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ABSTRACT. A concept of mean-field models of galactic dynamos is ex—
plained in which a-effect and differential rotation act in an infinite
slab of electrically conducting fluid s by free space or by
conducting matter at rest. Some results for a”-dynamos are presented.
In the limiting case in which the a-coefficient does not depend on the
radius, axisymmetric and non-axisymmetric magnetic fields can be main-
tained with equal esse. For reasonable a-distributions a preference of
axisymmetric fields is suggested as long zs zn isotropic a-effect is
considered tat it may diszappezr with anisotropic a-effect. The effect
of differential rotation, which allows a® -dynamos,is briefly discussed.

1. INTRODUCTION

There are good reasons to assume that the large scale magnetic fields
observed in galaxies are due to dynamo processes. The construction of
appropriate dynamo models is, however, a difficult mathematical task.
One promising approach to the understanding of such processes is the
investigation of mean-field models in which the induction effects, in
particular a-effect and differential rotation, are confined to a slab
of infinite radial extent. If moreover the induction effects and the
magnetic fields generated are localized in a finite region around the
rotation axis, the infinite radial extent is no longer important, and
the models can indeed reflect features of dynamo processes in galaxies
or other flat objects. Here we explain this approach in some more detail
and present a few initial results.

2. THE MODELS AND THE MATHEMATICAL METHOD

Let us consider an infinitely extended slab of electrically conducting
fluid possessing internal motions with non-zero helicity. Relative to
cylindrical coordinates r, ¥ , z, the slab is defined by -d = z<d
where d is its half-thickness. There the mean magnetic flux density, B,
is assumed to obey the equations

AB+ curl(uxB+&) -9B/ot = 0, div B = 0. 1)
7
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The megnetic diffusivity » is aseumed to be constant. The velocity u
of the mean motion and the mean electromotive force & due to
fluctuations are defined by

ua=-wr (F, E,: —al(B + a(ﬁ‘B)ﬁ), (2)

which describe the differential rotation and the oa-effect. The angular
velocity @ and the a-effect coefficlent a, are supposed to depend on
rand z ut not on ¥, and to be syumetr%c or antisymmetric sbout the
equatorial plane z = 0, respectively. ’3 and 2 are unit vectors in ¢ and
z-direction. Some anisotropy of the a-effect, defined by the constant =,
is admitted.

The sourroundings of the slab, |z| > d, are supposed to be either
free espace or homogeneous conducting matter at rest. Accordingly, B in
this external region mast be zn irrotational solencidal field or obey
equations of type (1) with » replaced by =znother constant, and u and &
equal to zero. Parthermore it is reauired that B as well as the
tangential components of the mezn electric field are contimious across
the boundaries |z| = 4, and B vanishes as |z| —> .

The solutions B to our problem are B-modes of the form

B=Re (B exp(imp+A 1)) , (3)

or superpositions of them. ﬁ is a complex axisymmetric steady vector
field which is either antisymmetric or symmetric about the equatorial
plane, indicated by A or S in the following, m is a non-negative integer,
and )\ a complex constant, the real part of which is the growth rate of
the mode. As usual we speak of Am or Sm modes. Clearly m = 0 corresponds
to axisymmetric and m = 1 to bisymmetric field structures.

It is useful to represent B in the form

B = - curl(Z xVS) - 2 xVT
(-]
8.1 = J(6,(*8), t,(8) J(eg) xd  (4)
x exp(imp + A t),

where Jm is a Bessel function of the first kind, €= r/d and &= z/d.
In this way the equations governing B can be reduced to a set of two
second-order ordinary differential equations for s, and t  with respect
to & which are, however, at the same time integrg{l equalions with
respect 1o < . These eguations, together with the boundary conditions,

rose =n elgenvalue problem for A, which has to be solved mumerically.
In all the examples which follow, oy ie specified by

a; = a f(g) sin(ng) (5)

where a_ is a positive constant and f will be fixed later.The dimen-
sionles® measure Ca of the magnitude of the a-effect is defined by

Ca = aod/'7. (8)
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3. az—MODELS WITH o INDEPENDENT OF RADIUS

It is instructive to study first the simple case in which there is no
mean motion and a, does not depend on the radius. In this limit, s

and t. have a delta-like dependence on % . The integration in (4) Ban
be omitted and 3¢ fixed arbitrarily. The equations for s. and t_ no
longer contain integrals. The B-modes show a wave-like ridial vgriation;
¢ is the dimensionlese wave muber. Since B only decays slowly with
growing radiue the energy of each individual mode is infinite.

As czn easily be seen from the formmlation of the eigenvalue problem
for this limit, A does not depend on m. That is, in addition to an =xi-
symmetric B-mode, m = 0, there are always a bisymmetric mode, m = 1,
and modes with higher m which have the same excitation conditions and
growth rates.

A number of different models has been investigated numerically.
For the examples mentioned here (5) with f=1 has been used. Fig.1 shows
dependencies of the marginal Ca’ that is, those with Re(A) = 0, on .
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Fig. 1. M=arginal values of C versus K for several az—models.
(a) isotropic a-effect, i.e. z=0, surromdings free space.
(b) isotropic a-effect, i.e. z=0, surromdings conducting wmatter with
the same magnetic diffusivity as in the slab; the Am and Sm curves lie
close together =nd are not distinguishsble in the drawing.
(c) and (d) anisotropic a-effect, a=1 and a=-0.75, respectively,
surroundings free space. Solid lines correspond to non-oscillatory
modes, i.e. Im(/'\.)z(), broken lines to oscillatory modes, i.e. Im().)=0.
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The most easily excitable modes are those with the smallest marginal
values of Ca‘ In the majority of the models investigated so far Am—modes
play this “preferred part. Contrary to a case with discontinuous
a,-distribution investigated earlier by Ridler and Wiedemann (1990) the
minimum of the marginal C for a preferred mode generally occurs not
with x=0 but with & in th& order of unity.Then the characteristic radial
length scale of the field structure is comparable to the slab thickness.

Our results are of some interest in view of the "local approxi-
mation” used in investigating slab models, e.g., by Ruzmaikin et al.
(1980) and Zeldovich et al.(1983). As was shown by Ridler and Briuer
(1987) this approximation ignores important modes. Significantly,amongst
the "forgotten modes” are alsoc modes which are preferred in the above
sense. Moreover the "local approximation” 1is aquestionable in so far
as it startse from modes with = 0 although modes with 72 0 can be
more readily excitable.

4. az—MODELS WITH « DEPENDING ON RADIUS

Let us now proceed to the case in which there ie again no mean motion
but a, depends on the radius and vanishes at infinity. Then A is no
longe%‘ independent of m. Numerical investigations have been carréed out,
with models in which «, is specified by (6) and f = exp(—(g /)" ) where

o 18 & constant. Tab. 1 gives, for models with isotropic a-effect,
marginal values of C for modes with m = 0. In these models the modes
with m = 0 are presur%ably preferred to those withm #£Z 0. Form #£ 0 no
marginal values of C_ smaller than those for m = 0 have been found.
There are, however, reasons to assume that anisotropies of the a-effect
may lead to a preference of modes with m £ 0.

Table 1, Marginal values of Ca for models with isotropic
a-effect, i.e. a = 0, and varidus Qo> surroundings free space.
Note that g.= wmeans £ = 1.

X C
g A0 I“ S0
® 4,5 5,0
10 9,5 10,4
5 9,7 11,3

The case considered before in which a, is independent of the radius
corresponds to @,= w. The results for this case suggest that the field
structures for §,>> 1 show a radial variation with a characteristic
scale given by the thickness of the slab rather than the radial scale of
the a-distribution, that ie, a mamber of reversale along the radius is
10 be expected. In our preliminary field presentztions for G = 10 one
such reverszl ie indicated.

5. REMARKS CONCERNING aow - MODELS

2
Starting from a”-models and admitting differential rotation we arrive
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at ae -models. As for the zngular velocity @ we foous our attention on
ite dependence on r. With sxisymmetric B-modes it can be easily deduced
that the differentizl rotation in general favours AD-modes if the signs
of oy and dw/Or for z>0 differ, and SO0-modes if they coincide. It is
an open question under which conditions non-axisymmetric fields are
preferred, if at all. A sufficiently strong differential rotation always
favours axisymmetric fields.

There arg some reasons to believe that acw-models constructed by
modifying a”-models as considered above with @ >>1 can reflect typical
features of the obeerved galactic magnetic fielde. Start from sn o -model
of that kind =and consider, e.g., =zn sxisymmetric field. Suppose then,
thirking of the obeerved rotation profiles, an angular velocity which
varies only slightly in the neighbourhood of the rotation axis up to a
radivue of the order of the slab thickness znd decays after that with
growing radive. Then a modified fleld ie 1o be expected which has &
noticeable poloidal part nesr the zxie ot is predomineantly toroidal in
the outer regions. This would correspond to the obeervations of strong
poloidal fields in the galactic centers. There is, of course, also the
possibility of reversals along the radius in thie outer region, which
would then suggest zn explanztion of the reversals found in the Milky
Way gzlzxy.
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DEINZER: Of what kind are your excited dynamo modes: oscillating or
non-oscillating?

RADLER: In the simple a? models in which a does not depend on radius
both oscillatory and non-oscillatory modes have been found. Oscillatory
behaviour, however, occurs only with small radial wave numbers, that is,
with large radial scales of the fields. As a rule, the most easily excitable
model of a given symmetry type is non-oscillatory. For models in which a
depends on radius only axisymmetric modes have been investigated so far.
They proved to be non-oscillatory, too. I expect that the non-axisym-—
metric modes in such models are oscillatory, which simply means that the
fields rotate about the disk axis.

SHUKUROV: How sensitive are the properties of the "forgotten modes" to

the boundary conditions at the disk edge, and which particular boundary
conditions have you used?

https://doi.org/10.1017/50074180900189673 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900189673

112

RADLER: 1 discovered the "forgotten modes" in a simple model of an a?
dynamo in an infinite slab with an a coefficient independent of the
radius. The space outside the slab was supposed to be vacuum. In this
model the "local approximation" does not provide the most easily
excitable mode, which is a non-oscillatory A- (antisymmetric) mode, and
suggests that it is an oscillatory S- (symmetric) mode which plays the
preferred role (see Rddler and Briuer, 1987, Astr. Nachr. 308, 101). I
want to stress, however, that the problem of "forgotten modes" is not
restricted to this example. It is a general shortcoming of all approaches
to disk models starting from solutions of the dynamo equations in which
the radial derivatives are ignored, that is, from solutions with zero
radial dynamo number. In addition to the fact that such approaches
ignore important modes you should also bear in mind that the most easily
excitable modes not necessarily correspond to very small radial wave
numbers. In most of the examples I mentioned in my talk they are wave
numbers in the order of unity that play a preferred role.

SOKOLOFF: Galaxies are not exactly flat slabs, but they are thicker in
the outer part. Sometimes this effect is important. Is it possible or
difficult to introduce such details in your computer investigations?

RADLER: The mathematical method I used, which is in a sense analogous
to the Bullard-Gellman formalism in the case of spherical models, works
very well with slab models. Its application to models with other geometry
is possible but rather complicated. I would prefer another approach to
such models.

DEINZER: If it is possible to excite non-axisymmetric dynamo modes
before axisymmetric modes for a uniform background (without density
waves), then magnetic fields alone would be able to explain the spiral
structure of galaxies. Is this feasible?

RADLER: In mean-field dynamo models which are completely axisymmetric
with respect to the mean motion, the a parameter, etc., both axisymmetric
and non-axisymmetric mean magnetic fields are possible. In the case of
spherical models we know many examples in which non-axisymmetric
modes are even easier excitable than the axisymmetric ones, and for disk
models first examples of that kind have been given. Of course, if non-
axisymmetric magnetic fields grow in an axisymmetric body in the above
sense, they will disturb its symmetry. In particular, bisymmetric magnetic
field structures may lead to spiral structures in the density distribution.
This, however, does not mean that the spiral structure of the galaxies is
a consequence of their magnetic fields.
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