’ in some counties
in the southwestern part of the Sanjiang Plain, as mentioned
above, In addition, the economic development of the southern
of Heilongjiang Province (Mudanjiang) during this period was
accompanied by the expansion of dryland fields in accordance
with the principle of ‘balance of occupation’, which also led to
a significant migration in the centre of gravity of dryland fields
southwards. In 2019–2020, the centre of gravity of the dryland
crops moved towards the northeast, due to the impact of the
national policy of subsidizing dryland crops and the ‘paddy rice
to dryland crops’ in the eastern of Sanjiang plain (Hulin city).

The current study relied on available land cover products and
satellite images during the early cropping season to create 3-per-
iod 30 m crop layers through a combination of visual interpret-
ation and threshold segmentation. Although the classification
strategy in the current study can separate paddy rice from dryland
crops quickly and with satisfactory classification accuracy, classi-
fication efficiency is limited by the effort required to update crop-
land boundaries; secondly, the seven crop datasets were derived
from three different classification strategies, leading to inconsist-
ent classification system errors across the datasets, reducing
their comparability and increasing uncertainties in interannual
spatiotemporal dynamic analysis of two croplands. In the future,
under the background to optimize regional crop planting pat-
terns, frequent crop rotations (e.g., rice to soybean and corn-
soybean rotation) will urgently require agricultural land datasets
covering more crop types. With the support of cloud computing
platform for remote sensing big data (e.g., GEE, PIE- Engine) and
very high-resolution satellite data, a standardized and operational
production and assessment systems for regional crop datasets
need future efforts.

Conclusions

The current study established the annual 30 m crop datasets for
2014–2020. It explained the spatial distribution characteristics of
crop cultivation of the Sanjiang Plain in recent years, and inves-
tigated spatio-temporal dynamic process of the regional crop
cultivation structure. The classification strategy proposed in the
study can effectively constructed high-quality spatial datasets for
croplands. Even though the total planted area of both crop
declined slightly from 2014 to 2020, it shows obvious interannual
variations in total area, cropping frequency, area change trend and
trajectories of centres of gravity along continuous years. The cur-
rent study theoretically highlight key aspects that have been
neglected in studies of monitoring land cover change monitoring,

that is, quantifying the annual process of land cover change is
more important than describing its initial and final status. In
terms of practical applications, these results also provide funda-
mental scientific insights for optimal regulation of regional agri-
cultural resources, sustainable use of cropland and ensuring
food security.
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