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Path curvature enhances the flow-induced
vibrations of a cylinder without structural
restoring force
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A cylinder immersed in a current and free to translate along a circular arc is considered
to investigate the impact of path curvature on the flow-induced vibrations (FIV) occurring
without structural restoring force. Path curvature magnitude («, inverse of path radius
non-dimensionalized by the body diameter D) is varied from O (transverse rectilinear path)
to 20, over a wide range of values of the structure to displaced fluid mass ratio, m* €
[0.05, 10]. The exploration is carried out numerically at subcritical and postcritical values
of the Reynolds number (Re, based on D and the inflow velocity), i.e. below and above the
critical value 47 for the onset of flow unsteadiness when the body is fixed, up to 100. Path
curvature triggers a desynchronized regime of the flow—body system in addition to the
synchronized regime typical of vortex-induced vibrations, and alters the composition of
fluid forcing. The most prominent effect uncovered here is, however, a global enhancement
of FIV, with three principal results: (i) vibrations and flow unsteadiness are found to arise
at lower subcritical Re along a curved path, down to 19.5 versus 31 for ¥ = 0; (ii) the m*
range where substantial responses develop is considerably extended and encompasses the
entire interval under study, which contrasts with the narrow band of low m* identified for
k = 05 (iii) the vibrations are amplified, +45 % relative to the peak amplitude measured
along a rectilinear path at Re = 100.
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1. Introduction

Flow-induced vibrations (FIV) of bluff bodies are omnipresent in nature and in industrial
systems. Their impact on the fatigue life of engineering structures, as well as their
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Figure 1. Displacement amplitude of a circular cylinder along a transverse rectilinear path without structural
restoring force, as a function of m*, over a range of subcritical and postcritical Re. The amplitude is defined
as the maximum value of the displacement signal fluctuation. The Re value is denoted by line colour. The
shaded area highlights the amplitudes reached at Re = 100. The present results are compared to those reported
at Re = 100 by Shiels ez al. (2001), Ryan et al. (2005) and Navrose & Mittal (2017).

fundamental interest as paradigms of fluid—structure interaction, have motivated a number
of studies, as reviewed, for example, by Paidoussis, Price & de Langre (2010).

A circular cylinder placed in a cross-current is subjected to vortex-induced vibrations
(VIV), a form of FIV that develops through synchronization, or lock-in, between body
motion and flow unsteadiness (Williamson & Govardhan 2004). The configuration
composed of an elastically mounted cylinder free to translate along a rectilinear path in
the direction normal to the current represents a canonical problem to investigate these
vibrations. However, VIV also occur when the elastic support is removed, i.e. in the
absence of structural natural frequency (Shiels, Leonard & Roshko 2001; Govardhan
& Williamson 2002; Ryan, Thompson & Hourigan 2005; Navrose & Mittal 2017). The
vibrations encountered in this case exhibit substantial magnitudes only for low values of
the structure to displaced fluid mass ratio (m*). This is visualized in figure 1, where the
oscillation amplitude, normalized by the cylinder diameter (D), is plotted as a function of
m*, for different values of the Reynolds number (Re), based on D and the inflow velocity.
The peak amplitudes measured for an elastically mounted cylinder, e.g. close to 0.55D
at Re = 100, are not necessarily reached once the restoring force is removed. Under a
sinusoidal oscillation assumption that is often reasonable in this context, the responses are
actually a subset of those observed for an elastically mounted body. More precisely, they
correspond to the subset where the effective added mass due to fluid forcing is negative
(Govardhan & Williamson 2002).

Vortex-induced vibrations may appear at Re lower than the critical value 47 associated
with the onset of flow unsteadiness for a fixed cylinder. The Re values lower/larger than
this critical value are referred to as subcritical/postcritical. Subcritical-Re VIV have been
well documented in the elastically mounted body case, where responses were detected
down to Re ~ 20 (Cossu & Morino 2000; Mittal & Singh 2005; Kou et al. 2017; Dolci
& Carmo 2019; Boersma et al. 2021; Bourguet 2023a). This phenomenon persists along
a rectilinear path without structural restoring force, as reported by Ryan et al. (2005) at
Re = 40, and illustrated in figure 1, where vibrations are shown to arise close to Re = 31.

The object of this work is to examine the impact of a curved trajectory on
the flow—structure system behaviour. It was triggered by a recent study concerning
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an elastically mounted cylinder, free to translate along a circular arc within a cross-current
at Re = 100 (Bourguet 2023b). This study pointed out a major alteration of the vibration
properties compared to the rectilinear path configuration, and the emergence of novel
interaction regimes. In the present work, the cylinder is also free to translate along a
circular arc, whose curvature magnitude (inverse of radius) is a parameter of the system,
but without structural restoring force. The behaviour of this system and the possible
deviations from the rectilinear VIV depicted in figure 1 remain to be explored; an attempt
is proposed here, on the basis of numerical simulations.

Some insights may be gained from prior works analysing the related problem of
a tethered cylinder, despite the difference in the nature of body motion, i.e. rotation
versus translation (Carberry & Sheridan 2007; Ryan, Thompson & Hourigan 2007).
For m* < 1 and postcritical Re, these works emphasized the effect of m*, with a sharp
amplification of the vibrations in the lower-m* range, as in the rectilinear path case. They
also identified a widening of the m™ interval over which substantial vibrations occur, when
curvature magnitude is increased. In order to study these trends for the present system
and, more generally, to provide a global vision of its behaviour, path curvature magnitude,
non-dimensionalized by D, is varied from O (rectilinear path) to 20, over a wide range of
m*, 0.05 to 10. The exploration is carried out at both subcritical and postcritical Re, up to
100.

2. Flow-structure system and numerical method

The physical system is schematized in figure 2(a). The circular cylinder of diameter D
and mass per unit length M, is parallel to the z axis and placed in an incompressible
uniform cross-current of velocity U, density pr, viscosity i, aligned with the x axis. The
Reynolds number Re = psUD/ 1 is kept below or equal to 100, which ensures that the flow
is two-dimensional across the parameter space investigated. This point has been verified
in a preliminary phase of the present work, via three-dimensional simulations initialized
with three-dimensional flow fields. The two-dimensional Navier—Stokes equations are
employed to predict the flow dynamics. The cylinder is free to translate along a circular
path of radius R, parallel to the (x, y) plane and centred at the origin of the (x, y, z) frame.
The cylinder position is tracked by the angle 6 relative to the x axis, referred to as the
angular displacement. The physical variables are non-dimensionalized by D, U and py.
The non-dimensional, curvilinear displacement of the cylinder along the circular path is
expressed as ¢ = 6/k, where k = D/R is the non-dimensional curvature magnitude. The
transverse rectilinear motion configuration corresponds to the limiting case where R tends
to infinity (x = 0). In this configuration, ¢ is the non-dimensional displacement aligned
with the y axis. The in-line, transverse and tangential force coefficients are defined as
Cy = 2Fy/(pfDU?), Cy = 2F,/(psDU?) and C = 2F /(psDU?), where Fy, F, and F are
the dimensional fluid forces per unit length, parallel to the x and y axes, and to the direction
of body motion, respectively. The motion of the cylinder is governed by the equation

. 2C
{=—7, with C = —Cysin(k¢) + Cy cos(k (). 2.1
m
The *~ symbol designates the non-dimensional time derivative. The structure to displaced

fluid mass ratio is defined as m* = 4M./(wt ,0fD2). The system behaviour is examined for
k € [0, 20] and m* € [0.05, 10].

Assuming a decoupling of the flow and moving cylinder time scales, a quasi-steady
model of C, identified by the superscript gs, and its first-order approximation about
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Figure 2. (a) Sketch of the physical system. (») Curvilinear displacement amplitude (maximum value of
signal fluctuation) and frequency as functions of the polynomial order for (Re, x, m*) = (100, 0.5, 0.05).

¢ = ¢ = 0 can be expressed as (Bourguet 2023b)

C =—Cl( + sin(x;»\/ 2 4+2¢ sin(kg) + 1~ —CL(¢ +«0), 22)

where C{ is the mean in-line force (or drag) coefficient in the fixed body case. The ~
symbol denotes the time-averaged value. The first term of the approximation (relative to
¢) acts as a damping term through which the force tends to oppose body motion. This
suggests that no vibration should develop when C is replaced by C? in the dynamics
equation (2.1); this is indeed the case. The second term (relative to ¢) is used to derive a
non-dimensional natural frequency

~f
c 1
= i, and the corresponding reduced velocity U*=—. (2.3)
V 273m* In

Even if the present system behaviour generally departs from the quasi-steady assumption,
such modelling may shed some light on the effect of mean fluid forcing, and the above
natural frequency will be used in the analysis of the results.

The numerical method is the same as in previous works concerning comparable
systems (Bourguet 2023a,b). It is briefly summarized here, and some additional
convergence/validation results are presented. The coupled flow—structure equations are
solved by the parallelized code Nektar, which is based on the spectral/hp element method
(Karniadakis & Sherwin 1999). A large rectangular computational domain is considered
(350D downstream, and 250D in front, above and below the cylinder) to avoid any
blockage effects. It is discretized in 3975 spectral elements. A no-slip condition is applied
on the cylinder surface. A convergence study in the region of peak amplitude vibrations
at Re = 100 is presented in figure 2(b). The evolutions of the displacement amplitude
and frequency (f;), as functions of the spectral element polynomial order, show that an
increase from order 4 to 5 has no impact on the results. A polynomial order 4 was selected.
A similar procedure was employed to set the non-dimensional time step to 0.0025. In
figure 1, the evolution of the displacement amplitude with m* for x = 0 is compared to the
evolutions reported by Shiels et al. (2001), Ryan et al. (2005) and Navrose & Mittal (2017)
at Re = 100. Some slight differences, which may be attributed to the distinct simulation
strategies, can be noted in the location of the amplitude jump. The global trend of the
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displacement amplitude and the peak values reached in the low-m* range are, however,
comparable to prior results. This confirms the validity of the present numerical method.
Each simulation is initialized with the established flow past a fixed body at the selected
Re. Then the body is released with an initial velocity ¢ = 0.1. The analysis is based on
time series collected after convergence, over 30 oscillation cycles in the unsteady cases.

3. Impact of path curvature on the system behaviour

The emergence of a vibration region in the (k, m*) domain, and its shape and evolution
with Re, are examined in §3.1, together with response amplitude and frequency.
Flow—structure interaction mechanisms, including the synchronization regimes, wake
patterns and some salient features of fluid forcing, are discussed in § 3.2.

3.1. Vibration region, amplitude and frequency

Within the (k, m*) domain investigated, the present simulations show that the onset of
vibrations and thus flow unsteadiness may be shifted down to Re ~ 19.5, versus Re ~ 31
in the rectilinear path configuration (figure 1). As a result, the critical Re value typically
reported for an elastically mounted cylinder, close to 20 (e.g. Kou et al. 2017), can be
reached in the absence of structural restoring force, under the effect of path curvature.

Figure 3(a) represents the curvilinear displacement amplitude in the (k, m*) domain at
Re = 20, i.e. close to vibration onset; ¢ = 0 in all cases, and the amplitude is measured
as the maximum value of the displacement signal. The vibration region is delimited by
dashed lines. Outside this region, the flow—structure system is steady at subcritical Re.
As shown in figure 3(e), the vibration region tends to follow the line where the natural
frequency induced by the mean drag (2.3) coincides with the Strouhal frequency (St,
frequency of flow unsteadiness for a fixed body), or equivalently U* = 1/St. At subcritical
Re, the St values are those determined by Kou et al. (2017) by triggering the flow: 0.10,
0.11 and 0.115, at Re = 20, Re = 30 and Re = 40, respectively. This trend persists as Re
is increased to higher subcritical values, while the vibration region expands continuously
(figures 3b,c,f,g). At postcritical Re (Re = 100 in figures 3d,h), the cylinder oscillates
and the flow is unsteady throughout the parameter space (shaded background). In this
case, the region delineated by dashed lines is the area where &, > 0.05, and the terms
‘vibrations’ and ‘vibration region’ designate the corresponding responses and area. The
vibration region remains aligned with the isoline U* = 1/St (St = 0.164 at Re = 100).
This persistent orientation of the vibration region points out the close link between body
and flow dynamics, which is addressed in § 3.2. The isolines U* € {5, 12} locate the typical
U* range where VIV occur for an elastically mounted body (Williamson & Govardhan
2004). They do not capture the actual limits of the vibration region, but may provide an
estimate of its global triangular shape.

Vibrations are encountered over much wider ranges of m* when the path is curved,
compared to the narrow ranges depicted in figure 1 for x = 0. Two elements can be noted.
First, for any m*, there always exists an interval of ¥ where vibrations develop. Second,
an increase of « tends to shift the m* range towards higher values and simultaneously
widens it. This widening is visualized in figures 4(a,b), where the curvilinear and angular
displacement amplitudes are represented as functions of m* for selected «, at Re = 100.
The amplitudes measured for x = 0 are also plotted, for comparison (grey diamonds). For
k = 5, the vibration region encompasses most of the m* range under study.
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Figure 3. (a—d) Curvilinear displacement amplitude and (e—h) vibration region, as functions of x and m*, at
(a,e) Re = 20, (b,f) Re = 30, (c,g) Re = 40 and (d,h) Re = 100. Dashed lines delimit the area where 5 > 0
in (a—c,e—g) and &gy > 0.05 in (d,h). In (a—d), the colour levels are the same for all Re. In (d), the location of
the peak amplitude as a function of m* is indicated by a black dotted line. The cases visualized in figure 8 are
denoted by blue stars. In (e—h), the shaded area denotes the region where the cylinder exhibits oscillations of
any amplitude. The isolines U* = 1/8t, U* = 5 and U* = 12 are represented by green dash-dotted, blue dotted
and solid lines, respectively. At subcritical Re (e—g), St values are those determined by Kou et al. (2017).
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Figure 4. Displacement amplitude (upper plots) and frequency (lower plots) as functions of m* for (a) k =
2 and (b) k =5, and functions of « for (¢) m* =1 and (d) m* =7, at Re = 100. In the upper plots, both
curvilinear (left-hand axis) and angular (right-hand axis) displacement amplitudes are represented. In the lower
plots, the displacement frequency is plotted together with flow unsteadiness frequency, the natural frequency
(2.3) and St; a normalization by St is proposed on the right-hand axis. In (a,b), {uax for € = 0 is recalled for
comparison (grey diamonds). In (d), blue arrows indicate local peaks of the displacement amplitude. Yellow
and grey background colours denote the locked and unlocked regimes, respectively.

The influence of path curvature on vibration amplitude is not monotonic, as illustrated in
figures 4(c,d) for selected m*. However, the peak amplitude at a given m* is systematically
larger for x > O than the rectilinear response amplitude, including in the low-m* range.
For an elastically mounted body, the increasing evolution of the displacement frequency
with « denotes a reduction of the effective added mass, which may become negative for
peak amplitude responses (figure 7 in Bourguet 2023b). This suggests that the subset of
responses reached once the elastic support is removed should include the peak amplitude
vibrations (Govardhan & Williamson 2002). Such a phenomenon is actually observed: for
a fixed « value larger than a threshold that depends on Re (e.g. ¥ ~ 0.7 at Re = 100), the
peak amplitude attained over the m* range is the same as that reported for an elastically
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mounted body. It should be mentioned that this trend, i.e. reduction of the effective added
mass as « is increased, may also explain the reduction of the critical Re for vibration onset
down to values encountered in the elastically mounted body case. The maximum amplitude
detected in the present («, m*) domain, 0.55D at Re = 100 (+45 % compared to the «k = 0
configuration, where the peak amplitude is 0.38D), is similar to that measured with an
elastic support. A jump in the evolution of the peak amplitude location versus m* can be
noted at Re = 100 in figure 3(d) (black dotted line). The two local maxima observed close
to the jump are indicated by blue arrows in figure 4(d). This jump reflects the coexistence
of two distinct interaction regimes.

When the body oscillates, the displacement spectrum is dominated by a single
frequency, fr. A general view of f; over the (k, m*) domain, at Re € {20, 30, 40, 100},
is presented in figures 5(a—d). For k = 0, when vibrations develop (Re = 40 and 100),
their frequency is restrained to a narrow range and is always lower than St. The frequency
range explored by the body once it vibrates along a curved path is considerably extended
and includes St (blue dotted line), for example at Re = 100, f, € [0.11, 0.198] versus
fr €10.132,0.161] for k = 0. The f; range tends to increase with Re. A distinct region
of low frequency relative to St can be identified close to the lower edge of the vibration
region at Re = 100 (white dots in figure 5d). As discussed in the next subsection, this
region relates to the emergence of a specific regime of the flow—structure system, under
the influence of path curvature.

3.2. Flow-structure interaction mechanisms

In order to visualize the connection between cylinder and flow dynamics, the displacement
frequency is represented in figure 4, together with the dominant frequency of flow
unsteadiness, f,, issued from the time series of the transverse component of flow
velocity (v) sampled 10D downstream of the body. These plots depict two states of
flow—body synchronization, where f; and f, are either equal or incommensurable. They
are the two possible unsteady states encountered in the parameter space, as illustrated in
figures 5(e—h), where the response amplitude is plotted as a function of the flow/body
frequency ratio f, /f;, for all simulated cases, at Re € {20, 30, 40, 100}. The associated
regimes are named locked and unlocked, and denoted by yellow and grey background
colours, respectively, in figure 4.

The locked regime (f; = f,) corresponds to the lock-in condition usually reported for
VIV of elastically mounted cylinders (Williamson & Govardhan 2004). In the present
configuration and up to the highest Re considered (Re = 100), this is the only unsteady
regime encountered for x = 0 (black crosses in figures 5(g,h); ¢ = 0 for k = 0 at Re = 20
and 30). At subcritical Re, this is also the only unsteady regime appearing for x > 0. The
locked regime may be associated with deviations from f;, and St (figure 4). Such deviations
are quantified over the («, m*) domain in figures 6 and 7, respectively, via amplitude versus
frequency ratio plots. The large-amplitude responses often develop relatively close to f;,
but substantial departures, mainly oriented towards lower frequencies (f; < f,;), can occur.
The frequency range may vary from —20 % to +35 % of St, depending on Re. At Re = 100,
it follows approximately the boundaries of the wake synchronization region determined by
Koopmann (1967) for forced rectilinear oscillations (red dotted lines in figure 7d). As
previously mentioned, the system frequency is lower than St for k = 0 (black crosses).

The unlocked regime (f; and f, incommensurable) resembles the desynchronized
condition observed for VIV at higher Re, beyond the lock-in range. It does not appear
at subcritical Re. At Re = 100, it emerges for ¥ > 1. Its location in the (k, m*) domain is
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Figure 5. (a—d) Displacement frequency as a function of « and m*, and (e—h) curvilinear displacement
amplitude as a function of the ratio between the flow unsteadiness and body displacement frequencies, at
(a,e) Re = 20, (b,f) Re = 30, (c,g) Re = 40 and (d,h) Re = 100. In (a—d), the isoline f; = St is represented by
a blue dotted line. In (d), white dashed lines delimit the area where ¢4 > 0.05. The unlocked regime region
is indicated by white dots and delineated by a thin white line. The cases visualized in figure 8 are denoted by
blue stars. In (e—h), the frequency ratio 1 is specified by a black dash-dotted line. In (g,h), the results obtained
for k = 0 are represented by black crosses; ¢ = 0 for k = 0 at Re € {20, 30}.
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Figure 6. Curvilinear displacement amplitude as a function of the ratio between the body displacement and
natural frequencies at (a) Re = 20, (b) Re =30, (¢) Re =40 and (d) Re = 100. The frequency ratio 1 is
specified by a black dash-dotted line. Distinct symbols are used to designate the locked and unlocked regime
cases.
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Figure 7. Curvilinear displacement amplitude as a function of the ratio between the body displacement/flow
unsteadiness and Strouhal frequencies at (a) Re = 20, (b) Re = 30, (¢c) Re =40 and (d) Re = 100. The
frequency ratio 1 is specified by a black dash-dotted line. In (¢,d), the results obtained for k = 0 are represented
by black crosses; ¢ = 0 for k = 0 at Re € {20, 30}. In (d), a blue dashed line visualizes the threshold below
which flow—body synchronization ceases, i.e. the unlocked regime; f; and f, are plotted in this case. Red dotted
lines delimit the synchronization region reported by Koopmann (1967) under forced transverse oscillations at
Re = 100.

indicated by white dots in figure 5(d); the locked regime is established over the rest of the
domain. The unlocked regime is associated with a range of moderate response amplitudes,
Cmax € [0.05, 0.2], and flow/body frequency ratios varying from 1.15 to 1.45 (figure 5h).
The frequency plots in figure 4 suggest that in the unlocked regime, the body oscillates
very close to f;;, possibly far from St compared to f,. These observations are confirmed in
figures 6(d) and 7(d). In particular, the displacement frequency is found to remain lower
than a threshold located at approximately 0.85¢ (blue dashed line in figure 7d).

The dynamics of the flow—structure system is periodic in the locked regime. In the
unlocked regime, the body displacement and flow velocity signals are close to periodic.
Yet the presence of incommensurable components, at f, in the ¢ spectrum and at f;
in the v spectrum, results, despite their limited contributions, in modulations of the
temporal evolutions. Selected time series in cases representative of each regime are
plotted in figure 8, together with instantaneous visualizations of the wake. Across the
entire parameter space, and regardless of Re, f, corresponds to the shedding of a pair
of counter-rotating vortices. Therefore, a pair of vortices is formed per oscillation cycle in
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Figure 8. Selected time series of the curvilinear displacement, transverse component of flow velocity,
tangential force coefficient and mean drag contribution to the tangential force coefficient, and instantaneous
isocontours of spanwise vorticity (w, € [—0.8, 0.8]), for (a) (x, m*) = (1, 1) (locked regime) and (b) (x, m*) =
(5,7) (unlocked regime), at Re = 100. The time instant visualized in the right-hand plot is indicated by a red
dot in the ¢ time series. The circular path and trajectory of the cylinder centre are represented by black dashed
and solid lines. The sampling point of flow velocity is denoted by a green cross. Positive/negative vorticity
values are plotted in red/blue.

the locked regime. In the unlocked regime, based on flow/body frequency ratio (f,/f; €
[1.15, 1.45]), between 2.3 and 2.9 vortices are shed per oscillation cycle. In all cases,
the organization of the wake remains close to the von Kidrman street occurring in the
fixed body configuration. The aperiodic dynamics of the system in the unlocked regime
is, however, betrayed by subtle variations in the streamwise distance between consecutive
vortices and in their alignment. It is recalled that the unlocked regime does not develop for
k = 0: the reported alteration of wake regularity is an effect of path curvature.

The amplification of the mean drag associated with the emergence of vibrations is
enhanced by path curvature. For example, at Re = 100, it reaches +65 % relative to
C ,{ = 1.32 close to k = 1.5, versus +15 % for k = 0. In the absence of structural restoring
force and damping, for periodic responses such as those encountered in the locked regime,
the components of C and ¢ at f; are in phase opposition. This phasing state persists in
the unlocked regime, as shown in figure 8, where C time series are represented for both
regimes. For k = 0, the drag is not involved in C and is thus disconnected from body
excitation. In contrast, it may play a significant role once the path is curved. The mean
drag contribution (—C, sin(k ¢)) actually becomes predominant over most of the vibration
regions identified in figure 3, as illustrated by its proximity with C in figure 8. As a result,
body excitation, i.e. positive C¢ ~ —C,¢ sin(k¢) = Cy&y, where ¢, is the in-line velocity
of the body, occurs mainly during downstream motion.

4. Conclusions

In order to investigate the influence of path curvature on the flow-induced vibrations
(FIV) arising without structural restoring force, a cylinder free to translate along a circular
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trajectory within a current was considered for « € [0, 20] and m* € [0.05, 10]. The study
was carried out numerically, at subcritical and postcritical Re up to 100.

The location and shape of the vibration region in the (k, m*) domain may be estimated
based on a natural frequency f;,, emerging from the combination of the mean drag and path
curvature. At subcritical Re and over most of the vibration region at postcritical Re, the
frequencies of body motion and flow unsteadiness coincide, as in the transverse rectilinear
path configuration (x = 0). In addition to this locked regime, path curvature triggers a
second regime at postcritical Re, for x > 1 at Re = 100. In this second regime, called
unlocked and associated with responses of moderate amplitudes occurring very close to
Ju, the body and the flow oscillate at incommensurable frequencies. The frequency range
explored by the flow—body system is considerably extended when the cylinder vibrates
along a curved path. It includes St, which is not the case for x = 0. The organization of
the wake remains, however, comparable to the von Karman street observed downstream
of a fixed cylinder, with subtle irregularities in the unlocked regime. Along a curved
trajectory, it appears that the contribution of the mean drag to body excitation may become
predominant, while it does not participate in energy transfer for « = 0.

Path curvature results in a global enhancement of FIV. Three facets of this enhancement
have been pointed out. First, the Re range where vibrations and flow unsteadiness develop
is extended down to Re & 19.5, a subcritical value typically reported for elastically
mounted bodies, versus Re ~ 31 for « = 0. Second, substantial vibrations may be
encountered, over an interval of «, for any m*, and the vibration region along the m* axis
tends to widen as « is increased. This contrasts with the narrow band of low m* identified
for a rectilinear trajectory. Third, the peak amplitude of vibration detected for x > 0, at
a given m*, is always larger than the amplitude measured for x = 0. At Re = 100, the
maximum amplitude is 0.55D, i.e. +45 % compared to the rectilinear path configuration.

Different phenomena, depicted in this paper for a relatively specific system, may also
be encountered in a variety of flow—structure interaction problems where the body moves
along a curved path, for example in tethered or pivoted body systems. Some elements are
summarized hereafter.

Proximity with the elastically mounted body case. In the rectilinear path configuration,
the behaviour of the system without structural restoring force deviates noticeably from
that observed when the body is elastically mounted. Path curvature is found to reduce
this deviation. In particular, the critical values of Re for the onset of vibrations/flow
unsteadiness and the peak amplitudes of body responses, with and without structural
restoring force, become comparable.

Role of the mean drag. When body motion occurs along a curved path, the drag plays
a role in flow—body interaction, which is not the case in the rectilinear path configuration.
Its mean contribution may dominate the tangential force and the energy transfer between
the flow and the moving body. Moreover, combined with path curvature, the mean drag
introduces a natural frequency in the system.

Natural frequency. In the absence of elastic restoring force, the structure has no intrinsic
natural frequency. The present results emphasize the significance of the natural frequency
that arises spontaneously when the body is placed in a current, under the joint effects of
the mean drag and path curvature: it determines the location of the vibration region in the
parameter space and drives the global evolution of the vibration frequency.
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