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1. Introduction. In [4], R. P. Dilworth introduced the concept of a Noether lattice
as an abstraction of the lattice of ideals of a Noetherian ring and he showed that many
important properties of Noetherian rings, such as the Noether decomposition theorems,
also hold for Noether lattices. It was later shown, in [1], that every Noether lattice is not
the lattice of ideals of any Noetherian ring, yet many studies have successfully been
undertaken to relate other concepts between Noetherian rings and Noether lattices as had
been begun by Dilworth. (See [3], [5], and [6].) In this paper we undertake such a study
and show that some results of M. Brodmann in [2] and L. Ratliff in [7] concerning prime
divisors of large powers of a fixed element of a commutative Noetherian ring may be
generalized and extended to the setting of a Noether lattice. It is shown (Theorem 2.8)
that if A is an element of a Noether lattice then all large powers of A have the same prime
divisors and (Corollary 3.8) included among this fixed set of primes are those primes that
are prime divisors of the integral closure of Ak for some k^l. We note that the ring
proof of this latter result does not generalize directly since it uses the notion of
transcendence degree which to our knowledge has no analogue in multiplicative lattices.

Throughout the remainder of this paper, unless otherwise stated, if will denote a
Noether lattice [4], and any prime element of if will be assumed to be distinct from /, the
greatest element of if. We note that a prime P is a prime divisor of A in X if and only if
there is a B in if such that A : B = P. Furthermore, if P is a prime divisor of A then B can
be taken to be principal. We will make use of this fact many times throughout this paper.

2. All large powers of an element have the same prime divisors. Principal nonzero
divisors will play an important role in our work in this paper and we begin with a result on
prime divisors of such elements.

LEMMA 2.1. Let P be a prime element of if. If P is a prime divisor of a principal
nonzero divisor of if, then P is a prime divisor of each principal nonzero divisor B such
that B^P.

Proof. Suppose A is a principal nonzero divisor and P is a prime divisor of A. Then
we may choose a C in if such that A : C = P. Consequently, CP^A. Now let B be a
principal nonzero divisor such that B^P. Then CB ^ CP ̂  A, and so CB = CB AA =
(CB:A)A. Therefore, since A and B are principal nonzero divisors, it follows that
B : (CB :A) = A:C = P, and this concludes the proof.

In many of the results that we are to show, we make use of E. W. Johnson's

A-transform of if, which is denoted by 9?(if, A). It consists of all formal sums E Bt of
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elements B, of <£ for which the relations A1 ̂  B, ̂  B,+1 ̂ ABt hold for all integers i. In [5],
it is shown that if 56 is a Noether lattice and A e 3? then 9l(Z£, A) is a Noether lattice,
where, for elements B,Ce 0HJ£, A), B^C if and only if B, ̂  C, for all i, and

B v C = 2 (B,, v C), B A C = £ (B, A C,), B-C = 2 ( V fl-C,).

Furthermore, if C ̂ Ar then C[r] is defined to be the least element D of &(<£, A) such that
C § £>„ and it is shown that C[r| = £ C4'"r. Other properties of 5?(̂ P, .4) proven in [5]

that we will need are: (1) BC[r] = £ B,^C, (2) B : Cw = £ [(B1+r: C) A A'], (3) if C is a

principal element of X such that C = Ar then C(rl is a principal element of 9?(if, A), and
(4) each B e 3/l(£, J4) is the join of finitely many principal elements of the form CM,
where C ̂  Ar is principal in J£

In the following lemma, information is given that relates prime and primary elements
of 91(3!, A) to prime and primary elements of !£.

LEMMA 2.2. Let Ae£. Then:
(1) if I, Qh H^e 9l($, A) such that £ Q, is E Prprimary then Qo is P0-primary in S£;
(2) if P is a prime element of X and if £ B, e *3l(!£, A) such that P is a prime divisor

of Bo then there exists a prime element £ Pt e 9l(2£, A) such that £ P, is a prime divisor of
£ B, and Po = P.

Proof. The proof of (1) is straightforward and we omit the details.
(2) is an immediate consequence of (1) and the fact that meets in @l(2£, A) are

defined componentwise. For it follows that a primary decomposition of an element £ B, in
@t(Z£, A) produces a primary decomposition of Bo in i?.

We now present our first main result. It deals with the cardinality of the set of primes
that are prime divisors of some power of a fixed element of 5£.

LEMMA 2.3. Let A e X, A^I. Then the following two sets are equal:

Sl = {PeJ£\Pisa prime divisor of A" for some positive integer n)

and

S2 = IP e £ | P = fe Pi) for some prime divisor £ Pt of Il~1] in 91(2, A)}.

Consequently, S1 has finite cardinality.

Proof. We observe that for each n ^ 1, I[~"] is a principal nonzero divisor of
9L{2, A).

We first consider set 5^ Let n = 1 and P e if such that P is a prime divisor of A".
Then in <3l(%, A), since the Oth component of /(~"] is A", there exists an element £ Pt

which is a prime divisor of I[~n] and has Po = P by Lemma 2.2. Consequently
£/>.S/l-«I = (/l-1])") and this implies E ^ / 1 " 1 1 since £ P, is prime. Hence £ Px, is a
prime divisor of 71"11 by Lemma 2.1, and so Sx c 5^.
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Now let E ^ 6 ^ ( i ? , A) such that £ P, is a prime divisor of /l~1]. Then E P, =
/l- i] . B[r] f o r s o m e e ie ment Blr] of 0t{i£, A). Consequently P0 = Ar+1 : B, and so Po is a
prime divisor of Ar+1. We observe that if r + 1^1 then P0 = I, which would be a
contradiction. Hence S^cS], a nd this completes the proof.

The next result deals with prime divisors of zero. Then, in the corollary that follows,
we show that, from this result, information can be derived relating prime divisors of
consecutive powers of an element.

THEOREM 2.4. Let B,C, Pe£ such that C^B and P is prime. If there exists a
principal element X^B such that P = 0 : X, then either there exists a Ye.Z£, 0<Y^C,
such that P = 0 : Y, or there exists an S eJ£ such that P = C :S.

Proof. Let us suppose that P = 0 : X, where X is principal and X^B. If X tk C or if
C = 0 then the result clearly holds.

Suppose then that X$C, so C < B, and that C # 0.
We will now construct a chain of elements At of j£ such that A(: Ai+1 is prime. Let

Ao = 0 and then define inductively A( such that At_x: At is a maximal element of the set
{>!,_!: W | /4,_! < W ^ C}. We can thus obtain a finite chain of elements A( such that
Ao = 0 and An = C. This chain can be extended to include B. Using the same construction
process as before, we can obtain a finite chain of elements An+it lS i /^ /n , where
-<4n+i_i :An+i is a maximal element of the set {An+i_x:W \An+i_x<W^B) and
An+m = B.

We now show that P = Aj-. Aj+X for some;. Let / be chosen such that X AAJ = 0 and
X A Aj+X # 0. Now by our choice of the At and the fact that

we must have that either

Aj : Aj+1 = Aj : [Aj+1 A (X v A;)] or Aj+1 A {X v ^y) = Af.

But 4̂̂ ; = .<4/+1 A (X v Af) would imply ^ A / 4 ; + 1 = 0, which would be a contradiction.
Hence we may conclude that

To show that A,: Aj+X ^ P, let £ / i A ; : i4y+1 = [A;: (Ay+1 A X)]. Then l/(i4y+1 A X) g Ay,
and so it follows that

U(Aj+l AX)= U(Aj+l : X)X ^ A, A X = 0.
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Consequently either U^POT (A/+1 : X) ^ P. But Aj+X : X^ P would imply

X A Aj+l = X(Aj+l :X)^PX = 0,

which would be a contradiction. Therefore U^P and it follows that Af: Aj+l = P.
We now consider the cases of whether j ^ n — 1 or j^n.
Suppose j^n-1. Then/ + 1 ̂ n and so Aj+1^An = C. Consequently we have that

P = A!: Ai+1 = Aj: (A,+l A * ) ^ 0 : (A;+1 A X) ^ 0 : X = P.

Letting Y = (Aj+1 A A'), we have that P = 0 : Y, where 0 < 7 ^ C.
Suppose /i=rt. Then A^An = C and it follows, the proof being similar to the case

above, that P = C : (Al+1 A X). Letting S=AJ+1AX, we have that P = C:S. This
completes the proof.

COROLLARY 2.5. Let n be a positive integer and A, P eZ£ such that P is prime. If P is a
prime divisor of An+l, then either P is a prime divisor of A" or there exists a Y&i£,
An+l +l

Proof. This follows by applying Theorem 2.4 to the elements C = A" and B = 1 in
the Noether lattice %/A"+1.

We now present a computational result concerning powers of a fixed element. We
will then be ready to relate prime divisors of large powers of a fixed element.

LEMMA 2.6. For each AeZ£ there exists a positive integer n such that

(A"+i+2:A)AA"+i = An+i+1

for all i S i.

Proof. LetAeg and consider the element /l~1]: A[n of 9l{$, A). By Theorem 2.8
of [5], we may choose a positive integer n such that

(/[-1] :A[1])n+l: = {I[~1] -.A^A1 for all i^O. (1)

Hence, for all i ̂  0, from (1) we obtain that

(An+i+2 : A) A An+i = [{An+2: A) A An]A'.

Consequently, for each i ̂  1, it follows that

An+l+i^(An+2+i:A)AAn+i

= [{An+2: A) A A"]A'

LEMMA 2.7. Let Ae!£. For each n ^ 1, define

f}(n) = {Pe<£\P is prime and there exists a Y, A" < Y ^ An~\ such that P = A" : Y}.

Then there exists a positive integer m such that j3(m) = j3(m + i) for all i ̂  0.
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Proof. Let r be a positive integer such that {Ar+i+2 : A) A Ar+i = Ar+i+x for all i S 1
(Lemma 2.6). Let y ̂  1 and P e /3(r + ; + 1). Then there exists a Y, Ar+i+l <
such that P = /T + / + 1 : Y. Hence

= [(Ar+i+2 : A) A A r + ' ] : Y

= (Ar+i+2 :A):Y

= Ar+i+2:AY

and so /3(r+;'+ l ) c jS(r+y+ 2). Therefore, since U/3(n) is finite (Lemma 2.3), there
exists a positive integer m such that j3(m) = /3(m + i) for all i^O, and this completes
the proof.

THEOREM 2.8. Let Ae!£. For each n^\, let a{n) denote the set of prime divisors of
A". Then there exists a positive integer r such that a(r) = a(r + i) for all i ̂  0.

Proof. Let m be an integer such that /3(m) = /3(m + i) for all / ̂  1, where /? is the
function denned in Lemma 2.7. Now let P be a prime divisor of Am+1. Then, by Corollary
2.5, either P e a(m) or P e fi(m + 1). Hence

a(m + 1) c a(m) U /?(m + 1)

= a{m) U /3(/n)

= a(m).

Therefore, since U <*(«) is finite (Lemma 2.3), there exists an r such that a(r) = a(r + i)
for all i § 0. This completes the proof.

3. A set of primes that are prime divisors of all large powers of a fixed element. In
this section we will see that included in the collection of primes that are prime divisors of
all large powers of a fixed element of i£ are the prime divisors of the integral closure of
that element. Basic properties and results about the integral closure operation may be
found in [6] and include the following. If A e ££ then the integral closure of A, denoted
Aa, is the join of all elements B in if for which there exists a positive integer n such that
(A v B)"+l = A(A v B)". It is shown that, in the lattice of ideals of a Noetherian ring, this
concept coincides with the usual ring notion of the integral closure of an ideal. Also, if A,
BeSe then AB^AaBa ^ {AB)a, and if C^A" then the integral closure of the element
C[n| of 9L(2, A) is given by (Cln|)fl = E [(CM1""),, A A'].

i

Our first result in this section is a type of cancellation law that involves the integral
closure operation and this is followed with a result involving a lattice transform of ££
whose proof depends on this cancellation law.

LEMMA 3.1. Let A, B, C ei£. If there exists a principal element Cj ^ Qa with 0 : Cx = 0
then (AC")a ^ (BC)a for some n § 1 implies Aa ^ Ba.

Proof. Suppose C\ is a principal nonzero divisor and Cj ̂  Ca. Then (Cj)m is a
principal nonzero divisor for each m ^ 1. Also, Cx g Qtt implies (C^)m § (Ca)

m ^ (Cm)o for
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each m ^ 1. Hence if (AC")a ^ (BC")a then (A{C")a)a ^ (B(Cn)a)a> and consequently it
follows that Aa ^ Ba by Theorem 1 of [3].

LEMMA 3.2. Let AeZ£ such that there exists a principal nonzero divisor B^Aa. Let
T. Pt be a proper element of &(££, A) such that E P,r = (/'"*')<,: X1'1 for some positive integer
k and element X[t]. Then:

(1) PX<A;
(2) */ E fl is also prime then E P.. = E fl-: (A111)' /or a// y S l.

Proof. Using Theorem 4 of [6], we have that

2 P, = (/•-*!)„:*">

= £ [(i4'+*+')a A i4/+l] : A- A A'. (2)

Suppose P\ = A. Then, using (2) to evaluate the first component of E Pit we would
have that [(A1+k+')a A A1+l]: X A A = A. It would follow that AX^(A1+k+')a. But this
implies (AX)a^(A1+k+')a, and consequently it would follow that X^(Ak+')a by Lemma
3.1, which would be a contradiction to our choice of E Pi- Hence PX<A.

For the proof of (2), let us assume that E Pi is prime. Since Px <A, it follows that
0 4 m ) ^ E ^ . Consequently (A[1]y$T,Pi for all j since E ^ is prime. Therefore
E P,; = E Pi••• (All])J for all / ^ l since, for any C, D e if, C : D = C if and only if, for every
prime divisor R of C, D^R. This completes the proof.

In the next two results, first in the local and then in the nonlocal case, we deal with
primes of the integral closure of large powers of an element. From these we will derive
information about primes of large powers of an element.

LEMMA 3.3. Let £ be a local Noether lattice with maximal element P and Ae!£ such
that there exists a principal nonzero divisor B with B ^ Aa. If P is a prime divisor of (A")a

for some positive integer n, then P is a prime divisor of (Am)a for all m^n.

Proof. Let n ̂  1 and suppose P is a prime divisor of (A")a. Then we may choose an
X e X such that (A")a: X = P.

Now let i ^ l . We note that

[X(A')a][(A")a : X] ^ (A%(A")a ^ (A"+i)a.

Consequently,

(A"+i)a:[X(Ai)a)*(A")a:X = P. (3)

Therefore, since if is local, it follows from (3) that either {An+i)a: [AT(i4'')a] = P or
X{A% ^ (An+i)a. But X(A')a ^ (An+i)a implies (XA')a ^ (A"+% and it would follow that
X^(An)a by Lemma 3.1, which would be a contradiction. Hence P = (An+i)a: [X(A')a]
for each i = l, and this concludes the proof.
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THEOREM 3.4. Let AeZ£ such that there exists a principal nonzero divisor B^Aa. If
P is a prime divisor of (A")afor some positive integer n, then there exists a positive integer
m such that P is a prime divisor of (Am+')a for all i ̂  0.

Proof. Let us suppose P is a prime divisor of (A")a. We will assume P is not the
unique maximal prime of =2* since the result would then follow from Lemma 3.3.

Let us now consider the element (/[~"])o of 38(i?, A). By Theorem 4 of [6],
(/l~n])a = E \{Ai+n)a A A']. Hence (An)a is the Oth component of (/(""])a. Consequently we
may choose an element £ Pt in *3l(!£, A) such that £ Piis a prime divisor of (/[~n])a and
P0 = P by Lemma 2.2. It follows that £ />, = (/[-"!)fl : H[r] for some element Hlr] of
§t{5£, A). Thus, since P is a proper element of 2£, it follows from Lemma 3.2 that
£ j> = £ j>. : (yiWy for all / ^ 1. This may be rewritten as

= (I[-n])a :

2 ' B + r + 0 - A ^ / + r + / ] : HA') A ^'. (4)

Therefore, using (4) and the fact that the Oth component of £ Pi is P, we have that, for
each ; 1 1 , p = ^An+r+j^ A ^ ,+y j . H A J

= (i4"+r+0- : HA'.
This concludes the proof.

In our last four results, we show that under certain conditions prime divisors of the
integral closure of an element are consequently prime divisors of large powers of that
element.

LEMMA 3.5. Let X be a local Noether lattice with maximal element P. If P is a prime
divisor of Aa, where A is a principal nonzero divisor of 31, then there exists a C e3? and a
positive integer k such that Ak+m : CAm = P for each m ^ 0.

Proof. Let us assume the hypothesis of the lemma. Then we may choose an X e 31
such that Aa: X = P. This implies XP^Aa and so, see [6, Theorem 2 and Theorem 3],
there exists a positive integer ; such that (XP)'+l ^ A1 for all i § 0. It follows that
P'+'^A' :X'+l, and this implies P ̂  y/A' : X'+i. Hence, since 31 is local, for each i we
must have that either

= P or

Let us suppose \fAl: X'+i = I for each i ̂  0. It would follow that X'+i ^ A' for each i.
Consequently we would have that XtkAa, which would be a contradiction to our choice
of P.
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Thus there exists an integer k such that P = V^* : X'+k. It follows that P is a prime
divisor of Ak and so there exists a C e if such that Ak : C = P. Therefore, for each m ^ 0,
since /4m is a principal nonzero divisor, we have that

Ak+m : (CAm) = (AkAm): (G4m)

= [(AkAm) :Am] : C

= /I*: C = P.

This completes the proof.

COROLLARY 3.6. Let A, P e J£ such that A is a principal nonzero divisor. If P is a
prime divisor of Aa then there exists a positive integer k such that P is a prime divisor of
Ak+" for each n^O.

Proof. Since P is a prime divisor of an element B of if if and only if [P] is a prime
divisor of [B] in ifP) this result follows by applying Lemma 3.5 to [P] and the integral
closure of the principal nonzero divisor [/I] in ££P, which equals [Aa].

THEOREM 3.7. Let A, P e if such that there exists a principal nonzero divisor B^Aa.
If P is a prime divisor of (Ak)a for some positive integer k then there exists a C e if and a
positive integer e such that Ae+m : CAm = P for all m g 0.

Proof. Let us suppose that P is a prime divisor of (Ak)a. Then, since (Ak)a is the Oth
component of (Z1"*1),, of 9i{5£, A), we may choose an element E Pi in 9l(k, A) such that
E P, is a prime divisor of (/'"*')„ and Po = P. Consequently since P is a proper element of
if, it follows from Lemma 3.2 that for each m ^ l w e have

2lPi = 2tPi:(A
mymK (5)

Also, since E P( is a prime divisor of (/'"*')„ and /'"*' is a principal nonzero divisor of
3?(if, A), it follows from Corollary 3.6 that there exists a positive integer s such that E Pi
is a prime divisor of (Il~k])s. Consequently E P,< = (Il~k])s: C[r] for some element C[r] in
9l(J£, A), and substituting this for E Pi into (5) we obtain that, for each m = l,

k])s: Clr]): (Am)[

= 2 (Ai+ks+r+m : CAm) A A'. (6)

Therefore, using (6) to determine the Oth component of E Pi, which is already known
to be P, we obtain that P = Aks+r+m : CAm for all m ^ 1, and this concludes the proof.

COROLLARY 3.8. Let A, P e if such that there exists a principal nonzero divisor
B^Aa. If P is a prime divisor of (Ak)a for some positive integer k then:

(1) if D e if with Da - Aa then P is a prime divisor of Dn for all large n;
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(2) there exists a positive integer t such that if D &££ with Da = (Ar)a for some r^t
then P is a prime divisor of D" for all large n.

Proof. Let us suppose that P is a prime divisor of (Ak)a.
For the proof of (1), let D e % such that Da = Aa. Then (Dm)a = (Am)a for all m ^ 1.

Hence P is a prime divisor of {Dk)a, and consequently P is a prime divisor of Dn for all
large n by Theorem 3.7.

For the proof of (2), let t be a positive integer such that P is a prime divisor of {A'+')a

for all i ^ 0 (Theorem 3.4). Now suppose D e £ such that Da = (Ar)a for some r ^ t. Then
P is a prime divisor of Da and so P is a prime divisor of D" for all large n by Theorem 3.7.
This completes the proof.
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