THE MEANING OF MONO AND EPI
IN SOME FAMILIAR CATEGORIES

W. Burgess

(received May 1, 1965)

1. Introduction. This expository note was prompted by
some questions asked by Professor P. Hilton during his lectures
""Catégories non-abéliennes'" at the University of Montréal,

July 1964.

The descriptions of set functions as one to one and as onto
can be characterized in terms of set function composition. A
set function is one to one iff it has the left cancellation property,
that is, f-g=f.-h implies g=h. A set function is onto iff
it has the right cancellation property, thatis, g-f=h:.f{
implies g =h. The cancellation properties can be expressed
in any category so we make the

DEFINITION 1. In a category ; a map f is mono iff
it has the left cancellation property; and, f is called epi iff
it has the right cancellation property.

The purpose of this note is to characterize mono and epi
in some specific categories. In what follows, a full subcategory
B of £ isa subcategory of £ such that Homﬂ(A,B) = Hom;(A,B)

for all A,B€B. A concrete category is one whose objects are
sets and whose maps are a subclass of the class of set functions.

Conversations with Professors W. Kuyk, J. Lambek and
B. Rattray have been most helpful.

2. Mono. A sufficient condition for maps in concrete
categories to be mono is trivial.
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PROPOSITION 2. In every concrete category one to one
implies mono.

Proof. let f:A-B be one to one and g,h:C—+A be such
that £- g=f.h. If g(x)# h(x) for some xe¢ C then
(f- g)(x) =£(g(x)) # f(h(x)) = (f- h)(x) by definition of one to one.
Q.E.D.

THEOREM 3. In the following concrete categories mono
is equivalent to one to one:

(1) any full subcategory of the category of topological
spaces (maps are continuous functions);

(2) the category of based topological spaces (an object is
a topological space with distinguished point and maps are
continuous functions which map base point onto base point),
and any full subcategory which contains a two point space with
the discrete topology;

(3) any full subcategory of the category of groups (with
group homomorphisms as maps) which contains with any group
all its normal subgroups;

(4) ény full subcategory of the category of rings (with ring
homomorphisms as maps) which contains with any ring all its
ideals;

(5) the category of infinite groups as a full subcategory
of the category of groups.

Proof. In each case we show that if a map is not one to

one it is not mono. ZFor (1), assume f:S1->S‘2 is such that

f(s) =f(s') and s# s'. Let T be any topological space from
the category and let g, h:T—»S1 be the constant maps onto s

and s' respectively.

2y U £:A(X, xo) - (Y,yo) and f(x)=f(x'), x# x' Ilet
(T,to) = {to,t1} with the discrete topology and then define
. b - =x'.
g,h.(T,to) (X, xo) by g(ti) %, h(ti) X
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(3) 1If f:G1=->Cv2 is not one to one, {1} # ker =K is an
object of the category. Let g,h:K-»G1 be the inclusion map
and the trivial map of K into G1 respectively. Similarly
for (4).

(5) This part is included because the technique used here
can be readily generalized. Let f:G1 --~G2 be not one to one and

let C denote the infinite cyclic group on the generator c, then
define g,h:C—G, by g(c)=k, 1 # ke ker f, and h(c) =1.

Q.E.D.

1

We now proceed with the generalization mentioned above.
An algebraic system is called equationally defined if its structure
is defined by a family of finite operations and a family of
identities involving these operations. For example, a group
is a set with two operations (multiplication and inverse) which
satisfy certain identities. Consider a particular equationally
defined class of algebraic systems called o -systems, which

are defined by the operations fi’ f2, ... (not necessarily

countable) such that fﬁ is an n(B)-ary operation, n(p) f{finite,

and some set of identities involving these operations.

Given a set of symbols {xi, Xy .} afree ¢ -system

may be constructed with these symbols as generators (see, for
example [1]). Intuitively speaking, the process is to consider
all expressions built from the generators and the operations
and then make only the identifications suggested by the given
set of identities. The resulting set of equivalence classes can
then be considered as a ¢ -system.

THEOREM 4. Let { be the category of all o -systems
with ¢ -homomorphisms as maps (set functions which preserve
all the operations) then mono is equivalent to one to one.

Proof. Let A,B be o-systems and f:A-B a
o -homomorphism then if f(a) =f(a') and a # a' we can proceed
as follows. Denote by F the free o-system on one generator x.
Define g,h:F—A by g(x) =a, h(x)=a'. Since g and h are
defined on the generator of F they can be extended, uniquely,
to ¢ ~-homomorphisms. Q. E.D.
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Examples of equationally defined systems are groups, rings and
R-modules, R a fixed ring. In the case of R-modules, each
element from R -is considered as a unary operation in the
module. Examples of algebraic systems which are not
equationally defined are fields and torsion-free Abelian groups.

The class of small categories (categories whose class of
objects is a set) is known to form a category with functors as
maps.

THEOREM 5. In the category of small categories, a map
(functor) is mono iff it is one to one as a function on objects and
on maps.

Proof. The sufficiency of the condition is clear. In what
follows A, &4, L:a, ... are categories; A,B,C, ... objects
in the categories; a,b,c, ... maps of the categories; and,
the letters f,g, and h are reserved for functors. ILet
£:4 -4 be such that A # A' but f(A) =f(A') then let % be
any small category and g, h: &—~A4 be defined by g(C) =A for
each C in ¥ and g(c) =1A’ the identity map on A, for each
¢ in Z. Similarly, h(C)=A' and h(c)= 1,,- Thus,
f-g=f-h and g# h implying that f is not mono.

If f is assumed to be mono and if f(a) =f(a') then a
and a' have the same range and domain since we have shown
that f is one to one on the objects. Iet a,a':A--A' and let
7Z be a category with two objects C and C' and only one
non-identity map c:C—C'. Define g,h: £~A4 by g(C) =h(C) =4,
g(C'} =h(C')=A"', glc)=a and h(c) =a'. It is clear that
g and h are functors and this contradicts the assumption
that f is mono unless a =a'. Q.E.D.

Let A be an Abelian category ([2]) and & a small
category, then the class of functors from /4 to is a category
with natural transformations as maps. Moreover, this category,

Vit
A , is a category with kernels. If ¢:F-G is a map in /{ﬁ
then o (B):F(B)~G(B) is 2 map in A for each B in /4. Let
K(B) be the domain of k(B) =ker ¢(B). Then for any

1:»:B1—>B2 in &4 we have the diagram
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k(B1) O'(Bi) and the square on
the right commutes.
We wish to complete
! the diagram at
K(b) F(b) G(b) K(b). Since
] cr(BZ)-F(b)-k(Bi)zo,

K(Bi) -> F(Bi) - G(B1)

I
} k(BZ) 0-(BZ) there is unique
KB, - FB,) - G(BZ)' completion by the
definition of a

kernel in

By the uniqueness, K is a functor, and since the diagram
commutes, k is a natural transformation. It is easy to see
that k is a kernel of o.

Now, in a category with kernels a map has zero kernel
if it is mono since if f is mono, f-ker f=f-0=0 and so
ker £ =0. If the category is Abelian, the converse is true
since ker £ =0 implies that if f- g=f-h then f. (g-h)=0
so h-g=0 and h=g.

PROPOSITION 6. If A is Abelian and A is small then

amap o in/46is mono iff ¢ (B) is mono for each B in /4 .

Proof. Clearly o(B) mono for each B in & implie;s
¢ is mono. Conversely, if ¢ 1is mono then ker ¢ =0 so
ker o(B) =0 for each B. Q.E.D.

The following artificial example shows that there exist
concrete categories where the notions of mono and one to one
do not coincide. Let f be the category with objects

S1 ={x1,x2,x3} and S2 ={y1,y2} and maps cri:si—»s1 where
o-i(xi) =x1, t:rzzsi—-S2 where 0'2(x1) =o'2(x2) =y, and

=y_, . . i i aps. d
a'z(x3) v, 0'2 c'1 and the two identity maps. Both ch an
0-2 . u'1 are mono but not one to one.

3. Epi. The problem of interpreting epi in concrete
categories? somewhat more difficult. In fact there are
familiar categories, such as the category of rings where the
answer is apparently not known. Trivially, we have
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PROPOSITION 7. In a concrete category a map is epi if
it is onto.

To describe epi in categories of topological spaces the
following construction is useful. Let U be a topological space
and AC U a subset. Form the disjoint union U = U1 U UZ

where Ui is a copy of U. Throughout, the subscript 1 indi-

cates a point or set from the first copy of U and the subscript

2 the same from the second copy. Thus, a, and a, or S1

and SZ are copies of the same point a€ U or set SCU.

Define an equivalence relation on U* by a, =2, for every
a€ A and call the space of equivalence classes with the quotient
topology UA.

The following two facts about this construction are easy
to see. If U is Hausdorff and A 1is closed then UA is

Hausdorff; and, if U is T1 and A 1is open then UA is T1.
In the sequel the maps of a category will not be specified
if they are the obvious ones.

PROPOSITION 8. Let {£ be a full subcategory of the
category of Hausdorff spaces such that if U is in Y and
A C U is closed then U, isin §£ . Then, amapin £ is

epi iff its image is dense in its range.

Proof. Assume {:S-U is such that f(S) is dense in U
and let g,h:U-U' be distinct maps such that g-f=h - f; but
this contradicts the well known fact that a map with range
a Hausdorff space is determined by its action on any dense
subset.

If f(S) is not dense in U, A =f£(S)# U and, so, UA is

= XZ’

where X, is the equivalence class of UA with representative
1

not A. Let g h:U-U,  be given by g(x):?gl and h{x)

x.. The two maps are distinct but coincide on A. Q. E.D.
1
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Proposition 8 does not hold in all full subcategories of
the category of Hausdorff spaces, as the following example
shows. Consider the space R#* which is the real line with the
topology generated by the subbase consisting of the usual open
sets plus the set of rationals. The space R* is Hausdorff;
the irrationals I are closed and, so, not dense; the rationals
Q are open and dense. Let [ be the full subcategory with
objects R* and I, as a subspace. Note that I has the usual
topology. We wish to show that the inclusion map of I into R*
is epi, or that any two maps from R* to either R* or I which
coincide on I must be equal. Assume g,h: R*¥=R* (or I)
coincide on I. If g(r) # h(r), re€ Q, there is a neighbourhood
N =(a,b)N Q of r suchthat g(N)N h(N) =9, and since closures
are smaller in R%* than in the usual topology we may assume

g(N)N h{N)=9. Nowlet iel, a<i<b and {r } a sequence
1

from N converging to i. A contradiction is apparent.

This is a convenient place to note that the notion of onto
in the category of Hausdorff spaces can be expressed in
categorical terms. The referee has pointed out that this was
also noted in [5].

DEFINITION 9. ([3]) p-32) An epi map f is called pure
iff £f=g-h, g mono, implies that h is epi.

THEOREM 10. In the category of Hausdorff spaces, a
map is onto iff it is pure epi.

Proof. Let f:A-B, g:C-B and h:A-C. If { is onto
and f=g-h, g mono, then g is one to one. Hence, g-h
onto implies h onto and so epi.

If £ is not onto, let C =B as sets, and let C have the
topology generated by the open sets of B and the sets {x} for
all x¢ f(A). Let g be the set identity map which is mono and
continuous since C has a finer topology than B. Let h(a) be
the point f(a) considered in C. The function h is continuous
since any open set G of C can be expressed in the form

G1 UC:}2 where G1 is open in B and GZ. N f(A) =0.

- -1 -1
Then h i(G)=h (Gi) =1 (Gi) which is open in A. The
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map h is not epi since its image is a proper closed subset of
C and is, therefore, not dense. Q.E.D.

PROPOSITION 141. In the category (1) of all topological
spaces and (2) the category of all T1-spaces, epi means onto.

Proof. If f:S-U is not onto, let U' ={a,b} with the
trivial topology. Let g,h:U-U' be given by g(t) =a for all
te U and h(t)=a if te f(S) and h(t) =b if t¢ £(S).

(2) If £:S—-U is not onto there is a point x£ £(S). Let A
be the complement of {x}, then A is open. Form UA and

let g,h:U=U, be defined by g(t) ="t'1 and h(t) =?2. Q. E. D.

THEOREM 12. In the category (1) of Abelian groups and
(2) of finite groups, epi means onto.

Proof. (1) Let f:Gi»G be not onto, then f(G1) is a

2

proper subgroup of G Let g,h:GZ»GZ/f(Gi) be the canonical

5"
and zero maps respectively.

(2) Let f:A-B be not onto. Let H =£f(A) and we have

= ... s e ey €
B x1HU XZHU U xm-iHUH for some x, X 4 B

where m =[B:H]. Left multiplication of these cosets by
elements of B gives a permutation of the cosets:

x H
i . . ;
bx,H>' Corresponding to XiH ‘the number i and to H
1
the number m, we have a representation of B by a group of
permutations
ap) = (12
i i
1 2 m

where bx H = xi H. Also, if we correspond to x.H the number
. 1
J
i and to H the number m+1, we get another, equivalent,
representation
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2 m-1 "m+1

1 2 ... m-1 m#1
F"“”‘(jij S >

The two groups of permutations may be embedded in S 1
m

(permutation group on m+1 symbols) as follows:

1 2 ... m mt+1
b—-a(b)-—<_ . . > = g(b)

i i ... 1 m+1

1 2 m

1 2 ... m +1
b»ﬁ(b)—»<. ) o >=h<b>.

Ty da ™ I

Since bH=H iff be H, be H implies g(b) =h(b). Thus
g-f=h-f but g# h. Q.E.D. :

THEOREM 13. In the categories (1) of all groups and (2)
of all torsion free groups epi means onto.

Proof. (1) Assume {:H—G is not onto and form the free
product of G with itself with the subgroup f(H) amalgamated
([6]), K =G* Define g,h:G-K by g mapping G onto

f(H)G'
the first copy of G in K and h mapping G onto the second:
copy of G in K. By construction of the amalgamated product,
these maps coincide on £f(H).

(2) The same proof holds in this case since the amalgamated
free product of torsion-free groups is torsion-free. Q. E.D.

It is not always the case, in categories of algebraic
systems, that epi means onto. We give two examples.

PROPOSITION 14. In the category of torsion-free Abelian
groups f:Gi—»G2 is epi iff Gz/f(G1) is a torsion group.

Proof. Let G =G2/f(G1) and assume G' is not torsion,

then if T is the torsion subgroup of G', G'/T is a non-trivial

torsion-free group. Let k:G2->G‘ be the canonical homomorphism

and kizG' -+G' /T the canonical homomorphism, kZ:G' -G'/T
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the zero homomorphism. Let g = k1 -k, h= k2 - k and then

g#h and g-f=h-f=0.

If G' istorsion, assume g,h:GZ»C‘.3 are such that

g-f=h.f and g# h, then for some ace¢ GZ, at f(G1),
g(a) # h(a). But G' is torsion so for some n, nac€ f(Gi)
and g(na) =h(na) =ng(a) =nh(a) and since G3 is torsion-free,

g(a) =h(a) — a contradiction. Q.E.D.

Consider, now, the category of fields. This category is
unusual since all maps are mono. If f:Ki*KZ, this means
that K1 may be considered as a subfield of KZ. The statement
that g- f=h -f is equivalent to saying that g and h are iso-
morphisms of K2 over K1 (that is, they leave K1 pointwise

invariant). Hence, restating the definition of epi in terms of
fields we have

PROPOSITION 15. The embedding of K1 into K2 is

epi iff K_ has no non-trivial isomorphisms over Ki'

2

Proof. If f is not epi clearly thete are non-trivial
isomorphisms. If g and h are non-trivial isomorphisms
over Ki’ g(KZ) and h(KZ) are extensions of K1 and letting

L be an extension of K1 containing both g(KZ) and h(KZ)
we may consider g and h as having the same range and so
g-f=h-£f. Q. E.D.
As an example, consider Z/(p), p prime, and let
-[Z/(p)](t) where t is transcendental over Z/(p). The
embeddmg of K1 into Ki('\/_t) is epi since '\/—t has no conjugates

over K1 and so Ki('g—t) admits no non-trivial isomorphisms.

In conclusion, using the notation of Proposition 6, we
have its dual.
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PROPOSITION 16. If A is Abelian and @ is small,

then a map o in )(d is epi iff #(B) is epi for each B in {3.
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